
Bioshake: a Haskell EDSL for bioinformatics
pipelines

Justin Bedő∗

Bioinformatics Division, Walter and Eliza Hall Institute, 1G Royal Parade,
Parkville VIC 3052, Australia

Department of Computing and Information Systems, University of Melbourne
VIC 3010, Australia

September 30, 2018

Abstract

Background: Typical bioinformatics analysis comprise long running computational pipelines.
An important part of producing reproducible research is the management and execution of
these computational pipelines to allow robust execution and to minimise errors. Bioshake is
an embedded domain specific language embedded in Haskell for specifying and executing
computational pipelines in bioinformatics that significantly reduces the possibility of errors
occurring.

Results: Unlike other pipeline frameworks, Bioshake raises many properties to the type level to
allow the correctness of a pipeline to be statically checked during compilation, catching errors
before any lengthy execution process. Bioshake builds on the Shake build tool to provide
robust dependency tracking, parallel execution, reporting, and resumption capabilities.
Finally, Bioshake abstracts execution so that jobs can either be executed directly or submitted
to a cluster.

Conclusions: Bioshake is available at http://github.com/papenfusslab/bioshake.

1 Background
Bioinformatics pipelines are typically composed of numerous programs and stages coupled
together loosely using intermediate files. These pipelines tend to be quite complex and require
much computational time, hence a good pipeline must be able to manage intermediate files,
guarantee rentrability – the ability to re-enter a partially run pipeline and continue from the latest
point – and also provide methods to easily describe pipelines.

We present bioshake: a Haskell Embedded Domain Specific Language (EDSL) for bioinfor-
matics pipelines. The use of a language with strong types gives our framework several advantages
over existing frameworks [Leipzig, 2016, Goodstadt, 2010, Amstutz et al., 2016, wdl, 2012,
Vivian et al., 2017]:

∗Email: bedo.j@wehi.edu.au

1

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 24, 2019. ; https://doi.org/10.1101/529479doi: bioRxiv preprint 

http://github.com/papenfusslab/bioshake
bedo.j@wehi.edu.au
https://doi.org/10.1101/529479
http://creativecommons.org/licenses/by/4.0/


1. The type system is strongly leveraged to prevent errors in the pipeline construction during
compilation. Errors such as mismatching file types, combining samples mapped against
different references, or failing to sort a Sequence Alignment Map (SAM) file before a
stage that requires sorting all result in a compile error rather than a runtime error. This
catches errors significantly earlier, reducing debugging time. As bioinformatics pipelines
tend to have long runtimes, this is especially advantageous. To the best of our knowledge,
this is the first bioinformatics pipeline framework to use strong typing and type inference
to prevent specification errors during compile time.

2. Naming of outputs at various stages of a pipeline are abstracted by bioshake. Output at a
stage can be explicitly named if they are desired outputs. Thus, the burden of constructing
names for temporary files is alleviated. This is similar in spirit to Sadedin et al. [2012]
who also allow abstraction away from explicit filenames.

3. Bioshake builds on top of Shake, an industrial strength build tool also implemented as
an EDSL in Haskell. Bioshake thus inherits the reporting features, robust dependency
tracking, and resumption capabilities offered by the underlying Shake architecture.

4. Unlike underlying shake that expects dependencies to be specified (i.e., in a DAG the
arrows point from the target back towards the source(s)), bioshake allows forward specifi-
cation of pipelines (i.e., the arrows point forward). As bioinformatics pipelines tend to be
quite long and mostly linear, this eases the cognitive burden during pipeline design and
also improves readability.

5. Non-linear pipelines are constructed using typical Haskell constructs such as maps and
folds. Combinators are available for the most common grouping of outputs together for a
subsequent stage. However, as the main data type is recursively defined, outputs of a stage
can always be referenced by subsequent stages without explicit non-linear constructs (i.e.,
the alignments used for variant calling are available for a subsequent variant annotation
stage without explicitly introducing non-linearity).

