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S01 Estimating virulence & confidence inter-
vals at individual points in time

Regular sampling intervals

When host mortality is sampled at regular intervals, the rate of mortality in
interval i, h (i) can be estimated as,

h (i) = d (i) /r (i)

where d (i) is the number of individuals dying in the interval i and r (i) is the
number of individuals alive or at risk of dying at the beginning of interval i.

In the context of relative survival, the observed rate of mortality in an in-
fected treatment, hOBS.INF (t), is the sum of the rate of background mortality,
hBCK (t), plus the rate of mortality due to infection, hINF (t). Consequently,
the difference in the two observed rates of mortality

hINF (t) = hOBS.INF (t)− hBCK (t)

provides an estimate of the pathogen’s virulence at time t. This is the difference
between two binomial proportions. Following Agresti & Caffo (1), if p1 is the
proportion of infected individuals observed dying in the interval and p2 the pro-
portion of uninfected individuals dying in the same interval, the 95% confidence
intervals for the adjusted Wald interval of p1 − p2, can be calculated as,

(p̃1 − p̃2)± 1.96

√
p̃1 (1− p̃1)

ñ1
+
p̃2 (1− p̃2)

ñ2

where p̃i = (Xi + 2) / (ni + 4) and ñi = (ni + 4), Xi is the number of individ-
uals dying in the interval and ni the number of individuals at risk of dying at
the beginning of the interval, for i = 1, 2 respectively. The value of +2 is an ap-
proximation for the Z score of 1.96 for the 97.5 percentile used when calculating
95% confidence intervals, +4 an approximation for 1.962.

Irregular sampling intervals

If intervals among sampling times are irregular, the calculations above need
correcting to standardise the rate over which virulence is estimated. One way
to do this is to divide the number of individuals dying during the interval (d)
by the duration or breadth of the interval (b), and dividing the result by the
expected number of individuals alive at the midpoint (tmt) of the interval,

h (tmt) =
d/b

r − d/2

where r is the number of individuals alive, or at risk of dying, at the beginning
of the interval and b is the width or duration of the shortest interval. NB the
width of the shortest interval requires b ≥ 1 to avoid estimates of h (tmt) > 1.
For example if the shortest interval between samples was 0.5 days, it would be
better to calculate rates of mortality in units of 12 hours, rather than 0.5 days.

(1) doi:10.2307/2685779
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S02 Delta method for calculating confidence
intervals of a hazard function

This approach to estimating confidence intervals for a hazard function is based
on the delta method and is taken from Chapter 550 Distribution (Weibull) Fit-
ting for the NCSS Statistical Software, pg. 268 (1), which in turn cites, Nelson
WB. 1990. Accelerated Testing. John Wiley, New York (pg. 294).

The confidence intervals for an estimated hazard function at time t, ĥ(t), are

ĥ (t) exp

±z1−α/2s
[
ĥ (t)

]
ĥ (t)


where

s2
[
ĥ (t)

]
=

(
∂ĥ

∂a

)2

var (a) +

(
∂ĥ

∂b

)2

var (b) + 2

(
∂ĥ

∂a

)(
∂ĥ

∂b

)
cov (a, b)

a and b are the location and scale parameters, var(a) and var(b) are the vari-
ances of estimates of a and b, and cov(a,b) their covariance, respectfully.

For example, the partial derivatives for the Weibull hazard function,

h (t) =

(
1

bt

)
exp (z)

where z = (log t− a) /b are,

∂h

∂a
= − 1

b2t
exp (t)

and

∂h

∂b
= − 1

b2t
[z exp (z)− exp (z)]

(1) http://www.ncss.com/wp-content/uploads/2012/09/NCSSUG5.pdf
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S03 Maximum likelihood estimation of viru-
lence using R

This supplement provides code specifying the log-likelihood expression allowing
the location and scale parameters for background mortality and mortality due
to infection to be estimated by maximum likelihood using the package bbmle
(1) for R (2).

Individual data

The model is specified for a table with survival data in the format;

Individual t d g
1 10 0 1
2 12 1 0
...
n 11 1 1

where there is a row of data for each of the n individuals to be analysed;
t is the time when the individual died or was right-censored,
d is a death indicator variable taking a value of ‘1’ for individuals that died and
‘0’ for those censored,
g is an infection indicator variable taking a value of ‘1’ for individuals in the
infected treatment and ‘0’ for those in the uninfected control treatment.

The log-likelhood expression to be evaluated is,

logL =

n∑
i=1

{ d log [hBCK (ti) + ghINF (ti)] + log [SBCK (ti)] + g log [SINF (ti)] }

where hBCK (t) , hINF (t) , SBCK (t) and SINF (t) are the hazard and survival func-
tions for background mortality and mortality due to infection for individual i
at time t, respectively; d and g are defined as above.

Model

LL01 <− function ( au , bu , ai , bi , da ta tab l e ){

zu <− ( log ( t ) − au )/bu
z i <− ( log ( t ) − a i )/bi

hu <− (1/ (bu∗t ) )∗exp( zu )
h i <− (1/ ( b i∗t ) )∗exp( z i )

Su <− exp(−exp( zu ) )
S i <− exp(−exp( z i ) )

l o g l <− −sum(d∗log (hu+g∗hi )+log (Su)+g∗log ( S i ) )
}
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m01 <− mle2 (
LL01 ,
start=l i s t ( au=2,bu=0.5 , a i =2,bu=0.5 ,
data=datatab l e )

summary(m01)

The text defines the function LL01 which is the log-likelihood expression
for analysing relative survival. Here the model is specified using Weibull dis-
tribution functions to describe the background mortality and mortality due to
infection.

The 1st line defines the parameters to be estimated; here the location and
scale parameters au and bu for the background mortality and ai, bi for mortality
due to infection, respectively, as well as identifying the datatable containing the
data.

