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Abstract  31 

Aerial imagery is regularly used by farmers and growers to monitor crops during the growing season. 32 

To extract meaningful phenotypic information from large-scale aerial images collected regularly from 33 

the field, high-throughput analytic solutions are required, which not only produce high-quality 34 

measures of key crop traits, but also support agricultural practitioners to make reliable management 35 

decisions of their crops. Here, we report AirSurf-Lettuce, an automated and open-source aerial image 36 

analysis platform that combines modern computer vision, up-to-date machine learning, and modular 37 

software engineering to measure yield-related phenotypes of millions of lettuces across the field. 38 

Utilising ultra-large normalized difference vegetation index (NDVI) images acquired by fixed-wing 39 

light aircrafts together with a deep-learning classifier trained with over 100,000 labelled lettuce 40 

signals, the platform is capable of scoring and categorising iceberg lettuces with high accuracy 41 

(>98%). Furthermore, novel analysis functions have been developed to map lettuce size distribution in 42 

the field, based on which global positioning system (GPS) tagged harvest regions can be derived to 43 

enable growers and farmers’ precise harvest strategies and marketability estimates before the harvest.  44 

 45 

Keywords  46 

AirSurf; lettuce; ultra-scale field phenotyping; deep learning; image analysis; precision agriculture 47 

 48 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 23, 2019. ; https://doi.org/10.1101/527184doi: bioRxiv preprint 

https://doi.org/10.1101/527184


AirSurf-Lettuce  Page 

 

4

Introduction 49 

   As an important source of vitamins, minerals, and trace elements, leaf vegetables play crucial roles 50 

in human nutrition1. Lettuce (Lactuca sativa L., a plant of the Asteraceae family), one of the most 51 

common staple vegetable foods, has a wide range of tastes, textures, and shapes that satisfy diverse 52 

customer needs2,3. Recent research indicates that lettuce consumption has positive effects on the 53 

reduction of cardiovascular disease and chronic conditions, because it provides nutrients such as 54 

vitamin A, Beta-carotene, folate, and iron content to support human growth and health4,5. While 55 

lettuce is an important and nutritional crop, fluctuating environments can increase the fragility of its 56 

production6. For example, the bad weather in Spain in early 2017 led to retail prices for lettuce 57 

products to nearly triple in UK supermarkets7. Severe weather not only can cause supply shortage, but 58 

also affects the crop quality. According to studies on lettuce growth and development8–10, at newly 59 

planted phase (i.e. from cotyledons unfolded to three true leaves stage), young crops require cool and 60 

damp weather to develop into high-quality products after transplanting from greenhouse to the fields; 61 

whereas lettuce leaves can rapidly become bitter and inedible if the plant growth is accelerated by 62 

ambient temperature at the head maturity phase (i.e. before flowering). Because of the dynamic nature 63 

of lettuce production, the actual yield of lettuces in commercial operations is around 70-80% of the 64 

planted quantity11,12. To ensure consistency of supply and quality, it is important for growers and 65 

farmers to closely monitor lettuce growth and development, so that prompt and reliable agricultural 66 

practices can be arranged under today’s fluctuating agricultural conditions13. 67 

   Commercially, lettuce production offers an attractive economic profitability in comparison to many 68 

other Agri-Food businesses14,15. To date, lettuce-related businesses are worth billions of dollars and 69 

employ hundreds of thousands of permanent and seasonal workers globally. According to the Food 70 

and Agriculture Organisation of the United Nations16, European vegetable growers alone produced 71 

2.95 million tonnes of lettuce (and chicory) in 2016, a total annual value of €2.5 billion. Spain, the 72 

largest lettuce producer in Europe, is exporting approximately €420 million worth of lettuce products 73 

every year; Germany, France and the UK are the three largest markets for lettuce consumption in 74 

Europe, with a combined import of €350 million annually17. To serve diverse consumer tastes as well 75 
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as improve the actual yield of lettuces, lettuce breeders are constantly introducing new varieties to the 76 

market, from the dense head (i.e. iceberg type) to the notched or frilly leaf varieties18,19. 77 

   Further down the fresh produce supply chain, the planning and efficiency of many essential Agri-78 

Food activities are largely dependent on the maturity date and marketability of different sizes and 79 

quality of crops20. Logistics, trading, and marketing need to be organised several weeks before the 80 

harvest21; moreover, the booking and reservation of lettuce distribution, agricultural equipment, and 81 

commercial plans with retails are often determined between H1 (soft and spongy head) and H3 82 