Bioshake in essence is an EDSL for specifying pipelines that compiles down to an exe-
cution engine (shake). In this respect, it is similar to other specification languages such as
Common Workflow Language (CWL) [Amstutz et al., 2016] and Workflow Description Lan-
guage (WDL) [wdl, 2012], but executes on top of shake. Table 1 provides a high level feature
overview of Bioshake when compared to several other pipeline specification language, pipeline
EDSLs, and execution engines. We will further elaborate on the unique features of Bioshake:

Strong type-checking The use of a language with strong types gives our framework several
advantages over existing frameworks [Leipzig, 2016, Goodstadt, 2010, Sadedin et al., 2012,
Amstutz et al., 2016, wdl, 2012, Vivian et al., 2017]. Our framework leverages Haskell’s
strong type-checker to prevent many errors that can arise in the specification of a pipeline.
As an example, file formats are statically checked by the type system to prevent specification
of pipelines with incompatible intermediate file formats. Furthermore, tags are implemented
through Haskell type-classes to allow metadata tagging, allowing various properties of files –
such as whether a bed file is sorted – to be statically checked. Thus, a miss-specified pipeline
will simply fail to compile, catching these bugs well before the lengthy execution. This feature
is not present in other bioinformatics pipeline frameworks such as those reviewed by Leipzig
[2016].

2

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 24, 2019. ; https://doi.org/10.1101/529479doi: bioRxiv preprint 

https://doi.org/10.1101/529479
http://creativecommons.org/licenses/by/4.0/


Intrinsic and extrinsic building Our framework builds upon the Shake EDSL [Mitchell,
2012], which is a make-like build tool. Similarly to make, dependencies in shake are specified in
an extrinsic manner (called internal/external by Leipzig [2016]), that is a build rule will define
its input dependencies based on the output file path. Our EDSL compiles down to shake rules,
but allows the specification of pipelines in an intrinsic fashion, whereby the processing chain is
explicitly stated and hence no filename based dependency graph needs to be specified. However,
as bioshake compiles to shake, both extrinsic and intrinsic rules can be mixed, allowing a choice
to be make to maximise pipeline specification clarity. For example, small “side” processing like
generation of indices can be specified extrinsically, removing the need for an explicit index step
in the pipeline specification.

Furthermore, the use of explicit sequencing for defining pipelines allows abstraction away
from the filename level: intermediate files can be automatically named and managed by bioshake,
removing the burden of naming the intermediate files, with only desired outputs requiring explicit
naming.

Example 1 The following is an example of a pipeline expressed in the bioshake EDSL:

align 7→ sort 7→ dedup 7→ call 7→ out [”output .vcf ”]

From this example it is clear what the stages are, and the names of the files flowing between
stages is implicit and managed by Bioshake. The exception is the explicitly named output, which
is the output of the whole pipeline. Note that non-linearity is handled by constructors that accept
the extra inputs, but pipelines can always recurse backwards along 7→ to retrieve prior build
products (e.g., to fetch Binary Alignment Map (BAM) files used to generate a set of variant
calls), reducing the need for non-linearity.

Extends a robust build system Finally, the Bioshake EDSL compiles to Shake [Mitchell,
2012], an industrial strength build tool also implemented as an EDSL in Haskell. Bioshake thus
inherits the reporting features, robust dependency tracking, and resumption capabilities offered
by the underlying Shake framework. Though Bioshake is not the first EDSL for bioinformatics
pipelines [Goodstadt, 2010, Leipzig, 2016], to the best of our knowledge it is the first EDSL in
Haskell and the first to use a deep type embedding to prevent invalid pipeline specifications.

2 Implementation

2.1 Core data types
Bioshake is build using a tagless-final style [Carette et al., 2009] around the following datatype:

data a 7→ b
where

(7→) :: a → b → a 7→ b
infixl 1 7→

This datatype represents the conjunction of two stages a and b. As we are compiling to shake
rules, the Buildable class represents a way to build thing of type a by producing shake actions:

class Buildable a
where

build :: a → Action ()

3

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 24, 2019. ; https://doi.org/10.1101/529479doi: bioRxiv preprint 

https://doi.org/10.1101/529479
http://creativecommons.org/licenses/by/4.0/


Table 1: High level feature comparison of Bioshake with other execution engines (Toil,
Cromwell), specification languages (WDL, CWL), and EDSLs (Ruffus). Dashes indicate that
feature is not applicable.