The 2nd and 3rd lines define the z terms corresponding with the Weibull
distribution for background mortality (zu), and mortality due to infection, (zi).

The 4th and 5th lines define Weibull hazard functions for background mor-
tality and mortality due to infection, respectively, making use of the z terms
defined above.

The 6th and 7th lines define Weibull survival functions for background mor-
tality and mortality due to infection, respectively, making use of the z terms
defined above.

The 8th line is the negative log-likelihood expression using the terms defined
above and the indicator variables d and g to be found in the datatable.

The maximum likelihood estimation is performed by the mle2 function of
the package bbmle (2) and requires the initial values of au, bu, ai and bi to be
specified.

The results of the analysis are held by m01.

Grouped data

Instead of there being a single row for each individual, data may be grouped
into the frequency of events occurring at a particular time, e.g., in Row 2 of the
table below, 15 uninfected individuals (g = 0) died (d = 1) when t = 12.

Individual t d g fq
1 10 0 1 5
2 12 1 0 15
...
N 11 1 1 7

In this case the terms in the log-likelihood expression need multiplying by
’fq ’;

l o g l <− −sum( fq∗ (d∗log (hu + g∗hi ) + log (Su) + g∗log ( S i ) ) )
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Model refinements

(i) Making the location parameter for mortality due to infection a
function of three dose treatments (d1, d2, d3)

This can be achieved by creating a dummy variable for each treatment which
takes a value of ‘1’ when the treatment corresponds with that the individual
experienced and ‘0’ otherwise, e.g.,

id . d1 <− i f e l s e ( data tab l e$dose==”d1” ,1 , 0 )
id . d2 <− i f e l s e ( data tab l e$dose==”d2” ,1 , 0 )
id . d3 <− i f e l s e ( data tab l e$dose==”d3” ,1 , 0 )

To quantify the effect of these three dose treatments requires the estimation
of two additional parameters, e.g., aid1 and aid2. These are added to the
function defining the log-likelihood expression in the first line.

LL02 <− function ( au , bu , ai , bi , aid1 , aid2 , data tab l e ){

a id <− a i + aid1∗ id . d1 + aid2∗ id . d2
−(a id1+aid2 )∗ id . d3

zu <− ( log ( t ) − au )/bu
z i <− ( log ( t ) − a id )/bi
hu <− (1/ (bu∗t ) )∗exp( zu )
h i <− (1/ ( b i∗t ) )∗exp( z i )
Su <− exp(−exp( zu ) )
S i <− exp(−exp( z i ) )

l o g l <− −sum(d∗log (hu + g∗hi ) + log (Su) + g∗log ( S i ) )
}

m02 <− mle2 (LL02 , start=l i s t ( au=2,bu=0.5 , a i =2, b i =0.5 ,
a id1 =0, a id2 =0) , data=datatab l e )

summary(m02)

Here aid is created for the effect of dose on the location parameter of mortal-
ity due to infection. It estimates the underlying value of the location parameter
ai plus the deviation due to dose treatment d1, +aid1*id.d1, and that due to
dose treatment d2, +aid2*id.d2. The deviation due to dose treatment d3 is the
negative of the sum of the other parameters multiplied by the dummy variable;
-(aid1 + aid2)*ai.d3

The terms ai can now be replaced by aid. In this example, this only involves
the zi term. Had the effect of dose on the scale parameter been defined in a
similar manner, the terms bi in the terms zi and hi would have needed replacing
with bid.

The difference between the results of these two models can then be compared
in terms of their AIC values

AIC(m01 , m02)

or by likelihood ratio tests

anova(m01 , m02)
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The variance and covariance of the estimated parameters needed for the calcu-
lation of confidence intervals via the delta method

vcov (m01)

(ii) To specify the Gumbel distribution

zx <− ( t − ax )/bx
hx <− (1/bx )∗exp( zx )
Sx <− exp(−exp( zx ) )

where x is replaced by either u or i when describing the background mortality
or mortality due to infection, respectively.

(iii) To specify the Fréchet distribution

zx <− ( log ( t ) − ax )/bx
hx <− (1/ ( bx∗t ) )∗exp(−zx−exp(−zx ) ) /(1−exp(−exp(−zx ) )
Sx <− 1−exp(−exp(−zx ) )

where x is replaced by either u or i when describing the background mortality
or mortality due to infection, respectively.

Alternatively,

zx <− ( log ( t ) − ax )/bx
fx <− (1/ ( bx∗t ) )∗exp(−zx−exp(−zx ) )
Sx <− 1−exp(−exp(−zx ) )
hx <− fx/Sx

(1) https://CRAN.R-project.org/package=bbmle
(2) https://www.R-project.org/
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S04 Maximum likelihood estimation of viru-
lence using JMP

The figure below is from the formula builder of JMP (1) showing how a log-
likelihood expression for analysing relative survival can be specified.

zu
Log t a0

b0
;

bu b0 ;

zi
Log t a1

b1
;

bi b1 ;

-

d Log
1

bu t
Exp zu inf

1

bi t
Exp - zi Exp - zi

1 Exp - Exp - zi

- Exp zu

inf Log 1 Exp - Exp - zi

;

Figure S4.1: Screen shot of log-likelihood expression for analysis of relative
survival with non-linear platform of JMP

The first four expressions from the top are local variables defined in terms
of time, log t, and the four location and scale parameters to be estimated; a0,
b0, a1, b1.

The last term is the negative log-likelihood expression where the terms de-
scribing the background mortality are specified according to the Weibull distri-
bution while those for mortality due to infection are specified for the Fréchet
distribution. d refers to a column in the data table indicating whether individ-
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uals died during the experiment or were right-censored, with values 1 and 0,
respectively. inf also refers to a column in the data table and has values of 1 or
0 for infected and uninfected individuals, respectively.