(mature and compact head) stages. So, crop can be harvested at the right time, with maximised 83 

yield22,23. To reliably measure and estimate potential yield (e.g. the number of lettuce heads) and 84 

associated crop quality (e.g. lettuce size categories) for better marketing and supply chain 85 

management, growers and farmers are continuously seeking new technologies to assist them with 86 

better and more precise crop management decisions24,25.   87 

   As a relative newcomer to life sciences, machine learning (ML) related techniques use statistics and 88 

sparse representations to progressively build computational procedures to accomplish specific tasks 89 

such as data classification, feature selection, clustering, and predictive modelling26,27. Although the 90 

unfamiliarity with ML often prevents plant researchers from effectively employing ML and its related 91 

technology in biological studeis28–30, many cases indicate that ML is the key to success in addressing a 92 

variety of data-driven challenges in life sciences, if appropriately labelled training data31, suitable 93 

learning algorithms32, and well-defined missions can be arranged. Some of the cases are: (1) the 94 

analysis of big genomic data for annotation, assembly, and gene regulatory networks31, (2) the 95 

classification of DNA and protein sequences for genetic and genomic studies33, and (3) the prediction 96 

of genome and phenome patterns based on high-dimensional feature datasets34.  97 

   In this article, we present a cross-disciplinary approach that develops a new analytic software tool to 98 

perform automated ultra-scale field phenotyping of iceberg lettuce. Our research and development 99 

(R&D) activities integrates ultra-scale normalized difference vegetation index (NDVI) aerial imagery, 100 

modern computer vision, state-of-the-art deep learning (i.e. convolutional neural networks, CNNs), 101 

supervised machine learning, modular software engineering, and commercial lettuce production into 102 

an open-source image analysis platform called AirSurf-Lettuce (AirSurf-L). The platform is capable 103 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 23, 2019. ; https://doi.org/10.1101/527184doi: bioRxiv preprint 

https://doi.org/10.1101/527184


AirSurf-Lettuce  Page 

 

6

of performing phenotypic analysis of millions of lettuces across the field. A CNN model trained with 104 

over 100,000 labelled lettuce signals has been embedded in AirSurf-L to quantify lettuce heads and 105 

their plantation layout using ultra-large NDVI images collected by a fixed-wing light aircraft. 106 

Unsupervised ML algorithms were used to classify lettuce heads into three size categories (i.e. small, 107 

medium and large). To connect analysis results with marketability and crop management decisions, a 108 

novel function has been developed to connect global positioning system (GPS) information with the 109 

lettuce size distribution map, based on which a GPS-tagged harvest map was produced to enable 110 

efficient and precise harvesting strategies for growers and farmers to increase marketable yield. The 111 

analysis results generated by AirSurf-L show a strong correlation between machine counting and 112 

specialist scoring. We are therefore confident that our work is promising in assisting vegetable 113 

growers and farmers with their precision agriculture management activities. Together with recent 114 

advances in unmanned aerial vehicles (UAV) technologies, ground-based remote sensors, and ML-115 

based modelling, AirSurf-L could have great significance to improve the fresh vegetable crop 116 

production, distributing and logistics activities before the harvest. Furthermore, with addtional 117 

training data, necessary testing and validation, we believe that the analysis platform can be expanded 118 

relatively easily to incorporate other crop species such as wheat and rice for ultra-scale aerial crop 119 

phenotyping.  120 

 121 

Results 122 

NDVI aerial imaging and data acquisition  123 

   The ultra-large aerial NDVI imagery was acquired routinely (i.e. four-five times per season) using a 124 

fixed-wing light aircraft operated by G’s Growers, the second largest vegetable grower in the UK. 125 

The flying route and the imaging protocol were designed to facilitate cross-site crop layout 126 

assessment, yield prediction (based on vegetation indices), and disease monitoring (Fig. 1A), which 127 

has been described previously35. In this study, we used a series of collected ultra-large NDVI images 128 

(1.5-2GB per image) at 3cm ground sample distance (GSD) spatial resolution, collecting iceberg 129 

lettuce signals between H1 and H2 stages (i.e. moderate compact and crushable head), before lettuce 130 
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leaves were largely overlapped. Experimental fields were located in Cambridgeshire UK, ranging 131 

from 10 to 20 hectares, with between 800,000 and 1.6 million lettuce heads in a single field. A field 132 

planted with around 1 million lettuce heads (coloured light blue in Fig. 1B) was used in the following 133 

sections to explain the analysis workflow of AirSurf-L. A high-level manual yield counting was 134 

conducted by the grower’s field specialists during the harvest, which was used to verify and improve 135 

the AirSurf-L platform. Also, lettuces in subsections randomly selected from experimental fields were 136 

scored manually by laboratory technicians, which were also used as training data for the CNN model.   137 

 138 

Figure 1: Ultra-large NDVI aerial imaging accomplished routinely through a fixed-wing light aircraft 139 

operated by G’s Growers.  140 

(A) The flying route and aerial imaging were designed to facilitate cross-site crop layout assessment and yield 141 

prediction. (B) A series of ultra-large NDVI images at 3cm GSD spatial resolution were acquired to record 0.8-142 

1.6 million lettuce heads per field, at H1 and H2 stages. 143 

 144 

The analysis workflow of AirSurf-L 145 

   The analysis of yield-related phenotypes was based on NDVI signals of iceberg lettuces across the 146 

field. Figure 2 shows a high-level analysis workflow of AirSurf-L, which consists of five steps: data 147 

input, image calibration and pre-processing, ML-based traits analyses, results visualisation, and 148 

quantifications of yield-related phenotypes. Step 1 accepts raw NDVI images as gray-level imagery 149 
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datasets. As pixels with extremely high NDVI signals usually have overflowed intensity values (i.e. 150 

black pixels in Fig. 2A), a pre-processing step (Step 2) is designed to calibrate raw NDVI images, so 151 

that intensity distribution can be normalised and overflowing pixels can be corrected. In this step, an 152 

algorithm called contrast limited adaptive histogram equalization (CLAHE)36 is applied to increase 153 

the contrast between the foreground (i.e. lettuces) and background (i.e. soils) in a given NDVI image 154 

