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Supplementary Table 1.  Datasets analyzed in this paper 

Species Tissue Data source 
No. of 

subjects 
Sample size Protocol 

Human 30 tissues GTEx - 11,687 samples Bulk RNA-seq 

Drosophila Mid brain Croset et al. (2018) 8 10,286 cells Drop-seq 

Mouse Retina Shekhar et al. (2016) 6 27,499 cells Drop-seq 

Human Kidney Generated by us 4 8,544 cells 10X 

Human Kidney Young et al. (2018) 3 7,149 cells 10X 

Human PBMC Kang et al. (2018) 2 24,679 cells 10X 

Mouse Brain 10X website 2 1,306,127 cells 10X 

 

Supplementary Table 2. The numbers of hidden layers and nodes in the encoder 

No. of Cells No. of hidden 
layers 

No. of nodes in 
the 1st hidden 

layer 

No. of nodes in the 
2nd hidden layer 

>20,000 2 128 (or larger) 32 

(10,000,20,000] 2 64 32 

(5,000,10,000] 2 32 16 

(2,000,5,000] 1 128 0 

(500,2,000] 1 64 0 

<500 1 16 0 

 

Supplementary Table 3. Default hyperparameters of the autoencoder 

Parameter Default value 

Activation function ReLU or Tanh 

Kernel initializer glorot_uniform 

Dropout rate 0.2 

Optimizer Stochastic gradient descent 

Learning rate 0.01 

Batch Size 256 

No. of epochs 300 
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Supplementary Note 1: analysis of the GTEx data 

The Genotype-Tissue Expression (GTEx) data were downloaded from the GTEx Portal website 
(https://gtexportal.org/home/datasets). We downloaded data in the current release (v7) 
(https://storage.googleapis.com/gtex_analysis_v7/rna_seq_data/GTEx_Analysis_2016-01-
15_v7_RNASeQCv1.1.8_gene_reads.gct.gz), which include 11,688 RNA-seq samples and 56,202 

genes from 30 unique human tissues. 

Gene filtering criteria: a gene was eliminated if the number of samples expressing this gene is <20.  

Data processing: 1) gene expression levels for each sample was normalized using the  
“scanpy.api.normalize_per_cell” function in scanpy with default parameters; 2) top 1,000 highly variable 
genes were selected using the “scanpy.api.pp.filter_genes_dispersion” function in scanpy, which is the 
same as the function ‘FindVariableGenes’ in Seurat; 3) normalized gene expression for the selected top 
1,000 highly variable genes was transformed using log(1+x) transformation with natural logarithm; 4) 
the expression value was further standardized to a z-score, and the standardized gene expression 
values were used as input for DESC. 

After the above filtering and data processing, there were 11,687 samples×1,000 highly variable genes 
remained in DESC analysis. The same highly variable genes were used as input for Louvain’s method.  
For SC3, we used the default parameter values of function sc3 in R package SC3. For Infomap, we 
used the default parameter values of function prefilterGenes in R package SINCERA.  

DESC analysis: We used two hidden layers for the encoder model with 64 nodes in the first hidden 
layer, and 32 nodes in the second hidden layer. Other parameters were set at default values. The final 
model is 1000-64-32-64-1000. 

Evaluation metrics for clustering: In addition to ARI, a metric described in the main text, we also evaluated 
the performance of different clustering algorithms using other metrics, including normalized mutual 
information (NMI) and purity, which are calculated as the following. 

NMI: Cluster labels in the reference set defines the probability distribution 𝑃𝑅(𝑗) =
𝑛𝑗

𝑛
, where 𝑛𝑗 is the 

number of cells in cluster 𝑗 of the reference set, and 𝑛 is the total number of cells in the dataset. A 

clustering algorithm also determines a probability distribution 𝑃𝐶(𝑗′) =
𝑛𝑗′

𝑛
, where 𝑛𝑗′ is the number of cells 

in cluster 𝑗′ based on the clustering algorithm. For the probability distributions, 𝑃𝑅 and 𝑃𝐶, their mutual 
information is 

𝐼(𝑃𝑅 , 𝑃𝐶) =∑𝑅(𝑗, 𝑗′)𝑙𝑜𝑔
𝑅(𝑗, 𝑗′)

𝑃𝑅(𝑗)𝑃𝐶(𝑗
′)