Ruffus Toil Cromwell WDL CWL Bioshake

Embedded DSL X – – X
Python X X –

Strong static typing – X
Type inferencing – X

Extrinsic specification – X
Intrinsic specification X X – X X X
Functional language – X
Container integration X X – –

Cloud computing integration X X – –
Cluster integration (Torque) – X X – – X
Cluster integration (Slurm) – X X – –
Cluster integration (SGE) – X X – –
Cluster integration (LSF) – X – –

Cluster integration (DRMAA) X – –
Direct execution X X X – – X

Finally, as we are ultimately building files on disk, we use a typeclass to represent types that can
be mapped to filenames:

class Pathable a
where

paths :: a → [FilePath]

2.2 Defining stages
A stage – for example aligning and sorting – is a type in this representation. Such a type is
an instance of Pathable as outputs from the stage are files, and also Buildable as the stage is
associated with some shake actions required to build the outputs. We give a simple example of
declaring a stage that sorts bam files.

Example 2 Consider the stage of sorting a bed file using samtools. We first define a datatype to
represent the sorting stage and to carry all configuration options needed to perform the sort:

data Sort = Sort

This datatype must be an instance of Pathable to define the filenames output from the stage.
Naming can take place according to several schemes, but here we will opt to use hashes to name
output files. This ensure the filename is unique and relatively short.

instance Pathable a ⇒ Pathable (a 7→ Sort)
where

paths (a 7→ _) = let
inputs = paths a

in
[hash inputs ++ ”.sort .bed”]

4

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 24, 2019. ; https://doi.org/10.1101/529479doi: bioRxiv preprint 

https://doi.org/10.1101/529479
http://creativecommons.org/licenses/by/4.0/


In the above, hash :: Binary a ⇒ a → String is a cryptographic hash function such as sha1
with base32 encoding. Many choices are appropriate here.

Finally, we describe how to sort files by making Sort an instance of Buildable:

instance (Pathable a, IsBam a) ⇒ Buildable (a 7→ Sort)
where

build p@(a 7→ _) = let
[input ] = paths a
[out ] = paths p

in
cmd ”samtools sort” [input ] [”− o”, out ]

Note here that IsBam is a precondition for the instance: the sort stage is only applicable to
BAM files. Likewise, the output of the sort is also a BAM file, so we declare that too:

instance IsBam (a 7→ Sort)

The tag IsBam itself can be declared as the empty typeclass class IsBam a . See section 2.4 for
a discussion of tags and their utility.

2.3 Compiling to shake rules
The pipelines as specified by the core data types are compiled to shake rules, with shake executing
the build process. The distinction between Buildable and Compilable types are that the former
generate shake Actions and the latter shake Rules. The Compiler therefore extends the Rules
monad, augmenting it with some additional state:

type Compiler = StateT (S .Set [FilePath]) Rules

The state here captures rules we have already compiled. As the same stages may be applied in
several concurrent pipelines (i.e., the same preprocessing may be applied but different subsequent
processing defined) the set of rules already compiled must be maintained. When compiling a
rule, the state is checked to ensure the rule is new, and skipped otherwise. The rule compiler
evaluates the state transformer, initialising the state to the empty set:

compileRules :: Compiler () → Rules ()
compileRules p = evalStateT p mempty

A compilable typeclass abstracts over types that can be compiled:

class Compilable a
where

compile :: a → Compiler ()

a 7→ b is Compilable if the input and output paths are defined, the subsequent stage a is
Compilable, and a 7→ b is Buildable. Compilation in this case defines a rule to build the
output paths with established dependencies on the input paths using the build function. These
rules are only compiled if they do not already exist:

instance (Pathable a, Pathable (a 7→ b), Compilable a, Buildable (a 7→ b))
⇒ Compilable (a 7→ b)