To run the model, follow the pathway; Analyze/Modeling/Nonlinear
this will open the nonlinear fit window. Choose the column containing the log-
likelihood expression and click on the ‘Loss’ button to select the model. There
is also the option to identify a column in the data table containing the frequency
of events (‘Freq’).
Click the ‘OK’ button to open the Nonlinear Fit window.
Click to tick the ‘Loss is Neg LogLikelihood’ box if not already ticked.
Specify the initial values for the parameters to be estimated.
Click ‘Go’.
The model will then go through an iterative process until it converges on pa-
rameter values that give the best fit between the model and the data.

(1) SAS Institute Inc. (2015) Using JMP 12. Cary, NC.
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S05 Initial parameter values

Maximum likelihood estimation techniques used to solve likelihood problems
require initial values for the parameters to be estimated. These are progressively
adjusted in an iterative process until the fit between the likelihood model and
the observed data does not improve beyond a threshold value. The process of
convergence to this solution is enhanced and a solution more likely to be found
when the initial parameter values chosen are close to the ‘true’ values.

Some probability distributions lend themselves to the task of estimating
these initial values by having functions which can be transformed into linear
functions of time. For example a complementary log− log transformation of
the Weibull survival function gives,

log (− log [S (t)]) =
1

b
log t− a

b

which is a linear function of log-transformed time, log t. Hence survival data
given this transformation will be approximately linear when plotted against log t
if the data follow the Weibull distribution.

Linear regression can then be used to estimate values for a and b. Such
estimates should be treated as approximate as it is unlikely transformed data
satisfy conditions for linear regression, e.g., concerning the distribution and vari-
ance of residuals. Furthermore the number of points over which the regression
is performed is determined by the number of sampling intervals, rather than
the numbers of individuals involved. Parametric non-linear regression models
specified according to the log-likelihood equations described in the main text
avoid these problems, as well as explicitly taking into account censored data.

Initial parameter estimates describing background mortality can be made
directly from the data of uninfected hosts, as this is the only source of mortality
assumed to be acting. In contrast the observed pattern of mortality for infected
hosts is assumed to arise as the product of surviving background mortality and
mortality due to infection. There is no reason to assume these independent
and mutually exclusive sources of mortality will follow the same pattern over
time. The pattern of mortality due to infection can be identified by calculating
the relative survival of infected hosts and transforming these data to test for
linear relationships over time. A useful exception for the need to calculate rel-
ative survival is when the observed cumulative survival of uninfected hosts and
that observed for infected hosts are both roughly linear when complementary
log− log transformed and plotted against log (time). In this case the pattern of
mortality due to infection can be assumed to follow the Weibull distribution as
the product of two Weibull distributions also has a Weibull distribution.

An alternative to applying linear regressions to transformed data is to esti-
mate parameter values by non-linear regression, for example, by fitting survival
functions to observed survival data. Such estimates should also be treated as
approximate as they respond to change in survival over time, rather than the
actual frequencies of individuals dying or remaining alive in each sampling in-
terval.

10



S06 Analysis of Blanford et al. data (i)

This example analysed a subset of the data from the study by Blanford et al
(1). The data came from the third experimental block and concern the survival
of adult female mosquitoes exposed to the isolate Bb06 of the fungal pathogen
Beauveria bassiana and those in the matching control treatment. In each case,
data from four replicate populations were pooled together.

Most of the females in the infected treatment died within the 14 days of
the experiment, whereas roughly half of those in the uninfected cages died (Fig
S6.1a). Thus by the end of the experiment the relative survival of females in
the infected treatment was roughly twice their observed survival (Fig S6.1b).

The pathogen’s virulence was estimated as increasing over time (Fig S6.1b),
based on the dynamics of change in the relative survival of infected hosts,
hINF (t) = −S′REL (t) /SREL (t).

Daily data on the frequencies of individuals dying or remaining alive in each
treatment allowed the pathogen’s virulence to be estimated each day (±95%c.i.)
based on differences in the observed rates of mortality in the infected and unin-
fected treatments, hINF (t) = hOBS.INF (t)−hBCK (t). These estimates indicated
daily rates of mortality due to infection became significantly greater than zero
in the second week of the experiment, although not consistently so (Fig S6.1c).

The observed survival in the infected and uninfected treatments was roughly
linear when given a complementary log− log transformation and plotted against
log-transformed time (Fig S6.1d). This suggested both the background mortal-
ity and mortality due to infection were suitable for description by the Weibull
distribution.

Linear regression of these transformed data provided initial estimates for the
location and scale parameters for each source of mortality (Table S6.1).

Table S6.1: Location (a) and scale (b) parameters for background mortality and
mortality due to infection as estimated by linear regression (LR) and maximum
likelihood (ML)

Parameter a b
mean 95% c.i. mean 95% c.i.

Background mortality
LR 3.343 3.054-3.757 0.792 0.662-0.987
ML 2.845 2.723-2.999 0.483 0.407-0.579
Mortality due to infection
LR 2.508 2.365-2.684 0.493 0.428-0.582
ML 2.581 2.525-2.640 0.183 0.122-0.251

The log-likelihood model was parameterised with Weibull functions describ-
ing background mortality and mortality due to infection and an analysis per-
formed using the linear regression estimates as initial values.

The parameter values obtained by maximum likelihood estimation differed
from those obtained by linear regression, with only the 95% confidence intervals
for the location parameter describing mortality due to infection overlapping for
the two approaches (Table S6.1).

With four parameters estimated and a loss function of 646.6, the AICc for
the maximum likelihood model was 1301. When the model was re-parameterised
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with the values estimated by linear regression the loss function rose to 690.8,
giving an AICc of 1390. This difference in AICc (+88) indicates the maximum
likelihood approach provided a much better description of the data than that
achieved by linear regression of transformed cumulative survival data.