𝑗,𝑗′

 

where 𝑅(𝑗, 𝑗′) =
𝑛𝑗𝑗′

𝑛
 is defined by the joint probability distribution. The NMI is calculated as 

𝑁𝑀𝐼 =
𝐼(𝑃𝑅 , 𝑃𝐶)

√𝐻(𝑃𝑅)𝐻(𝑃𝐶)
 

 

where 𝐻(𝑃𝑅) = ∑ 𝑃𝑅(𝑗)𝑙𝑜𝑔(𝑃𝑅(𝑗))𝑗 , and 𝐻(𝑃𝐶) = ∑ 𝑃𝐶(𝑗′)𝑙𝑜𝑔(𝑃𝐶(𝑗′))𝑗′ . 

Purity: Purity is the percent of the total number of cells that are classified correctly. It is calculated as 
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𝑝𝑢𝑟𝑖𝑡𝑦 =
1

𝑛
∑max|

𝑗′
𝐶𝑗 ∩ 𝑇𝑗′|

𝐾

𝑗=1

 

where 𝑛is the total number of cells in the dataset, 𝐾 is the total number of cell types based on the 

reference cluster labels, 𝐶𝑗 is a cluster in the reference data, and 𝑇𝑗′ is the cluster which shares the most 

number of cells with cluster 𝐶𝑗. 

 

 

 

Supplementary Fig 1. T-SNE plots for clustering results of DESC, Louvain’s method, SC3 and 

Infomap on the GTEx data. Displayed are the best clustering results for each method based on ARIs. 

The resolution was set at 0.4 for DESC, and 0.2 for Louvain’s method implemented in scanpy. For SC3, 

the number of clusters was set at 28. For Infomap, the number of PCs was set at 50.  
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Supplementary Fig 2. Clustering evaluation metrics for DESC, Louvain’s method, SC3 and Infomap 

on the GTEx data. The original tissue origin of each sample was treated as the true cluster label when 

calculating the clustering evaluation metrics. For each clustering algorithm, we evaluated its 

performance with different resolutions (for DESC and Louvain’s method), different numbers of clusters 

(for SC3), and different numbers of PCs (for Infomap). 
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Supplementary Fig 3. Sankey diagrams of the DESC, Louvain’s and SC3 clustering results on the 

GTEx data. The resolution was set at 0.4 for DESC and 0.2 Louvain’s clustering. The number of 

clusters for SC3 was set at 28. We did not include Infomap in this visualization because Infomap tends 

to produce many small clusters, typicall more than 100, across all parameter settings we evaluated. 
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Supplementary Note 2: analysis of the Drosophila mid brain data 

This dataset was generated by Croset et al. (2018) Cellular diversity in the Drosophila midbrain 
revealed by single-cell transcriptomics. Elife 7. pii:e34550.  

The raw gene expression count matrix, which includes 10,286 cells and 10,934 genes was download 
from 
https://elifesciences.org/download/aHR0cHM6Ly9jZG4uZWxpZmVzY2llbmNlcy5vcmcvYXJ0aWNsZXM
vMzQ1NTAvZWxpZmUtMzQ1NTAtZmlnMS1kYXRhMS12Mi56aXA=/elife-34550-fig1-data1-
v2.zip?_hash=bJMTSD0Bed%2FkJDq3MxXZbUEoxokD1Fnfa36O2P2WnQs%3D.  

The t-SNE coordinates and metadata for Figure 1 reported in the paper were downloaded from 
http://scope.aertslab.org/#/d5c805ab-fb1e-4ccf-ae81-
a53bbab1a4d2/Waddell_CentralBrain_10k.loom/gene. 

Cell filtering criteria: 1) We didn’t filter out any cells because the downloaded data were already 
prefiltered. 

Gene filtering criteria: a gene was eliminated if the number of cells expressing this gene is <10. 

Data processing: 1) gene expression levels for each cell was normalized using the  
“scanpy.api.normalize_per_cell” function in scanpy with counts_per_cell_after =10,000 ; 2) top 1,000 
highly variable genes were selected using the “scanpy.api.pp.filter_genes_dispersion” function in 
scanpy; 3) normalized gene expression for the selected top 1,000 highly variable genes was then 
transformed using log(1+x) transformation with natural logarithm; 4) the expression value is further 
standardized to a z-score, and the standardized gene expression values were used as input for DESC. 

