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Figures

Figure 1: Ultra-large NDVI aerial imaging accomplished routinely through a fixed-wing light

aircraft operated by G’'s Growers.

(A) The flying route and aerial imaging were designed to facilitate cross-site crop layout assessment

and yield prediction. (B) A series of ultra-large NDVI images at 3cm GSD spatial resolution were

acquired to record 0.8-1.6 million lettuce heads per field, at H1 and H2 stages.
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683

684  Figure 2: A high-level analysis workflow of AirSurf-Lettuce.

685  (A) Step 1 accepts raw NDVI images as input imagery data (pixels with extremely high NDVI signals
686  are overflowed). (B) Step 2 pre-processes the raw NDVI images to calibrate intensity distribution and
687  correct overflowing pixels. (C& D) Step 3 carries out ML-based traits analyses to quantify lettuce
688  number and classify head size across a given NDVI image. (E) Steps 4&5 visualise and export
689  statistics of the traits analyses detection, including yield-related phenotypes such as lettuce counting,
690  size distribution, and harvest regions, and associated GPS coordinates.

691

692  Figure 3: A CNN-based learning ar chitectur e established for lettuce counting.

693  (A) The architecture of the trained CNN model, which generates a binary output representing the
694  probability of whether a yellow bounding box contains a lettuce signal. (B) If the probability is close
695  to 1.0, it indicates that it is highly likely that the bounding box encloses a lettuce. (C) The training and
696  validation accuracy and loss curves of the model.

697

698  Figure4: Theimproved results of the CNN model and the size classification of lettuce heads.
699  (A) Wrongly detected lettuces in very bright regions and overly counted lettuces in very dark regions,
700 in a one-million-head field. (B) Enhanced training datasets to retrain the model using the online-
701  learning approach, which led to much better detection results. (C) A predefined colour code (small is
702  coloured blue, medium is coloured green, and large is coloured red) is assigned to each recognised
703  lettuce head across the field.

704

705  Figure5: A GPS-based harvest map based on lettuce size classification.

706  (A) A colour-coded lettuce size distribution map. (B) The field is segmented into thousands of grids
707  based on the optimal GPS resolution and the size of the harvester machinery. (C) Grids are coloured
708  with the most representative lettuce size category across the image, representing harvest regions of the
709  whole field.

710
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711  Figure6: 3D visualisation of lettuce harvest regions.

712 (A) AirSurf-L reads an NDVI image and exports a lettuce size distribution map. (B) 3D visualising
713  GPS-based field grids to represent the number of lettuces, representative size categories. (C) A
714 dynamic 3D bar chart is generated to present the relationship between lettuce number, infield layout,
715  and the representative lettuce size.

716

717  Figure 7: Applying AirSurf-Lettuce to count and classify millions of lettuce heads in three
718  plantation fields acr ossthe Cambridgeshire, UK.

719  (A-C) AirSurf-Lettuce is applied to count and classify millions of lettuce heads in three plantation

720  fields in the Cambridgeshire, UK.
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723  Supplementary Figure 1: The GUI interface of AirSurf-Lettuce and the analysis wor kflow.
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726  Supplementary Figure 2: Manually labelled lettucesin randomly selected patchesusing red dots.
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729  Supplementary Figure 3: The correlation between human counting and AirSurf-L scoring (R? =
730  0.98).
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Fig. 7

1,527,668 heads 702,146 heads 1,245,462 heads
= ——



https://doi.org/10.1101/527184