(Fig. 2B). Additional File 1 provides pseudo code and explanations of this step. 155 

 156 

Figure 2: A high-level analysis workflow of AirSurf-Lettuce.  157 

(A) Step 1 accepts raw NDVI images as input imagery data (pixels with extremely high NDVI signals are 158 

overflowed). (B) Step 2 pre-processes the raw NDVI images to calibrate intensity distribution and correct 159 

overflowing pixels. (C&D) Step 3 carries out ML-based traits analyses to quantify lettuce number and classify 160 

head size across a given NDVI image. (E) Steps 4&5 visualise and export statistics of the traits analyses 161 

detection, including yield-related phenotypes such as lettuce counting, size distribution, and harvest regions, and 162 

associated GPS coordinates. 163 

 164 

   Step 3 carries out ML-based traits analyses that quantify lettuce number (Fig. 2C) as well as classify 165 

head size (Fig. 2D). It includes six steps: removing noise signals, partitioning a given image into 166 

sections (250 x 250 pixels) for local analysis, producing a sliding window (20 x 20 pixels) to traverse 167 

within a sectioned image, using non-max suppression to detect lettuces, and classifying recognised 168 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 23, 2019. ; https://doi.org/10.1101/527184doi: bioRxiv preprint 

https://doi.org/10.1101/527184


AirSurf-Lettuce  Page 

 

9

lettuces into three size categorises (i.e. small, medium and large). The analysis result is visualised in 169 

Step 4, where lettuce counting, size distribution map, and GPS-tagged harvest regions are saved as 170 

processed images (Fig. 2E). At the final step (Step 5), statistics of yield-related traits are saved in a 171 

comma-separated values (CSV) file, including lettuce counts per field, lettuce size distribution, lettuce 172 

number and size measures within GPS-based grids, harvest regions, and their associated GPS 173 

coordinates (Additional File 2). To enable users to carry out the above analysis workflow, a GUI-174 

based software application has been developed (Supplementary Fig. 1).  175 

 176 

Data construction for model training and testing 177 

   To generate a sound training and testing dataset for ML-based image analysis, we randomly selected 178 

dozens of patches of a given field and manually labelled each lettuce in the patch with a red dot 179 

(Supplementary Fig. 2). Then, each dot is identified by a bounding box, which is then used to build 180 

the learning model. A training dataset with over 100,000 20x20-pixel labelled images has been 181 

created, amongst which 50% are lettuces and the remaining are background signals such as soil, edges 182 

of the field, and other non-lettuce objects. Following a standard CNN segmentation approach37, we 183 

designed a sliding window function to go through a given image to divide foreground and background 184 

signals, splitting lettuce and non-lettuce objects. Training and testing datasets are equally balanced. 185 

Validation sets are used alongside training sets to verify the performance of the model as well as to 186 

prevent  overfitting in model training, which is also an important step to allow us to fine-tune 187 

hyperparameters of different learning layers38.  188 

 189 

Neural network architecture 190 

   Similar to AlexNet39, a CNN-based learning architecture was established using the labelled datasets. 191 

Figure 3A demonstrates the architecture of the CNN model, including (1) a convolutional (Conv2D) 192 

layer with 32 filters and a 3x3 kernel, with a rectified linear unit (ReLU) as the activation function, 193 

and batch normalisation to accelerate the learning process to enable higher learning rates40; (2) the 194 

same block is then repeated together with a max pooling layer to down-sample input using a 2x2 195 
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kernel based on the assumption that useful input features could be contained in sub-regions; (3) after 196 

that, a second convolutional block is constructed, consisting of a Conv2D layer with 64 filters, a 3x3 197 

kernel, a ReLU activation, and batch normalisation; (4) finally, this block is repeated, followed by 198 

another max pooling layer (with a 2x2 kernel) to complete the learning procedure. After the 199 

convolutional layers, layers are connected to a fully connected layer of size 512, which is followed by 200 

a dropout layer with a 50% chance. To complete the learning architecture, a binary output generates 201 

the probability of whether a given bounding box (20x20 pixels) contains a lettuce signal. If the 202 

probability equals or is close to 1.0 (i.e. 100%), it indicates that it is highly likely that the bounding 203 

box contains a complete lettuce head (Fig. 3B). The above architecture is commonly applied to 204 

vision-based object detection problems41.  The training and validation accuracy and loss curves are 205 

reported in Figure 3C, showing that the model converges in only 10 epochs. To avoid overfitting, the 206 

stopping criterion was designed to ensure that the validation accuracy is higher than the training 207 

accuracy. By doing this, we can ensure the generalisation of the model. When training the CNN 208 

model, the labelled data was also divided equally into train and validation sets.  209 

 210 

Figure 3: A CNN-based learning architecture established for lettuce counting.  211 