In numerical terms the hazard function describing the pathogen’s virulence
was,

hINF (t) =
1

0.183t
exp

(
log t− 2.581

0.183

)
As, 0 < bINF < 0.5, this function describes the rate of mortality due to

infection as increasing monotonically over time at an accelerating rate (Fig
S6.1e).

In contrast to estimates at individual points in time, the delta method es-
timated the lower 95% confidence interval as consistently greater than zero in
the second week of the experiment (Fig S6.1e).

(1) doi:10.1186/1475-2875-11-365
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Figure S6.1: Patterns of survival and estimates of virulence for mosquitoes
with fungal infections. (a) Survival of uninfected (black) and infected (blue)
mosquitoes pooled across replicate cages, (b) Relative survival of infected
mosquitoes (symbols/dot-dash line) and virulence estimated from dynamics
of change in relative survival, (c) Virulence as estimated at individual points
in time (±95% c.i.), (d) Complementary log-log transformed cumulative sur-
vival data plotted against log(time); uninfected mosquitoes (black), infected
mosquitoes (blue), (e) Virulence as estimated by maximum likelihood; solid blue
line (±95% c.i., grey lines estimated by delta method), symbols (±95% c.i.) as
in (c). Dashed horizontal line is estimate for virulence assuming mortality rates
remain constant over time (see main text)
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S07 Estimating average longevity in R

The expected or average longevity of hosts in a particular population is equal
to the area under the population’s survival curve. This can be estimated by
integrating the survival function used to describe the population.

For example, if the location and scale parameters for an uninfected pop-
ulation of hosts equal a1 = 3.080 and b1 = 0.473, the average longevity of
uninfected hosts can be estimated in R (1) as;

a1 = 3.080
b1 = 0.473

Suninf <− function ( t , a1 , b1 ){
z1 <− ( log ( t)−a1 )/b1
S1 <− exp(−exp( z1 ) )
}

e s t . average . l o n g e v i t y <− i n t e g r a t e ( Suninf , 0 , In f , a1 , b1 )
e s t . average . l o n g e v i t y

Giving,

19 .27051 with abso lu t e e r r o r < 5 .5 e−06

If the location and scale parameters describing mortality due to infection in
a matching population of infected hosts equals, a2 = 2.527 and b2 = 0.198,
respectively, the expected longevity of infected hosts can be calculated as,

a1 = 3.080
b1 = 0.473
a2 = 2.527
b2 = 0.198

Sobs in f <− function ( t , a1 , b1 , a2 , b2 ){
z1 <− ( log ( t)−a1 )/b1
S1 <− exp(−exp( z1 ) )
z2 <− ( log ( t)−a2 )/b2
S2 <− exp(−exp( z2 ) )
av . long <− S1∗S2
}

e s t . average . l o n g e v i t y <− i n t e g r a t e ( Sobs in f , 0 , In f , a1 , b1 , a2 , b2 )
e s t . average . l o n g e v i t y

Giving

10.48757 with abso lu t e e r r o r < 0.00027

(1) https://www.R-project.org/
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S08 Analysis of the Lorenz & Koella data

The data in this example are from the study by Lorenz & Koella (1) and are
freely available at the Dryad digital repository (2). Two-day old larvae of An.
gambiae were exposed to spores of the microsporidian parasite Vavraia culicis at
doses of 0, 5, 10, 20, 40, 80 or 160 (x 1000) spores larva-1. Larvae were reared in
individual vials on diets of high or low food availability. As adults they remained
in their vials of origin and were provided with sugar-water. Adult longevity was
recorded daily until all individuals died. Only data from female mosquitoes are
analysed here. Individuals exposed to infection that died more than 15 days
old and harboured no spores were excluded, assumed uninfected. In total the
survival of 256 individuals was analysed. Each dose treatment was involved in
the following analyses, however for clarity only data from the control, lowest
and highest dose treatments are presented in the accompanying figure.

Larval food availability had little effect on adult longevity, whereas being in-
fected reduced survival and tended to do in dose-dependent manner (Fig S8.1a).
Complementary log-log transformed relative survival of infected females was
approximately linear when plotted against log-time (Fig S8.1b), indicating the
Weibull distribution was suitable for describing mortality due to infection.

Complementary log-log transformed cumulative survival of uninfected fe-
males in the low food treatment was approximately linear when plotted against
log-time, but this was not the case for females in the high food treatment (Fig
S8.1c). In particular there was excess mortality at early times relative to that
expected for data following the Weibull distribution. This excess was due to
two females dying at 2.0 and 2.5 days post-emergence in the high food treat-
ment; the other 16 females in the treatment all survived a minimum of 19 days.
From this it might be tempting to exclude the first two females as outsiders,
particularly as the data for the remaining females fitted well with the Weibull
distribution. However some females died within five days of emergence in the
infected treatments. These deaths could have been due to infection, but they
could also have been due to background mortality. Thus excluding the two
uninfected females that died early would risk underestimating the background
rate of mortality. The Gumbel (or Smallest Extreme Value; SEV) distribution
is suited to describing patterns of events where there are a few rare or infrequent
events at early points in time.

The log-likelihood model for analysing relative survival was thus parame-
terised with Gumbel functions describing background mortality and Weibull
functions for mortality due to infection.

Table S8.1: Summary statistics for the different likelihood models tested

model loss parameters AICc
1 764.2 4 1536.6
2 760.5 8 1537.6
3 750.8 14 1531.3
4 735.8 28 1534.8
5 752.3 9 1523.3
6 753.1 5 1516.4
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Figure S8.1: Virulence experienced by mosquitoes is proportional to dose of fun-
gal infection. (a) Survival in control (black), lowest dose (light blue) and highest
dose (dark blue) treatments. Low and high food treatments in circles and dia-
monds, respectively, (b) Complementary log-log (relative survival) in lowest and
highest dose treatments plotted against log(time), (c) Complementary log-log
(survival) plotted against log(time) for the uninfected treatments, (d) Observed
and estimated virulence in the lowest and highest dose treatments. Observed
data (stepped lines, symbols) based on daily data pooled for larval food treat-
ments. Smooth curves show maximum likelihood estimates for virulence. (e)
Parallel lines showing proportional nature of estimated relationship between vir-
ulence and dose. Symbols (±95% c.i.) show observed log-log cumulative hazard
data, log-log(HINF[t]), plotted against log(time)
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Model 1. This model estimated the location and scale parameters for the back-
ground mortality and that due to infection (aBCK, bBCK, aINF, bINF). The
loss function, number of parameters estimated, and the model’s AICc value are
given in Table S8.1.