After the above filtering and data processing, there were 10,286 cells×1,000 highly variable genes 
remained in DESC analysis. 

DESC analysis: We used two hidden layers for encoder with 64 nodes in the first hidden layer, and 32 
nodes in the second hidden layer. Other parameters were set as default values. The final model is 
1000-64-32-64-1000. 
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Supplementary Fig 4. (a) Gene expression feature plot of the Drosophila dataset for Gad1 (marker 
gene for cholinergic neurons), VGlut (marker gene for glutamatergic neurons), and VAChT (marker 
gene for GABAergic neurons). Top panel is the result of DESC when resolution=0.4, middle panel is 
the result of the original paper, and bottom panel is the result of Louvain’s methods using the low 
dimensional representation learned from the autoencoder in DESC as input. (b) The t-SNE plots of 
DESC, original paper, and Louvain with low dimensional representation learned from the autoencoder 
as input, where the cells were colored by the respective cluster ID or cell type. 

  



9 
 

 

Supplementary Fig 5. (a) Drosophila dataset t-SNE plots of the DESC clustering (resolution = 0.4) 
(left), Louvain’s clustering reported in the original paper (middle), and Louvain’s clustering based on the 
representation of autoencoder (right), where the cells were colored by batch IDs. (b) The KL-
divergence of that measures the degree of batch effect removal for the three clustering results. 
Although there is no obvious batch effect from (a), the KL-divergence index of DESC is less than the 
Original Paper’s and Louvain’s method using low-dimensional representation learned from the 
autoencoder. (c) The t-SNE plots of the DESC clustering with different resolutions (0.6, 0.8, 1.0, 1.2) in 
which the cells were colored by the three Kenyon cells. This result indicates that DESC is robust to the 
choice of resolution. 
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Supplementary Note 3: analysis of the bipolar cells of mouse retina data 

This dataset was generated by Shekhar et al. (2016) Comprehensive classification of retinal bipolar 

neurons by single-cell transcriptomics. Cell 166(5):1308-1323. 

The dataset was downloaded from https://scrnaseq-public-datasets.s3.amazonaws.com/scater-

objects/shekhar.rds, which includes 27,499 cells and 13,166 genes. 

Cell filtering criteria: 1) Only kept the14 main bipolar cells (RBC, BC1A, BC1B, BC2, BC3A, BC3B, 

BC4, BC5A, BC5B, BC5C, BC5D, BC6, BC7, BC8/9), which left with 23,494 cells for analysis. 

Gene filtering criteria: a gene was eliminated if the number of cells expressing this gene is <10.  

Data processing: 1) gene expression levels for each cell was normalized using the  
“scanpy.api.normalize_per_cell” function in scanpy with counts_per_cell_after =10,000; 2) top 1000 
highly variable genes were selected using the “scanpy.api.pp.filter_genes_dispersion” function in 
scanpy; 3) normalized gene expression for the selected top 1,000 highly variable genes was then 
transformed using log(1+x) transformation with natural logarithm; 4) the expression value is further 
standardized to a z-score, and the standardized gene expression values were used as input for DESC. 

After the above filtering and data processing, there were 23,494 cells×1,000 highly variable genes 
remained in DESC analysis. 

DESC analysis: we used two hidden layers for encoder with 128 nodes in the first hidden layer, and 32 
nodes in the second hidden layer. Other parameters were set default values. The final model is 1000-
128-32-128-1000. 

Other analyses: For CCA, we used the same number of cells, and performed analysis following 
Seurat’s CCA tutorial (https://satijalab.org/seurat/immune_alignment.html). Specifically, we selected top 
1,000 highly variable genes for each subject, pooled these genes together and then removed genes 
that are expressed only in a single subject. For CCA_top1000, we used the same number of cells, but 
the same top 1,000 highly variable genes used be DESC. For MNN, we used the same number of cells, 
and highly variable genes were selected using function `scanpy.api.pp.fiter_gene_ dispersion` in python 
module scanpy with default parameters. For MNN_top1000, we used the same number of cells and the 
same top 1,000 highly variable genes as DESC. 

https://scrnaseq-public-datasets.s3.amazonaws.com/scater-objects/shekhar.rds
https://scrnaseq-public-datasets.s3.amazonaws.com/scater-objects/shekhar.rds
https://satijalab.org/seurat/immune_alignment.html
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Supplementary Fig 6. (a) Clustering evaluation metrics for DESC, Louvain’s method, SC3, Infomap, 