(A) The architecture of the trained CNN model, which generates a binary output representing the probability of 212 

whether a yellow bounding box contains a lettuce signal. (B) If the probability is close to 1.0, it indicates that it 213 

is highly likely that the bounding box encloses a lettuce. (C) The training and validation accuracy and loss 214 

curves of the model. 215 
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 216 

Phenotypic analysis of lettuce heads  217 

   After a CNN classifier was trained, we used it to recognise and classify lettuce signals in ultra-large 218 

NDVI images. The six-step approach discussed before (Fig. 2) is followed. However, during the 219 

testing and implementation, we found that the CNN classifier could wrongly score lettuces as a lettuce 220 

head is extremely tiny in an orthomosaic image (e.g. 11,330x6,600 pixels for a 7-hectare field when 221 

GSD is 3cm, which can contain over half million lettuce heads). To resolve this issue, we have 222 

designed a two-step approach: (1) sectioning the whole image into many 250x250 pixels sub-images, 223 

and (2) using a fix-sized bounding-box (20x20 pixels) as a sliding window (with a stepping parameter 224 

of 5 pixels to reduce the sliding calculation) to prune the detected lettuce objects in each sub-image.  225 

   Another reason that caused the CNN classifier’s wrong detection is overlapped lettuce objects. Even 226 

in a sub-image, overlapped lettuces could be detected repeatedly by the classifier. Hence, we 227 

employed a non-maximum suppression (NMS) algorithm42 to rectify the detection result. NMS uses 228 

probabilities to order the detected lettuce objects in a sub-image. After the sliding window function is 229 

performed and many small patches have been identified in a sub-image, the NMS algorithm computes 230 

an overlap coefficient to determine how to retain these patches. As lettuces are relatively well-spaced, 231 

bounding boxes surrounding a complete lettuce signal will be retained, whereas partially covered 232 

signals will be removed. To select the best overlap parameter for the NMS, a gradient descent method 233 

is formulated. Additional File 3 explains the NMS algorithm and its implementation in AirSurf-L. 234 

 235 

Results improvement and size categorisation 236 

   Initially, the training data selected was chosen randomly across the field. Using the data, AirSurf-L 237 

can capture a broad range of sizes and orientations of lettuces with varying intensities. However, 238 

when applying the initial CNN model, it failed to recognise lettuces in very bright regions and overly 239 

count lettuces in very dark regions (e.g. approximately 50,000 lettuces were wrongly detected in the 240 

one-million-head field, Fig. 4A). To resolve this issue, we enhanced the training datasets by manually 241 

labelling an additional 500 lettuce signals within very bright or very dark regions. Then, newly 242 
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labelled data was inserted into the training datasets to retrain the model through the online-learning 243 

approach43. The improved model (available on our GitHub repository, see Availability of supporting 244 

data) was tested on different experimental fields again and has dramatically enhanced the detection 245 

result (Fig. 4B).   246 

   Identified lettuces are individually analysed to determine their associated size category. The size 247 

classification is based on intensity and contrast values enclosed by the 20x20 bounding boxes, which 248 

is computed using the dot product of the histogram of pixel intensities and a weighted vector towards 249 

more pixel-based contrast values (see Methods). The assumption of this design is that higher NDVI 250 

signals likely correlate with higher vegetation indices44, which indicates bigger lettuce heads. The 251 

categorisation result of all lettuce heads is clustered into three size groups. Each lettuce is then 252 

coloured with a predefined colour code (i.e. small is blue, medium is green, and large is red, see Fig. 253 

4C).    254 

 255 

Figure 4: The improved results of the CNN model and the size classification of lettuce heads.  256 

(A) Wrongly detected lettuces in very bright regions and overly counted lettuces in very dark regions, in a one-257 

million-head field. (B) Enhanced training datasets to retrain the model using the online-learning approach, 258 

which led to much better detection results. (C) A predefined colour code (small is coloured blue, medium is 259 

coloured green, and large is coloured red) is assigned to each recognised lettuce head across the field.    260 

 261 
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GPS- tagged harvest regions 262 

   The final phase of the phenotypic analysis is to define harvest regions based on colour-coded 263 

lettuces. Using the size distribution map (Fig. 5A), the field is firstly segmented into many small grids 264 

based on the optimal GPS resolution determined by the altitude of aerial imagery (3cm GSD, in our 265 

case) as well as the size of the harvester machinery used by the grower. After dividing the field into 266 

thousands of grids (Fig. 5B), GPS coordinates of each grid are recorded and each grid is coloured 267 

with the most representative lettuce size category. By combining all coloured grids, a GPS-tagged 268 

harvest map is produced, representing harvest regions of the field (Fig. 5C). The harvest map is then 269 

used for designing harvesting strategies such as guiding a harvester to collect desired sized lettuces or 270 

arranging logistics based on the lettuce number and size counting. To facilitate agricultural practices, 271 

a result file (in .csv format, Additional File 2) is generated by AirSurf-L at the end of the analysis, 272 

containing information of each harvest region, the associated GPS location, lettuce size, lettuce counts, 273 

and the location in the field. To satisfy different needs for dissimilar requirements, the size of GPS-274 

based harvest grids can be modified manually in the AirSurf-L software.   275 

 276 

Figure 5: A GPS-based harvest map based on lettuce size classification.  277 

(A) A colour-coded lettuce size distribution map. (B) The field is segmented into thousands of grids based on 278 

the optimal GPS resolution and the size of the harvester machinery. (C) Grids are coloured with the most 279 

representative lettuce size category across the image, representing harvest regions of the whole field. 280 