Model 2. This model allowed for the effect of larval food treatments by estimat-
ing a mean value for each parameter and the deviation from this value due to
the food treatment, e.g., for the location parameter describing the background
mortality

aBCK = a0 +match(food)

{
low ⇒ a1

high ⇒ −a1

Allowing for the effect of food did not improve the model (Table S8.1).

Model 3. This model estimated the effect of dose treatments by estimating an
underlying value for the location and scale parameters describing mortality due
to infection and the deviation from this value for each dose treatment, i.e., for
aINF,

aINF = a2 +match(dose x 1000)



5 ⇒ ad5

10 ⇒ ad10

20 ⇒ ad20

40 ⇒ ad40

80 ⇒ ad80

160 ⇒ ad160

where ad160 = − (ad5 + ad10 + ad20 + ad40 + ad80).
This model was an improvement on the two previous models (Table S8.1).

Model 4. This model re-ran Model 3 separately for each food treatment, thus
allowing for a food x dose interaction. It was calculated based on the sum of
the two loss functions and the total number of parameters estimated.

Model 4 did not improve on Model 3 and so the effect of larval food availabil-
ity was dropped as a factor influencing adult longevity in subsequent models.
The parameters values estimated in Model 3 for the deviation from the under-
lying estimate of aINF tended to decrease as the number of spores used to infect
hosts increased, whereas this was not the case for deviations from bINF (Fig
S8.2).

Model 5. This improved on Model 3 by fitting only a single value of bINF for all
six infected treatments.

Model 6. The model improved on Model 5 by making aINF a linear function of
log(dose) ; aINF = a1 · log(dose) + c1 where a1 and c1 were constants.

Model 6 was judged to be the best model; the values of the parameters
estimated are given in Table S8.2.

17



-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

a

-0.2

0.0

0.2

0.4

0.6

0.8

b

9 10 11 12
log(dose)

Figure S8.2: Estimated deviations from Model 3 for underlying estimates of
aINF (left scale, closed symbols) and bINF (right scale, open symbols) for each
dose treatment (±95% c.i.).

Table S8.2: Parameter estimates for the best likelihood model (Model 6) ac-
cording to AICc

parameter estimate lower 95% c.i. upper 95% c.i.
aBCK 23.182 21.956 24.565
bBCK 4.714 3.981 5.529
aINF -0.081 -0.120 -0.048
bINF 0.186 0.153 0.234
c1 3.841 3.494 4.278
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Best model fitted with different probability distributions

The choice of which probability distribution(s) to use when analysing survival
data determines how well the data are described. The best model above had
an AICc of 1516 when the background mortality and that due to infection were
described by the Gumbel and Weibull distributions, respectively. When the
model was re-parameterised so the background mortality and that due to infec-
tion were described by the Weibull and Gumbel distributions, respectively, the
AICc of the revised model was greater (+18), and allowing the Weibull distribu-
tion to describe both sources of mortality was worse (+25). In contrast, when
the Gumbel distribution described both sources of mortality the AIC was simi-
lar to that of the best model (AICc 1518), indicating the Gumbel distribution
could reasonably have been chosen to describe both sources of mortality. Had
this been the case, the pathogen’s virulence would still have been estimated as
being proportional to log(dose), with a value of 4.476 for the ratio of virulence
between highest and lowest dose treatments.

Proportional survival model

Could a proportional hazards model analysing the survival of infected vs. un-
infected hosts have found the same results as the relative survival model? To
meet the criteria for a proportional analysis, whether parametric or not, the
observed rates of mortality for infected and uninfected treatments must satisfy,

hOBS.INF (t)

hBCK (t)
=
hBCK (t) + hINF (t)

hBCK (t)
= c

requiring the ratio hINF (t) /hBCK (t) to be constant.
Thus when the background rate of mortality and that due to infection are

proportional to one another, the observed rate of mortality in the infected treat-
ments will also be proportional to the background rate of mortality. In these
conditions the observed survival data are suitable for analysis with a propor-
tional hazards model, otherwise they are not.

(1) doi: 10.1111/j.1752-4571.2011.00199.x
(2) doi: 10.5061/dryad.2s231
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S09 Accelerated failure time (AFT) model

Accelerated failure time (AFT) models satisfy the relationship that survival in
one population at time t equals survival in another population at time t/c,

SA(t) = SB(t/c)

where A and B are independent populations and c is a constant scaling the
passage of time in population B relative to A. In other words, the trajectory of
survival in the two populations is identical but occurs on different timescales.
The hazard functions for the two populations are related as,

hA(t) = (1/c)hB(t/c)

which is satisfied for the Weibull distribution when the scale parameters in
the two populations are equal; bA = bB = b. Hence when a Weibull survival
model satisfies the conditions of a proportional hazards model it also satisfies
conditions for an AFT model. This is because the two models only differ in how
they describe the location parameter. For example, a complementary log− log
transformation of the Weibull survival functions SA (t) andSB (t/c) above gives,

log [− logSA (t)] =

(
log t− aA

b

)
and

log [− logSB (t)] =

(
log [t/c]− aB

b

)
=

(
log t− log c− aB

b

)
hence

aA = aB + log c

that is the two approaches differ only in describing the location parameter as a
single constant or as the sum of two constants. Solving the latter for c gives,

c = exp(aA − aB)

hence the constant scaling the passage of time in one population relative to the
other depends on the difference in the location parameters estimated for each
population in a PH model.