5

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 24, 2019. ; https://doi.org/10.1101/529479doi: bioRxiv preprint 

https://doi.org/10.1101/529479
http://creativecommons.org/licenses/by/4.0/


where
compile pipe(a 7→ b) = do

let outs = paths pipe
set ← get
when (outs ‘S .notMember ‘ set) $ do

lift $ outs &%> _ → do
need (paths a)
build pipe

put (outs ‘S .insert ‘ set)
compile a

2.4 Tags
Bioshake uses tags to ensure type errors will be raised if stages are incompatible. We have
already seen in example 2 the use of IsBam to ensure the input file format of Sort is compatible.
By convention, Bioshake uses the file extension prefixed by Is as tags for filetype, e.g.,: IsBam,
IsSam, IsVCF.

Other types of metadata are used such as if a file is sorted (Sorted) or if duplicate reads have
been removed (DeDuped) or marked (DupsMarked). These tags allow input requirements of
sorting or deduplication to be captured when defining stages. Properties, where appropriate,
can also automatically propagate down the pipeline; for example, once a file is DeDuped all
subsequent outputs carry the DeDuped tag:

instance Deduped a ⇒ Deduped (a 7→ b)

Finally, the tags discussed so far have been empty type classes, however tags can easily carry
more information. For example, bioshake uses a Referenced tag to represent the association of a
reference genome. This tag is defined as

class Referenced
where

getRef :: FilePath

instance Referenced a ⇒ Referenced (a 7→ b)

This tag allows stages to extract the path to the reference genome and automatically propagates
down the pipeline allowing identification of the reference at any stage.

2.5 EDAM ontology
EDAM [Ison et al., 2013] is an ontology containing terms and concepts that are prevalent in the
field of bioinformatics. As it is a formal ontology, the terms are organised into a hierarchical
tree structure, with each term containing reference to parent terms. EDAM can be used with the
flat tagging structure introduced in the previous section through the use of template Haskell to
establish the tree.

Bioshake provides the EDAM ontology in the EDAM module. This module provides EDAM
terms identified by their short name, along with some template Haskell for associating EDAM
terms to types. For example, the FASTQ-illumina term (http://edamontology.org/
format_1931) is represented by the tag FastqIllumina and a type can be tagged using the is
template Haskell function, for example:

6

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 24, 2019. ; https://doi.org/10.1101/529479doi: bioRxiv preprint 

http://edamontology.org/format_1931
http://edamontology.org/format_1931
https://doi.org/10.1101/529479
http://creativecommons.org/licenses/by/4.0/


import Bioshake.EDAM
data MyType = MyType
$(is ′′MyType ′′FastqIllumina)

Output of stages (e.g., types of a 7→ MyType ) can equally be tagged using the allP template
Haskell function:

$(isP ′′MyType ′′FastqIllumina)

These template Haskell functions declare the given type to be instances of all parents of the
EDAM term, allowing tag matching at any level in the hierarchy. These EDAM types can be
used similarly to tags as described in section 2.4.

2.6 Abstracting the execution platform
In example 2, the shake function cmd is directly used to execute samtools and perform the build,
however it is useful to abstract away from cmd directly to allow the command to be executed
instead on (say) a cluster, cloud service, or remote machine. Bioshake achieves this flexibility by
using free monad transformers to provide a function run – the equivalent of cmd – but where
the actual execution may take place via submitting a script to a cluster queue, for example.

To this end, the datatype for stages in bioshake are augmented by a free parameter to carry
implementation specific default configuration – e.g., cluster job submission resources. In the
running example of sorting a bed file, the augmented datatype is data Sort c = Sort c.

2.7 Reducing boilerplate
Much of the code necessary for defining a new stage can be automatically written using template
Haskell. This allows very succinct definitions of stages increasing clarity of code and reducing
boilerplate. Bioshake has template Haskell functions for generating instances of Pathable and
Buildable, and for managing the tags.