 281 

   Figure 6 uses Python-based 3D Matplotlib library45 to show the GPS-tagged harvest map. When 282 

AirSurf-L reads an NDVI image, it first computes the number of lettuce heads and associated size 283 

categories on the image (Fig. 6A). Then, by 3D visualising the relationship of GPS-based field grids, 284 

the number of lettuces in the grid, and the representative size category (Fig. 6B), a dynamic 3D bar 285 
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chart is generated to present lettuce number using the z axis, infield layout (both columns and rows) 286 

using both x and y axes, and the representative lettuce size using the predefined colours (Fig. 6C). 287 

Through the 3D plot, users can zoom into one sub-region of the field to check detailed yield-related 288 

traits within each infield grid and plan harvesting strategies accordingly.    289 

 290 

Figure 6: 3D visualisation of lettuce harvest regions.  291 

(A) AirSurf-L reads an NDVI image and exports a lettuce size distribution map. (B) 3D visualising GPS-based 292 

field grids to represent the number of lettuces, representative size categories. (C) A dynamic 3D bar chart is 293 

generated to present the relationship between lettuce number, infield layout, and the representative lettuce size. 294 

 295 

Validation of the platform 296 

   To verify AirSurf-L and the generalisation of the learning model, we have applied the platform to 297 

count and classify lettuce heads in three unseen experimental fields in Cambridgeshire, UK (Figs. 7A-298 

C). These fields contain around 700,000-1,500,000 lettuces and are located in different sites around 299 

the county. Traits such as the number of lettuces per field and associated size categorisation quantified 300 

by the platform were compared with industrial estimates, showing a highly correlated phenotypic 301 

analysis (<5% difference). Besides the field-level comparison, we also randomly selected different 302 

sizes of subsections in a given experiment field to evaluate AirSurf-L more precisely. We split these 303 

subsections into two sets (i.e. 36 small regions and 21 large regions), where the small regions have 304 

less than 400 lettuces and the large ones contain greater than 900 lettuces heads. After that, laboratory 305 
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technicians manually counted lettuce heads within these regions. The correlation between the manual 306 

and AirSurf-L counting shows that, for the small regions, the difference between the human and 307 

automatic counting is approximately 2%; for the large regions, the average difference is around 0.8%. 308 

Supplementary Figure 3 reports the strong correlations (R2 = 0.98) between human and automatic 309 

counting in both regions. 310 

 311 

Figure 7: Applying AirSurf-Lettuce to count and classify millions of lettuce heads in three plantation 312 

fields across the Cambridgeshire, UK.  313 

(A-C) AirSurf-Lettuce is applied to count and classify millions of lettuce heads in three plantation fields in the 314 

Cambridgeshire, UK.  315 

 316 

Discussion  317 

   Traditionally, measuring infield crops on a large scale is very time-consuming and labour-intensive. 318 

It often requires destructive techniques, potentially error-prone manual counting, or estimates of traits 319 

that are key to yield production or crop quality46. Recent advances in machine learning (including 320 

deep learning) and computer vision (CV) based techniques have led to an explosion of phenotypic 321 

analysis that is rapidly improving our abilities to mine phenotypic information from large and 322 
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complicated phenotyping datasets47–49. New data-driven analytic approaches are also changing plant 323 

phenomics research – collecting big data (i.e. phenotyping) is no longer the bottleneck, instead how to 324 

extract biologically relevant information (i.e. phenotypic analysis) from big data has become the 325 

current challenge50–52. Hence, along with the development of aerial imaging and remote sensing 326 

technologies, it has become increasingly noticeable that the integration of scalable data collection, 327 

high-throughput phenotypic analysis, and predictive modelling are key to crop research and precision 328 

agriculture52–54.  329 

 330 

A combined research effort 331 

   AirSurf-L addresses a specific challenge in ultra-scale field phenotyping and precision agricultural 332 

practices through combining aerial NDVI imagery, CV, ML, and moldular software engineering, with 333 

commercial lettuce production. The software platform automates the measurement of millions of 334 

lettuces in the field and our industrial partner has contributed key ideas of how to connect research-335 

based phenotypic analysis with real-world agriculture problems. As a cross-disciplinary project, our 336 

project collaborators came from different backgrounds and hence many efforts were made on 337 

understanding the requirements at the project initiation phase. Also, the academia-industry project 338 

setting required a more agile R&D progress, because computational technologies and industrial 339 

requirements were constantly changing while the project was still ongoing. From the project 340 

development, one of the most valuable lessons we learned is that requirements and implementation 341 

are unlikely to be clarified at the beginning and more efforts shall be made towards mutual 342 

understanding. Similar to the case reported previously55, all project parties need to be adaptive with 343 

changeable requirements due to the dynamic nature of such a project; additionally, a successful 344 

integration of project stakeholders requires all parties to manage expectation, mutual trust, and, more 345 

importantly, clear communication channels.  346 

 347 
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Machine learning in plant phenomics  348 