For example, in the analysis of the Lorenz & Koella data (S8) the location
parameter for mortality due to infection, aINF, was estimated as

aINF = 3.841− 0.081 · log(dose)

where dose was the number of spores larvae were exposed to. Substituting this
into the expression above for c for the highest (160000 spores larva-1) and lowest
(5000 spores larva-1) treatments gives,

c = exp ([3.841− 0.081 · log(160000)]− [3.841− 0.081 · log(5000)]) = 0.755

that is, survival due to infection in the highest dose treatment was equivalent
to that in the lowest dose treatment when time was scaled by a factor of t/c =
t/0.755 = 1.32t. In other words the pattern of relative survival in the highest
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dose treatment was equal to that in the lowest dose treatment when time in the
lower dose treatment was sped up by a factor of 1.32 (Fig S9.1)
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Figure S9.1: (a) Relative survival of females in the 160000 and 5000 spores
larva−1 dose treatments plotted against time (dark and light blue symbols,
respectively) and (b) their relative survival when the passage of time in the
low dose treatment was sped up by a factor of 1.32. Symbols and dotted lines,
observed data; curves are estimated relative survival functions.

Instead of making use of the PH estimates the AFT model can be estimated
directly with the log-likelihood model for estimating relative survival where the
hazard function for mortality due to infection at time t, hINF (t), is

hINF (t) =

(
1

c

)(
1

bINF (t/c)

)
exp (zINF)

=

(
1

bINF (t)

)
exp (zINF)

where

zINF =
log (t/c)− aB

bB

with the index B defining the reference treatment against which time is scaled.
For the Lorenz & Koella data, c was initially estimated as,

c = exp


match(dose x 1000)



5 ⇒ ad5

10 ⇒ ad10

20 ⇒ ad20

40 ⇒ ad40

80 ⇒ ad80

160 ⇒ ad160

− ad5


based upon c = exp(aA − aB), where individual location parameters were esti-
mated for each dose treatment minus that of the reference treatment; here 5000
spores larva-1. NB for the 5000 spores larva-1 treatment, c = exp(ad5 − ad5) =
exp(0) = 1. Figure S9.2 shows the estimated values of c for the different dose
treatments.

Making c a linear function of dose, c = aA · log(dose), resulted in the same
parameter estimates as those of the PH model presented in the main text.
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Figure S9.2: Estimated values for c scaling the passage of time for mortality
due to infection, taking the 5000 spores larva-1 treatment as reference; lower
values indicate less time was required for survival due to infection to equal that
in the lowest dose treatment.

(1) doi: 10.5061/dryad.2s231
(2) doi: 10.1111/j.1752-4571.2011.00199.x
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S10 Analysis of the Blanford et al. data (ii)

The data are from the study by Blanford et al. (1) and involve the fungal
pathogen Metarhizium anisopliae. Isolates Ma06, Ma07 and Ma08 were each
used to infect four replicate host populations and there were four replicate con-
trol populations unexposed to infection in the same block of the experiment.
Initial populations ranged from 58 to 96 females per replicate, making a total
of 1182 individuals.

Survival was reduced in the infected treatments (Fig S10.1a). The pattern
of cumulative survival within replicate cages of the control treatment and when
pooled together was roughly linear when given a complementary log-log trans-
formation and plotted against log-time (Fig S10.1b), suggesting the Weibull
distribution was suitable for describing background mortality. In contrast the
same transformation applied to relative survival in the infected treatments was
more sigmoidal or curved (Fig S10.1c), suggesting the Weibull distribution was
unsuitable for describing mortality due to infection.

The flattening or leveling-off of the survival curves for infected hosts, partic-
ularly Ma07, indicated rates of mortality were slowing over time (Fig S10.1a).
This is a pattern that can be described by the Fréchet distribution.

The log-likelihood model for analysing relative survival was parameterised
using Weibull functions to describe the background mortality and Fréchet dis-
tributions to describe mortality due to infection.

Table S10.1: Estimated values for location (a) and scale (b) parameters for
hazard functions describing the background rate of mortality and that due to
infection for the three fungal isolates.

Parameter a 95% c.i. b 95% c.i.
Controls 3.503 3.323-3.729 0.686 0.602-0.787
Isolate
Ma06 1.872 1.802-1.945 0.514 0.458-0.584
Ma07 1.637 1.591-1.685 0.335 0.301-0.374
Ma08 2.424 2.262-2.630 0.917 0.764-1.123

The initial model estimated aBCK and bBCK for the common background
mortality experienced by the mosquitoes in each treatment and separate values
of aINF and bINF for each isolate (Table S10.1). As estimates of aINF and bINF

for each isolate were non-overlapping the initial model was accepted as the best
model.

(1) doi:10.1186/1475-2875-11-365
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Figure S10.1: Non-proportional virulence of different fungal isolates. (a) Cumu-
lative survival in the control treatment (black), and those exposed to isolates
Ma06 (green), Ma07 (red), Ma08 (blue), (b) Complementary log-log trans-
formed cumulative survival data for the four control replicates plotted against
log(t). Individual replicates shown in grey, pooled data in black, (c) Comple-
mentary log-log transformed relative survival data plotted against log(time) for
the three infected treatments pooled over replicate cages, (d, e, f) Observed and
estimated virulence for isolates Ma08, Ma06 and Ma07, respectively. Observed
(symbols ±95% c.i.), estimated (coloured curves ±95% c.i.grey curves)
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S11 Analysis of Parker et al. data

This supplement provides details of the models described in the analysis of the
data (1) from the study by Parker et al. (2). These analyses do not take into
account the effect of host genotype, the main aim is to illustrate how a unimodal
pattern of virulence observed for a population of infected hosts can arise due
variation in the virulence experienced by hosts within the population.