Example 3 Example 2 can be simplified by using template Haskell considerably. First we have
the augmented type definitions:

data Sort c = Sort c

The instances for Pathable and the various tags can be generated with the template Haskell splice

$(makeTypes ′′Sort [′′IsBam, ′′Sorted ] [])

This splice generates a Pathable instance using the hashed path names, and also declares the
output to be instances of IsBam and Sorted. The first tag in the list of output tags determines the
file extension. The second empty list allows the definition of transient tags; that is the tags that if
present on the input paths will hold for the output files after the stage. Finally, given a generic
definition of the build

buildSort t _ (paths → [input ]) [out ] =
run ”samtools sort” [input ] [”-@”, show t ] [”-o”, out ]

the Buildable instances can be generated with the splice

7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 24, 2019. ; https://doi.org/10.1101/529479doi: bioRxiv preprint 

https://doi.org/10.1101/529479
http://creativecommons.org/licenses/by/4.0/


$(makeThreaded ′′Sort [′′IsBam] ′buildSortBam)

This splice takes the type, a list of required tags for the input, and the build function. Here, the
build function is passed the number of threads to use, the Sort object, the input object and a list
of output paths.

3 Results and Discussion
We have presented a framework for describing and executing bioinformatics pipelines. The
framework is an EDSL in Haskell and built on shake. This allows us to leverage the robustness
of shake, and also the power of Haskell’s type system to prevent many types of errors in pipeline
construction. This is of great benefit for bioinformatics pipelines, as they tend to be long running
and thus catching errors during compile reduces the debugging time significantly.

Though this library is built around Shake as the execution engine, the core value lies in the
unique abstraction and use of types to capture metadata. It is feasible to compile a specification
to a different backend instead of Shake, such as Toil [Vivian et al., 2017] or Cromwell [cro,
2015] via CWL [Amstutz et al., 2016] or WDL [wdl, 2012]. This would allow leveraging of the
cloud and containerisation facilities of Toil and Cromwell. The abstraction used may also be
useful in other domains where long data-transformation stages are applied, such as data mining
on large datasets.

Though many errors are currently caught by the type system, there are still classes of errors
that are not. Notably, the Pathable class instance maps stages to lists of files with unknown length.
Thus, the number of files expected to be exchanged between two stages may differ, causing a
runtime error. This could in principle be caught by using lists of typed length, however this
would increase the complexity for users. Bioshake attempts to strike a balance between usability
and type safe guarantees.

4 Conclusions
We have presented a unique EDSL in Haskell for specifying bioinformatics pipelines. The
Haskell type checker is used extensively to prevent specification errors, allowing many errors to be
caught during compilation rather than runtime. To our knowledge, this is the first bioinformatics
pipeline framework in Haskell, as well as the first formalisation of bioinformatics pipelines and
their attributes in a type system from the Hindley–Milner family.

5 Availability and Requirements
Project name: bioshake

Project home page: http://github.com/papenfusslab/bioshake

Operating system(s) : Windows, Linux, MacOS X

Programming language: Haskell

License: ISC

8

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 24, 2019. ; https://doi.org/10.1101/529479doi: bioRxiv preprint 

http://github.com/papenfusslab/bioshake
https://doi.org/10.1101/529479
http://creativecommons.org/licenses/by/4.0/


Abbreviations
BAM: Binary Alignment Map

CWL: Common Workflow Language

DRMAA: Distributed Resource Management Application API [Troger et al., 2007]

EDSL: Embedded Domain Specific Language

SAM: Sequence Alignment Map

Declarations
Ethics approval and consent to participate: not applicable.

Consent for publication: not applicable.

Availability of data and material: bioshake is available at http://github.com/papenfusslab/
bioshake.

Competing interests: the authors declare that they have no competing interests.

Funding: JB is supported by the Stafford Fox Centenary Fellowship in Rare Cancer.

Authors’ contributions: JB designed the framework, implement the design, and wrote the
manuscript.