MNN, MNN_top1000, CCA, and CCA_top1000 on retinal bipolar cells. The cell type assignment reported 

in the original paper was treated as the true cluster label. The original paper assigned cell types using 

Louvain’s method implemented in R package igraph with 37 significant PCs as input. For each clustering 

algorithm, we evaluated its performance with different resolution (for DESC, Louvain’s method, MNN, 

MNN_top1000, CCA, CCA_top1000), different number of clusters (for SC3), and different number of PCs 

(for Infomap). (b) Cells were colored by subject IDs for MNN_top1000 and CCA_top1000. (c) KL-

divergence for batch effect removal of different clustering algorithms.  
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Supplementary Fig 7. The Sankey diagrams of different clustering algorithms on the retinal bipolar 

dataset. DESC, MNN, MNN_top1000 tend to cluster two similar cell type into a group, but Louvain and 

CCA_top1000 will gather two dissimilar cell types (BC8/9, BC6) into a group. 

 

  



13 
 

Supplementary Note 4: analysis of the human kidney data 

 

This analysis focused on two scRNA-seq datasets generated from human kidney. 

 

Dataset 1: The dataset includes 35,908 cells and 32,738 genes from 4 normal human kidneys, 

generated by Katalin Susztak’s lab using 10X. 

 

Dataset 2: The dataset was generated by Young et al. (2018) Single-cell transcriptomes from human 

kidneys reveal the cellular identity of renal tumors. Science 361(6402):594-599. 

The dataset was download from Data S1 

(http://science.sciencemag.org/highwire/filestream/713964/field_highwire_adjunct_files/4/aat1699_Data

S1.gz.zip) in the Supplementary Materials of Young et al. (2018). In this analysis, we focused on 

normal kidney cells (total 10,621 cells), which are from VHL (2,706 cells), RCC1 (3,747 cells) and 

RCC2 (4,168 cells). 

We combined Dataset 1 and Dataset 2 in the analysis. The resulting data include 46,529 cells, and 

31,232 shared genes between these two datasets. The combined data can be downloaded from 

https://www.dropbox.com/s/l9zq2sge93n4ifj/human_kidney_desc_use.tar.gz?dl=0. 

Cell filtering criteria: 1) eliminated cells with percentage of mitochondrial UMI counts >20%; 2) 
eliminated cells with gene counts <200; 3) eliminated cells with total UMI counts <1,000. 

Gene filtering criteria: 1) eliminated genes if the number of cells expressing this gene is <10.  

Data processing: 1) gene expression levels for each cell was normalized using the  
“scanpy.api.normalize_per_cell” function in scanpy with counts_per_cell_after =10,000; 2) top 1,000 
highly variable genes were selected using the “scanpy.api.pp.filter_genes_dispersion” function in 
scanpy; 3) normalized gene expression for the selected top 1,000 highly variable genes was then 
transformed using log(1+x) transformation with natural logarithm; 4) the expression is further 
standardized to a z-score, and the standardized gene expression values were used as input for DESC. 

After the above filtering and data processing, there were 15,693 cells×1,000 highly variable genes 
remained in DESC analysis. 

DESC analysis: We used two hidden layers with 128 nodes in the first hidden layer, and 32 nodes in 
the second hidden layer. Other parameters are set default value. So the final model is 1000-128-32-128 
-1000. 

Other analyses: For CCA, we used the same number of cells as DESC, and performed analysis 
following Seurat’s CCA tutorial (https://satijalab.org/seurat/immune_alignment.html). Specifically, we 
selected top 2,000 highly variable genes in each kidney, pooled these genes together and then 
removed the genes that are expressed in less than 5 kidneys. We required 5 kidneys to make sure that 
these selected genes do not express only in cells from the same lab.  We also tried top 1,000 and 
5,000 highly variable genes for CCA, but they were less effective in removing batch effect. For MNN, 
we used the same number of cells and the same top 1,000 highly variable genes as DESC.  