Aphid survival was reduced in a dose-dependent manner in the treatments
exposed to infection (Fig S11.1a-c). The leveling-off of the survival curves in
the infected treatments suggested mortality rates were slowing after peaking at
around 7 days post-exposure to infection and suitable for description by the
Fréchet distribution (Fig S11.1d-f). The Fréchet distribution was found to pro-
vide a better description of survival in the uninfected control treatment than
the Weibull distribution (AICc 396.7 vs. 407.2). Consequently separate sets
of Fréchet functions were used to parameterise the initial log-likelihood model
describing background mortality and mortality due to infection.

Model 1. This model estimated location and scale parameters for background
mortality and those describing mortality due to infection in each dose treat-
ment, where the effect of dose treatments was estimated by their deviation from
an underlying mean value;

x = x0 +match(dose)


low ⇒ x1

medium⇒ x2

high⇒ −(x1 + x2)

Model 2. Here the effect of dose treatments on the location and scale parameters
was revised as,

x = x0 +match(dose)


low ⇒ x1

medium⇒ 0

high⇒ −x1

thus making x0 the estimate for the medium dose treatment with the effect of
increasing or decreasing dose estimated as ±x1. As the low, medium and high
involved doses of 8, 16 and 24 spores mm-2 this made the location and scale
parameters linear functions of log (dose).

Table S11.1: Summary statistics for likelihood models used to analyse the Parker
et al. data

model loss parameters AICc
1 778.60 8 1573.20
2 778.72 6 1569.44
3 756.31 6 1524.88
4 753.72 8 1522.95
5 755.12 5 1520.43

Model 2 was an improvement on Model 1 (Table S11.1). The estimates for
the pathogen’s virulence in each dose treatment are plotted in Figure S11.1d-f.
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Figure S11.1: Observed unimodal patterns of virulence and underlying hetero-
geneity of virulence within populations. Data in the 1st, 2nd and 3rd columns
are for aphids exposed to the low, medium and high dose treatments of the fungal
pathogen, respectively. (a-c) Observed survival in unexposed control population
(black line) and exposed population (green line). (d-f) Observed and estimated
unimodal patterns of virulence at the level of the exposed population in each
treatment (observed, symbols, dotted stepped line; estimated, smooth curve).
(g-i) Observed survival when exposed host population classified according to
sporulation status (black, unexposed controls; light blue, non-sporulating; dark
blue, sporulating). (j-l) Observed and estimated virulence in sporulating and
non-sporulating populations (dark blue symbols/lines, light blue symbols/lines,
respectively).
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Model 3. This model estimated location and scale parameters for individuals in
the infected treatments according to whether they died during the experiment
and showed signs of sporulation vs. those that did not.

x = x0 +match(died sporulating)

{
yes⇒ x1

no⇒ −x1

These location and scale parameters were estimated using Weibull functions.

The substantial drop in the AICc values between Model 2 and Model 3 in-
dicated classifying exposed hosts according to their sporulation status provided
a much better description of the data than their dose treatment (Table S11.1).

Model 4. The model estimated two additional parameters where the location
parameters in the sporulating and non-sporulating populations were each make
linear functions of log (dose). Model 4 was a slight improvement on Model 3
(Table S11.1). Models allowing the scale parameter to vary as a linear function
of log (dose) did not converge, indicating they offered no improvement to the fit
of the model to the observed data.

Model 5. This model pooled individuals from the control treatment with the
non-sporulating population of hosts exposed to infection. The sporulating pop-
ulation was estimated as in Model 4.

Model 5 fitted the data less well than Model 4, but it was judged a better
model by AICc criteria as it estimated fewer parameters (Table S11.1). The
hazard function for the pathogen’s virulence in Model 5 was,

hINF (t) =
1

bINFt
exp

(
log t− aINF

bINF

)
where,

aINF = a1 + match (dose)


low ⇒ a2

medium⇒ 0

high⇒ −a2

the estimated parameter values are given in Table S11.2 and plotted in Figure
S11.1j-l.

Table S11.2: Parameter estimates for the best likelihood model (Model 5) ac-
cording to AICc

parameter estimate lower ±95% c.i. upper ±95% c.i.
aBCK 2.121 2.044 2.205
bBCK 0.575 0.514 0.648
aINF

a1 2.100 2.047 2.157
a2 0.069 0.009 0.135
bINF 0.197 0.168 0.232
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These results find the hosts exposed to infection that survived until the end
of the experiment or died during the experiment without showing visual signs
of sporulation, had mortality rates which were no greater than those of hosts
in the unexposed control population. This suggests these hosts might not have
been infected, despite their exposure to infection, or that they were infected but
their infections had little or no effect on their rate of mortality.

(1) doi: 10.5061/dryad.24gq7
(2) doi: 10.1111/evo.12418
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S12 Exposed-but-uninfected hosts model

Here it is assumed a ‘supposedly infected’ population of hosts harbours some
uninfected individuals that only ever experience the same background rate of
mortality as uninfected hosts in matching control treatment. These individuals
may have been exposed to infection but avoided or resisted infection. Alter-
natively they be uninfected hosts that were never exposed to infection and
accidently introduced into an infected population.

Infection status known

If the sub-population of exposed-but-uninfected hosts has been be identified,
the log-likelihood model for estimating relative survival with right-censoring
(?? in the main text) can be used to estimate the location and scale parame-
ters in survival functions describing background mortality and mortality due to
infection,

logL =

n∑
i=1

d log [hBCK (ti) + ghINF (ti)] + log [SBCK (ti)] + g log [SINF (ti)]

where g is an indicator variable taking a value of ‘1’ for individuals exposed to
infection which became infected and a value of ‘0’ for exposed-but-uninfected
individuals. d is an indicator variable taking a value of ‘1’ for individuals dying
during the experiment and a value of ‘0’ for censored individuals. hBCK (t)
and hINF (t) are the hazard functions for background mortality and mortality
due to infection at time t, respectively, while SBCK (t) and SINF (t) are the
cumulative survival functions for background mortality and mortality due to
infection, respectively.