  Another aim of this work is to further ML- and CV-based software solutions in plant phenomics. 349 

High-throughput plant phenotyping is a fast-growing research domain, covering many disciplines, 350 

from plant breeding, cultivation, remote sensing, to computing sciences56,57. The modulated software 351 

development allows us to apply different open-source learning architectures58 (e.g. Scikit-Learn and 352 

the TensorFlow frameworks) and CV algorithms59,60 (e.g. OpenCV and Scikit-Image libraries), when 353 

implementing AirSurf-L. Notably, it is worth pointing out that ML is not a silver bullet for phenotypic 354 

analysis, because: (1) learning algorithms could perform badly if training datasets are not well-355 

labelled; and, (2) although ML performs well in segmentation and classification if target objects are 356 

well-defined, there is still a big gap between object recognition and traits analyses. Meaningful 357 

phenotypic analysis not only requires sufficient biological understanding to define target traits in a 358 

logical manner, but also needs bespoke algorithms to engineer features so traits can be soundly 359 

extracted. Hence, biological questions, CV, data analysis, and software engineering shall be 360 

considered collectively with ML techniques when resolving plant phenomics problems.  361 

 362 

Limitations of the platform 363 

   Besides the high-accurate phenotypic analysis results presented in this article, there are still 364 

limitations of the platform need to be considered: (1) AirSurf-L has been tested with top-view iceberg 365 

lettuces mainly at H1 and H2 stages, which means that analysis error could increase if there are too 366 

many overlaps between lettuce heads, e.g. from H3 stage onwards. (2) As AirSurf-L has only been 367 

tested with NDVI imagery, it is therefore important to add new functions to the platform to 368 

incorporate other vegetation indices measured through multi- and hyper-spectrum imaging sensors. (3) 369 

As precision agriculture management decisions are normally based on imagery, soil and climate 370 

conditions, AirSurf’s results will be more reliable, if soil and climate data can be integrated in the 371 

analysis. (4) The method was tested and validated in lettuce fields in a number of geographic 372 

locations following a standard aerial imaging procedure, data collected from different sites via varied 373 
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aerial imaging strategies (e.g. different angles, altitudes and GSD) could improve the soundness and 374 

compatibility of the platform. 375 

 376 

Prospects for crop research and precision agriculture 377 

   The open-source software development opens up the potential for computational biologists to 378 

include new learning models and analytic functions for other staple crops such as wheat and rice. For 379 

example, the plant density of wheat is closely related to the yield due to its influences on the 380 

allocation of water, light and fertilisers; however, it is not feasible to quantify the plant density solely 381 

using ground-based RGB imagery61. Hence, utilising the ultra-scale NDVI aerial imagery and object 382 

recognition methods embedded in AirSurf-L, it is likely possible to quantify wheat plants at the 383 

emergence stage in different farming sites, which not only can benefit the assessment of sowing 384 

performance, emergence rate, and plant distribution, but also will help breeders and cultivation 385 

researchers make early predictions of the grain yield of different wheat genotypes in field experiments. 386 

   From a precision agriculture perspective, monitoring individual plant such as a lettuce head will 387 

enable accurate monitoring of crops during key growth stages across a plantation site. It can provide 388 

growers with the real number of crops in the field, based on which yield for harvest availability and 389 

management plans can be quantified instead of estimated. The calculation of infield crops will also 390 

lead to more accurate agricultural inputs, facilitating automated variable-rate application of fertiliser, 391 

weed control, and pesticides through tractor software system with a precise crop distribution map62. 392 

More interestingly, the close monitoring of key yield-related traits can also be used to guide farmers 393 

and growers to reduce variability of agrichemical applications and irrigation in different fields, 394 

leading to increased harvest yield and better operating profit margin63. Finally, the AirSurf-L 395 

approach fits in the cost-effective category in precision agriculture. The platform utilises existing 396 

aerial imagery data routinely performed by the growers and farmers, which means that no extra data 397 

collection cost is required by this approach and hence the adoptability of the technology, an important 398 

factor for new Agri-Tech solutions to be accepted by the Agri-Food sector53.  399 

 400 
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Conclusions 401 

AirSurf-Lettuce automatically measures infield iceberg lettuces using ultra-scale NDVI aerial images, 402 

with a focus on yield-related traits such as lettuce number, size categories, field size distribution, and 403 

GPS-tagged harvest regions. The analysis results are close to the manual and industrial counting and 404 

can be used to improve existing crop measures and estimates. By monitoring millions of lettuces in 405 

the field, we demonstrate the significant value of AirSurf-L in ultra-scale field phenotyping, lettuce 406 

size distribution mapping, precise harvest strategies, and marketability estimates before harvesting. 407 

We believe that our algorithm design, software implementation, lessons learned from applying ML- 408 

and CV-based algorithms, and the academic-industrial R&D activities will be highly valuable for 409 

future plant phenomics research projects that are destined to be dynamic and cross-disciplinary. 410 

Finally, with continuous development work, we are confident that the analytic platform is likely to 411 

support the Agri-Food sector with a smarter and more precise crop surveillance approach of vegetable 412 

crops and therefore lead to better precision agriculture management decisions. 413 