  

http://science.sciencemag.org/highwire/filestream/713964/field_highwire_adjunct_files/4/aat1699_DataS1.gz.zip
http://science.sciencemag.org/highwire/filestream/713964/field_highwire_adjunct_files/4/aat1699_DataS1.gz.zip
https://www.dropbox.com/s/l9zq2sge93n4ifj/human_kidney_desc_use.tar.gz?dl=0
https://satijalab.org/seurat/immune_alignment.html
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Supplementary Fig 8. (a) MNN and (b) CCA clustering results of the human kidney data. The cell 

types were determined based on known marker genes. Endo_AVR: Endothelial Ascending Vasa Recta; 

Endo_DVR: Endothelial Descending Vasa Recta; CD-IC: Collecting Duct Intercalated Cell; NK: Natural 

Killer; PT: Proximal Tubule.   
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Supplementary Fig 9. Dot plots of known marker genes used for cell type determination for DESC, MNN, 

and CCA clustering results. We labeled cell types for DESC clustering using  the following marker genes: 

SLC13A3 and SLC34A1 for PT (Proximal Tubule); CLDN16 and SLC12A for Loop of Henle; PTPRB and 

KDR for Endo_AVR (Endothelial Ascending Vasa Recta); PTPRB, KDR, and SLC14A1 for Endo_DVR 

(Endothelial Descending Vasa Recta); SLC4A1 and CLCNKB for CD_IC_A); SLC26A4 and CLCNKB for 

CD_IC_B; GZMA and GZMB for NK_cells; CD3D, CD3E, and CD3G for T_cells; CD14, S100A8, and 

S100A9 for Macrophage_1; CD14 and FCER1A for Macrophage_2; CD79A and CD79B for B_cells. 
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Supplementary Fig 10. Violin plots of known marker genes used for cell type determination for DESC, 

MNN, and CCA. We labeled cell types for DESC clustering using  the following marker genes: SLC13A3 

and SLC34A1 for PT (Proximal Tubule); CLDN16 and SLC12A for Loop of Henle; PTPRB and KDR for 

Endo_AVR (Endothelial Ascending Vasa Recta); PTPRB, KDR, and SLC14A1 for Endo_DVR 

(Endothelial Descending Vasa Recta); SLC4A1 and CLCNKB for CD_IC_A); SLC26A4 and CLCNKB for 

CD_IC_B; GZMA and GZMB for NK_cells; CD3D, CD3E, and CD3G for T_cells; CD14, S100A8, and 

S100A9 for Macrophage_1; CD14 and FCER1A for Macrophage_2; CD79A and CD79B for B_cells.  
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Supplementary Fig 11. Gene expression feature plot of the human kidney data for NK and T cell 

marker genes for DESC clustering. CD3D, CD3E and CD3G are marker genes for T cells, but GZMA 

and GZMB are marker genes for both NK cells and T cells.  
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Supplementary Fig 12. Gene expression feature plot of the human kidney data for NK and T cell 

marker genes for MNN clustering. Note that CD3D, CD3E and CD3G are marker genes for T cells, but 

GZMA and GZMB are marker genes for both NK cells and T cells.  
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Supplementary Fig 13. Gene expression feature plot of the human kidney data for NK and T cell 

marker genes for CCA clustering. Note that CD3D, CD3E and CD3G are marker genes for T cells, but 

GZMA and GZMB are marker genes for both NK cells and T cells.  
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Supplementary Note 5: analysis of the human PBMC data 

This dataset was generated by Kang et al. (2018) Multiplexed droplet single-cell RNA-sequencing using 
natural genetic variation. Nature Biotechnology 36(1):89-94. 

The data were downloaded from GEO 
(https://ftp.ncbi.nlm.nih.gov/geo/series/GSE96nnn/GSE96583/suppl/), which include the raw gene count 
matrix, meta.data (t-SNE coordinates, ClusterID, celltype, and BatchID etc.) reported in the original 
paper. The downloaded data include 29,065 cells and 35,636 genes. 

Cell filtering criteria: 1) eliminated cells that were labeled as multiplets and doublet. 

Gene filtering criteria: 1) a gene was eliminated if the number of cells expressing this gene is <10. 

Data processing: 1) gene expression levels for each cell was normalized using the  
“scanpy.api.normalize_per_cell” function in scanpy with counts_per_cell_after =10,000; 2) top 1,000 
highly variable genes were selected using the “scanpy.api.pp.filter_genes_dispersion” function in 
scanpy; 3) normalized gene expression for the selected top 1,000 highly variable genes was then 
transformed using log(1+x) transformation with natural logarithm; 4) the expression is further 
standardized to a z-score, and the standardized gene expression values were used as input for DESC. 