Acknowledgements: I thank Tony Papenfuss for supporting this work and helpful discussions.
I also thank Leon di Stefano and Jan Schröder for helpful discussions.

References
Openwdl. http://openwdl.org, 2012. Accessed: 2018-09-25.

Cromwell. http://github.com/broadinstitute/cromwell.git, 2015. Ac-
cessed: 2018-09-25.

Peter Amstutz, Michael R. Crusoe, Nebojša Tijanić, Brad Chapman, John Chilton, Michael
Heuer, Andrey Kartashov, Dan Leehr, Hervé Ménager, Maya Nedeljkovich, Matt Scales, Stian
Soiland-Reyes, and Luka Stojanovic. Common workflow language, v1.0, 2016.

Jacques Carette, Oleg Kiselyov, and Chung-Chieh Shan. Finally tagless, partially evaluated:
Tagless staged interpreters for simpler typed languages. Journal of Functional Programming,
19(05):509, apr 2009. doi: 10.1017/s0956796809007205.

L. Goodstadt. Ruffus: a lightweight python library for computational pipelines. Bioinformatics,
26(21):2778–2779, sep 2010. doi: 10.1093/bioinformatics/btq524.

9

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 24, 2019. ; https://doi.org/10.1101/529479doi: bioRxiv preprint 

http://github.com/papenfusslab/bioshake
http://github.com/papenfusslab/bioshake
http://openwdl.org
http://github.com/broadinstitute/cromwell.git
https://doi.org/10.1101/529479
http://creativecommons.org/licenses/by/4.0/


J. Ison, M. Kalas, I. Jonassen, D. Bolser, M. Uludag, H. McWilliam, J. Malone, R. Lopez,
S. Pettifer, and P. Rice. EDAM: an ontology of bioinformatics operations, types of data
and identifiers, topics and formats. Bioinformatics, 29(10):1325–1332, mar 2013. doi:
10.1093/bioinformatics/btt113.

Jeremy Leipzig. A review of bioinformatic pipeline frameworks. Briefings in Bioinformatics,
page bbw020, mar 2016. doi: 10.1093/bib/bbw020.

Neil Mitchell. Shake before building. ACM SIGPLAN Notices, 47(9):55, oct 2012. doi:
10.1145/2398856.2364538.

Simon P. Sadedin, Bernard Pope, and Alicia Oshlack. Bpipe: a tool for running and
managing bioinformatics pipelines. Bioinformatics, 28(11):1525–1526, apr 2012. doi:
10.1093/bioinformatics/bts167.

Peter Troger, Hrabri Rajic, Andreas Haas, and Piotr Domagalski. Standardization of an API
for distributed resource management systems. In Seventh IEEE International Symposium on
Cluster Computing and the Grid (CCGrid ’07). IEEE, may 2007. doi: 10.1109/ccgrid.2007.
109.

John Vivian, Arjun Arkal Rao, Frank Austin Nothaft, Christopher Ketchum, Joel Armstrong,
Adam Novak, Jacob Pfeil, Jake Narkizian, Alden D Deran, Audrey Musselman-Brown, Hannes
Schmidt, Peter Amstutz, Brian Craft, Mary Goldman, Kate Rosenbloom, Melissa Cline, Brian
O’Connor, Megan Hanna, Chet Birger, W James Kent, David A Patterson, Anthony D Joseph,
Jingchun Zhu, Sasha Zaranek, Gad Getz, David Haussler, and Benedict Paten. Toil enables
reproducible, open source, big biomedical data analyses. Nature Biotechnology, 35(4):314–
316, apr 2017. doi: 10.1038/nbt.3772.

10

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 24, 2019. ; https://doi.org/10.1101/529479doi: bioRxiv preprint 

https://doi.org/10.1101/529479
http://creativecommons.org/licenses/by/4.0/

	Background
	Implementation
	Core data types
	Defining stages
	Compiling to shake rules
	Tags
	EDAM ontology
	Abstracting the execution platform
	Reducing boilerplate

	Results and Discussion
	Conclusions
	Availability and Requirements