 414 

Methods 415 

Ultra-large field NDVI imagery and experimental fields 416 

   The NDVI imaging sensor used is an industrial standard camera described previously35. The aerial 417 

imaging was carried out by a 'Sky Arrow' light aircraft, the lightest weight class (Very Light Aircraft, 418 

VLA) of any commercial aircraft that is allowed for commercial work. The VLA let the pilot to fly 419 

with very little fuel, less than an average farm vehicle while driving around the crops. Using VLA at 420 

1000 feet (around 305 metres) in the sky, vast areas can be covered at a flight speed 180-200 km/hour. 421 

The NDVI sensor can gather ultra-large crop imagery datasets at very low operating costs, as the 422 

VLA can carry 45 kilograms of payload to cover four or five fields in a single flight. This aerial 423 

imaging approach can also be used to understand the spectral changes associated with key disease 424 

conditions. The NDVI lettuce signals used in this study were captured at H1 or H2 growth stage 425 

(moderately compact and crushable head, when lettuce leaves are not largely overlapping with 426 

neighbours). The experimental fields are operated by G’s Growers near Ely UK, ranging from 10 to 427 
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20 hectares with at least 0.5 million lettuce heads in a single field. A rough manual yield estimate was 428 

produced by specialists during the harvest, which were used for testing and improving AirSurf-L.  429 

 430 

Dataset preparation   431 

   To generate a sound dataset for machine learning-based image analysis, we randomly selected 60 432 

patches of the field of varying sizes, each containing between 300 and 1,000 individual lettuce heads, 433 

and manually labelled each lettuce in the selected patches. Each labelled lettuce is extracted as a 434 

20x20 pixel image representing a single lettuce head. We then used these images, along with images 435 

that did not correspond to a lettuce head, to train a CNN classifier to recognize and separate potential 436 

lettuces from the ultra-large field images. The pixels contained within the potential lettuces were used 437 

for further phenotypic analysis of lettuce size. To format the manually labelled dataset for building the 438 

model, we created another training dataset with over 100,000 20x20 pixel images, among which 50% 439 

are lettuces and 50% are background signals. The background images were selected using regions 440 

other than the labelled lettuces across the field together with a non-overlapping sliding window 441 

function to extract background patches. These images are then split into two equally balanced training 442 

and validation sets. 443 

 444 

Construction of deep neural network architecture 445 

   We built our deep neural network based on the architecture of AlexNet. We used a shallower 446 

architecture as opposed to AlexNet and other modern deeper architectures for several reasons: (1) the 447 

size of our dataset is relatively small for deep learning studies, where larger and deeper networks tend 448 

to require bigger training datasets; (2) additionally, ours is only a binary classification problem as 449 

opposed to the ImageNet classification task; (3) larger neural networks often require more time to 450 

train, which can be slower to execute and not feasible to train the model without specialised hardware 451 

such as GPUs. In our case, we wanted a relatively simple, but powerful model that could execute in a 452 

broad range of environments and in a timely manner.  453 
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   Like AlexNet, we used rectified linear units (ReLU) as our activation function, which is now a 454 

common standard in CNNs. This is because ReLU reduces the vanishing gradient problem19. After 455 

each convolutional layer, we also perform batch normalisation. This reduces the covariance shift, 456 

which helps ensure that the model generalises well and the network converges faster. Finally, we 457 

included two max pooling layers to reduce the problem into smaller samples. Other architectures 458 

might use more max pooling layers, but our input images were segmented and hence quite small. In 459 

order to avoid too much information loss from the training procedure, we trained the CNN on our 460 

datasets until the validation accuracy was greater that the training accuracy. The training and 461 

validation accuracy and loss are reported in Figure 3, where it is shown that the model converged in 462 

only 10 epochs. More importantly, to avoid over fitting, the stopping criterion was set for when the 463 

validation accuracy is higher than the train accuracy.  464 

 465 

Size categorisation 466 

   After AirSurf-L identifies a list of square pixel patches containing single lettuces, it is important to 467 

perform automatic unsupervised size categorisation. Lettuce sizing in this work is split into three size 468 

categories: small, medium and large; however, the method can be easily changed to classify more size 469 

categories. The pixel regions are extracted from the image and then NDVI values are put into bins 470 

with similar pixel values. Originally, the histogram included 10 bins that are evenly spread across the 471 

value range, i.e. 0-255. However, treating all pixel values equally performed poorly in practice. We 472 

therefore included two important aspects in the size categorisation. Firstly, the lower NDVI 473 

surrounding value does not determine the actual size of the lettuce; secondly, the higher NDVI values 474 

are much more important in indicating size. As such, we created a geometric pattern of cut-off values 475 

for each bin. These were: 64, 128, 160, 192, 208, 224, 232, 240, 244, 248, 250, 252, 253, and 254. 476 