After the above filtering and data processing, there were 24,679 cells ×1,000 highly variable genes 
remained in DESC analysis. 

DESC analysis: we used two hidden layers with 128 nodes in the first hidden layer, and 32 nodes in the 
second hidden layer. Other parameters were set default values. The final model was 1000-128-32-128-
1000. 

Other analyses: For CCA, we used the same number of cells, and performed analysis following 

Seurat’s CCA tutorial (https://satijalab.org/seurat/immune_alignment.html). Specifically, we selected top 

1,000 highly variable genes for each condition (control, stimulus), pooled these genes together and 

then removed genes that are expressed only in one condition. For MNN, we used the same number of 

cells, and highly variable genes were selected using function `scanpy.api.pp.fiter_gene_ dispersion` in 

python module scanpy with default parameters.  

https://ftp.ncbi.nlm.nih.gov/geo/series/GSE96nnn/GSE96583/suppl/
https://satijalab.org/seurat/immune_alignment.html
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Supplementary Fig 14. (a) Number of cells in each cell type. Cell types were based on information 

provided in the original paper (Kang et al. 2018). (b) Number of differentially expressed genes (FDR 

adjusted p-value <0.01) between different cell types in the control group (left), the stimulus group 

(right), and differentially expressed genes between the control and the stimulus group within the same 

cell type (middle). 
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Supplementary Fig 15. Comparison of KL-divergence of DESC, MNN, CCA, and original analysis 

result on the PBMC data. (a) The t-SNE plots of each method, where the cells were colored by BatchID 

and cell type. (b) The t-SNE coordinates were from the original paper, and the cells were colored by 

BatchID (left) and cell type (right). The cell type label was determined by the original paper. (c) The KL-

divergence calculated using all cells (colored by green), and the KL-divergence calculated using non 

CD14+ Monocytes (colored by red). The decreased KL divergence of DESC when CD14+ Monocytes 

were eliminated indicates that technical batch effect was effectively removed in the absence of CD14+ 

Monocytes. The KL divergence of MNN is larger than DESC when CD14+ Monocytes were eliminated, 

indicating that it might be less effective in removing technical batch effect than DESC. CCA has similar 

KL divergence irrespective of CD14+ Monocytes, indicating that it may have overcorrected batch effect, 

leading to the loss of biological variations between cells. The original analysis had substantially larger 

KL divergence than DESC, MNN, and CCA, indicating strong batch effect.  
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Supplementary Fig 16. Comparison of gene expression levels between control and stimulus 
conditions on the PBCM data. Displayed are the average gene expression across all cells in each 
condition for each cell type. Highlighted are differentially expressed genes with FDR adjusted p-
value<10-50.  
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Supplementary Fig 17. Gene expression feature plots for cell-type specific marker genes for DESC 

clustering (resolution =0.8) on the PBMC data. IL7R (CD4 T cells marker), CD14 (CD14+ Monocyte 

marker), LYZ (CD14+ Monocyte marker), MS4A1 (B cells marker), CD8A (CD8 T cell marker), 

FCGR3A (FCGR3A+ monocyte marker), MS4A7 (FCGR3A+ Monocytes marker), GNLY (NK cells 

marker), NKG7 (NK cell marker), FCER1A (Dendritic Cells marker), CST3 (Dendritic Cells marker), 

PPBP (Megakaryocytes marker).   
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Supplementary Fig 18. Gene expression feature plots for cell-type specific marker genes for MNN 

clustering (resolution =0.4) on PBMC data. IL7R (CD4 T cells marker), CD14 (CD14+ Monocyte 

marker), LYZ (CD14+ Monocyte marker), MS4A1 (B cells marker), CD8A (CD8 T cell marker), 

FCGR3A (FCGR3A+ monocyte marker), MS4A7 (FCGR3A+ Monocytes marker), GNLY (NK cells 

marker), NKG7 (NK cell marker), FCER1A (Dendritic Cells marker), CST3 (Dendritic Cells marker), 

PPBP (Megakaryocytes marker).   
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Supplementary Fig 19. Gene expression feature plots for cell-type specific marker genes for CCA 

clustering (resolution =0.4) on the PBMC data. IL7R (CD4 T cells marker), CD14 (CD14+ Monocyte 

marker), LYZ (CD14+ Monocyte marker), MS4A1 (B cells marker), CD8A (CD8 T cell marker), 

FCGR3A (FCGR3A+ monocyte marker), MS4A7 (FCGR3A+ Monocytes marker), GNLY (NK cells 

marker), NKG7 (NK cell marker), FCER1A (Dendritic Cells marker), CST3 (Dendritic Cells marker), 

PPBP (Megakaryocytes marker).  
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Supplementary Note 6: analysis of the data with 1.3 million cells. 