With these cut-off values, most of the background pixels were captured in the first two bins, with 477 

increasing granularity as the values approached the maximum of 255.  478 

   Having transformed the pixel regions into a series of histogram count vectors, we were able to 479 

compare regions and cluster the patches into groups. The count vectors are grouped into three distinct 480 
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sizes by using k-means clustering with k set to three. They are sorted into size order through 481 

calculating the dot product between the weight vector and the cluster centres count vector. These 482 

sorted values then determine which cluster corresponds to which size, and subsequently, applies to 483 

each lettuce. Three colours are used to indicate size categories: blue for small, green for medium, and 484 

red for large.  485 

  486 

Common Pitfalls 487 

   The CNN trained on a set of approximately 100,000 images. Despite the reported training and 488 

validation accuracies being quite high, in practice the network performed poorly because it could not 489 

distinguish lettuces in patches where most lettuces appear particularly bright. As the initial training 490 

datasets were chosen randomly, not enough representative samples from extreme regions were 491 

selected during the training. Without sufficient training data, the network was undercounting by 5% in 492 

large fields. To solve this problem, we manually labelled further 500 lettuces and added them to the 493 

training dataset. The neural network was retrained and converged faster than the previous iteration. 494 

The algorithm was updated with the new model with improved results. The above training issue could 495 

be a common pitfall for many deep-learning analytic solutions, because key features were constructed 496 

by learning algorithms instead of engineered. Many learning models were vulnerable when facing up 497 

to totally undefined datasets.   498 

 499 

Availability and requirements  500 

Project name: AirSurf-Lettuce with G’s Growers 501 

Project home page: https://github.com/Crop-Phenomics-Group/Airsurf-Lettuce 502 

Operating system(s): platform independent 503 

Programming language: Python 3 504 

Requirements: Packaged for both Mac and Windows 505 

License: BSD-3-Clause available at https://opensource.org/licenses/BSD-3-Clause 506 

 507 
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 676 

Figures  677 

Figure 1: Ultra-large NDVI aerial imaging accomplished routinely through a fixed-wing light 678 

aircraft operated by G’s Growers.  679 

(A) The flying route and aerial imaging were designed to facilitate cross-site crop layout assessment 680 

and yield prediction. (B) A series of ultra-large NDVI images at 3cm GSD spatial resolution were 681 

acquired to record 0.8-1.6 million lettuce heads per field, at H1 and H2 stages. 682 
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 683 

Figure 2: A high-level analysis workflow of AirSurf-Lettuce.  684 

(A) Step 1 accepts raw NDVI images as input imagery data (pixels with extremely high NDVI signals 685 

are overflowed). (B) Step 2 pre-processes the raw NDVI images to calibrate intensity distribution and 686 

correct overflowing pixels. (C&D) Step 3 carries out ML-based traits analyses to quantify lettuce 687 

number and classify head size across a given NDVI image. (E) Steps 4&5 visualise and export 688 

statistics of the traits analyses detection, including yield-related phenotypes such as lettuce counting, 689 

size distribution, and harvest regions, and associated GPS coordinates. 690 

 691 

Figure 3: A CNN-based learning architecture established for lettuce counting.  692 

(A) The architecture of the trained CNN model, which generates a binary output representing the 693 

probability of whether a yellow bounding box contains a lettuce signal. (B) If the probability is close 694 

to 1.0, it indicates that it is highly likely that the bounding box encloses a lettuce. (C) The training and 695 

validation accuracy and loss curves of the model. 696 

 697 

Figure 4: The improved results of the CNN model and the size classification of lettuce heads.  698 

(A) Wrongly detected lettuces in very bright regions and overly counted lettuces in very dark regions, 699 

in a one-million-head field. (B) Enhanced training datasets to retrain the model using the online-700 

learning approach, which led to much better detection results. (C) A predefined colour code (small is 701 

coloured blue, medium is coloured green, and large is coloured red) is assigned to each recognised 702 

lettuce head across the field.    703 

 704 

Figure 5: A GPS-based harvest map based on lettuce size classification.  705 

(A) A colour-coded lettuce size distribution map. (B) The field is segmented into thousands of grids 706 

based on the optimal GPS resolution and the size of the harvester machinery. (C) Grids are coloured 707 

with the most representative lettuce size category across the image, representing harvest regions of the 708 

whole field. 709 

 710 
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Figure 6: 3D visualisation of lettuce harvest regions.  711 

(A) AirSurf-L reads an NDVI image and exports a lettuce size distribution map. (B) 3D visualising 712 

GPS-based field grids to represent the number of lettuces, representative size categories. (C) A 713 

dynamic 3D bar chart is generated to present the relationship between lettuce number, infield layout, 714 

and the representative lettuce size. 715 

 716 

Figure 7: Applying AirSurf-Lettuce to count and classify millions of lettuce heads in three 717 

plantation fields across the Cambridgeshire, UK.  718 

(A-C) AirSurf-Lettuce is applied to count and classify millions of lettuce heads in three plantation 719 

fields in the Cambridgeshire, UK.  720 

 721 

 722 

Supplementary Figure 1: The GUI interface of AirSurf-Lettuce and the analysis workflow.   723 

 724 

 725 
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Supplementary Figure 2: Manually labelled lettuces in randomly selected patches using red dots. 726 

  727 

 728 

Supplementary Figure 3: The correlation between human counting and AirSurf-L scoring (R2 = 729 

0.98). 730 

 731 
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