The data were download from 10X website (https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.3.0/1M_neurons). The original data include 1,306,127 cells and 27,998 genes. 

Cell filtering criteria: 1) eliminated cells with gene counts <200;  

Gene filtering criteria: 1) a gene was eliminated if the number of cells expressing this gene is <20. 

Data processing: 1) gene expression levels for each cell was normalized using the  
“scanpy.api.normalize_per_cell” function in scanpy with counts_per_cell_after =10,000; 2) top 1,000 
highly variable genes were selected using the “scanpy.api.pp.filter_genes_dispersion” function in 
scanpy; 3) normalized gene expression for the selected top 1,000 highly variable genes was then 
transformed using log(1+x) transformation with natural logarithm; 4) the expression is further 
standardized to a z-score, and the standardized gene expression values were used as input for DESC. 
After the above filtering and data processing, there are 1,292,537cells ×1000 highly variable genes 
remained in DESC. 

DESC analysis: we used two hidden layers with 64 nodes in the first hidden layer, and 32 nodes in the 
second hidden layer. The parameters we used as n_neightbors=15, batch_size=20000, tol=0.008, 
louvain_resolution=0.2, use_GPU=True, is_stacked=False, pretrain_epochs=10, epochs_fit=2. Other 
parameters were set at default values. The final model is 1000-64-32-64-1000. 

 

Supplementary Fig 20. Clustering result of DESC on the 1.3 million mouse data. 

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
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Supplementary Note 7. Computing time and memory usage 

The data were download from 10X website (https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.3.0/1M_neurons). The original data include 1,306,127 cells and 27,998 genes. 
For the sake of aesthetics, we abbreviate the number all cells as 1,300,000.  

In order to compare computing time and memory usage for different methods and different numbers of 
cells, we randomly selected 1,000, 2,000, 5,000,10,000, 20,000, 40,000, 50,000, 100,000, 300,000, 
500,000, 1,000,000, 1,300,000 cells from the above 1.3 million cell dataset.  

We put Fig 3e here again for easy comparison of different methods. 

 

Supplementary Fig 21. Comparison of running time (a) and memory usage (b) of each method for 

datasets with various numbers of cells, where the cells were randomly sampled from the 1.3 million 

mouse brain dataset. DESC: used a single CPU; DESC_GPU: used GPU; DESC_multicpu: used 10 

CPUs; SC3: used a single CPU; SC3_multicpu: used 5 CPUs. All other methods used a single CPU.   

For each method, we monitored its memory use every second when the method was running, so we 

knew the memory use until the program ended. The memory we reported is the maximum memory use.  

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
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For DESC, DESC_GPU, DESC_multicpu and Louvain’s method, we successfully completed analyses 

for all datasets. But for other methods, due to their memory issues, we only finished analysis for datasets 

with ≤500,000 cells (for Infomap and Seurat) or ≤400,000 (for SC3 and SC3_multicpu). There was a 

memory issue for SC3_multicpu when the number of cells is 40,000, so the runtime of 80,000 seconds 

and memory use of 100 GB were estimated values based on our experience of running SC3_multicpu 

for datasets with slightly smaller number of cells.  

Although the running time for DESC with a single CPU is slow, we can take advantage of GPU’s efficiency 

and speed up computing remarkably. More importantly, the memory use of DESC increases linearly with 

the increasing number of cells (Supplementary Fig 23b), which makes it a practical choice for large 

datasets. 

All data analyses reported in this paper, except for the 1.3 million cells mouse brain data, were 
conducted on Ubuntu 18.04.1 LTS with 12 Intel® Core(TM) i7-8700K CPU @ 3.70GHz and 64GB 
memory. For the 1.3 million cells mouse brain dataset, we analyzed on Ubuntu 16.04.4 LTS with 32 
Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz and 128G memory. 