This model can be run in R using the code in S03.

Infection status unknown

The infection status of individual hosts will not always be known, but the pat-
tern of survival observed for an infected treatment may suggest the presence of
some uninfected individuals within an infected treatment, e.g., due to survival
curves flattening over time. The observed patterns of survival and mortality in
the ‘infected’ population at time t can be described as,

SOBS.INF (t) = p [SBCK (t) · SINF (t)] + (1− p)SBCK (t)

fOBS.INF (t) = p [fBCK (t) · SINF (t) + fINF (t) · SBCK (t)] + (1− p) fBCK (t)

hOBS.INF (t) = fOBS.INF (t) /SOBS.INF (t)

=
p [fBCK (t) · SINF (t) + fINF (t) · SBCK (t)] + (1− p) fBCK (t)

p [SBCK (t) · SINF (t)] + (1− p)SBCK (t)

where p is a constant to be estimated, 0 ≤ p ≤ 1.

Code for analysis in R

The code to run this model in R (1) is given below. The model was parame-
terised such that functions from the Fréchet distribution are used to describe
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background mortality and those from the Weibull distribution for mortality due
to infection.

exposed . but . un in f e c t ed . model <− function ( t , au , bu , ai , bi , p , datase t ){

zu <− ( log ( t)−au )/bu
Su <− 1−exp(−exp(−zu ) )
fu <− (1/ (bu∗t ) )∗exp(−zu − exp(−zu ) )
hu <− fu/Su

z i <− ( log ( t)−a i )/bi
S i <− exp(−exp( z i ) )
f i <− (1/ ( b i∗t ) )∗exp( z i − exp( z i ) )
h i <− (1/ ( b i∗t ) )∗exp( z i )

Sobs in f <− p∗ (Su∗Si ) + (1−p)∗Su
f o b s i n f <− p∗ ( fu∗Si + f i ∗Su) + (1−p)∗ fu
hobs in f <− f o b s i n f /Sobs in f

un in f e c t ed . treatment <− d∗log (hu) + log (Su)
i n f e c t e d . treatment <− d∗log ( hobs in f ) + log ( Sobs in f )

l o g l <− −sum( fq∗ ( i f e l s e ( i n f ==0, un in f e c t ed . treatment , i n f e c t e d . treatment ) ) )
}

m01 <− mle2 (
exposed . but . un in f e c t ed . model ,
start=l i s t ( au =2.0 ,bu=0.5 , a i =2.0 , b i =0.5 ,p=0.5) ,
data=data01 )

summary(m01)

The model refers to four columns in the data table;
fq is the frequency of individuals involved,
t their times of death or right-censoring, and
d whether they died (d=1) or were censored (d=0).
inf is for infection status, which is used with a ifelse function to determine
whether the expression uninfected or infected is to be evaluated.

The negative log-likelihood expression can then given starting values and evalu-
ated by mle2 of the R package bblme by Ben Bolker and the R Core development
team (2).

Analysis of Parker et al. data

The model above was used to analyse the Parker et al. data (3,4). As the main
effect of increasing dose was to increase the proportion of hosts experiencing
virulent infections, rather than increasing the virulence of infections themselves,
the data were pooled across dose treatments. The data were then analysed
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according to whether hosts were in the uninfected or infected treatment, where
the sporulation status of individuals in the infected treatment was unknown.

Functions for the Fréchet distribution were used to estimate background
mortality and those for the Weibull distribution for mortality due to infection.
The loss function for the model was 790.9 giving an AICc value of 1591.9 for
the 328 data and 5 parameters estimated (Table S12.1).

Table S12.1: Parameter estimates (± standard error) for the exposed-but-
uninfected model for the pooled data of Parker et al.

parameter estimate ± s.e.
au 2.205 0.041
bu 0.532 0.030
ai 1.882 0.031
bi 0.167 0.018
p 0.480 0.044

(1) https://www.R-project.org/
(2) https://CRAN.R-project.org/package=bbmle
(3) doi:10.1111/evo.12418
(4) doi:10.5061/dryad.24gq7
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S13 Recovery from infection model

Here recovery from infection is incorporated into a relative survival model as-
suming the pattern of events in an infected population at time t, SINF.POP (t),
can be described as the product of three independent probability distributions,

SINF.POP (t) = S1 (t) · S2 (t) · S3 (t)

where S1 (t) is the survival function for background mortality at time t, S2 (t)
is the survival function for mortality due to infection at time t, and S3 (t) is the
survival function for the probability an infection ‘survives’ until time t, i.e., the
host has not recovered at time t. Here the index INF.POP , is used rather than,

OBS.INF , as recovery from infection may not be an observed event.
Differentiating the above expression with respect to time and taking the

negative gives the probability density function, fINF.POP (t), for events occurring
in the population at time t,

fINF.POP (t) = f1 (t) · S2 (t) · S3 (t)

+ f2 (t) · S1 (t) · S3 (t)

+ f3 (t) · S1 (t) · S2 (t)

where the sum of the first two expressions gives the probability an infected host
dies at time t, while still infected. Together they correspond with data collected
for the time of death of infected hosts.

The third expression describes the probability an infected host is alive and
recovers from infection at time t. It corresponds with data collected on the tim-
ing of recovery of infected hosts. This will not be the case if a host’s recovery
status is only determined after the host has died or been censored, as the data
collected correspond with the time hosts recovered and subsequently survived
until dying or being censored. However it is assumed recovered individuals expe-
rience the same background mortality as uninfected hosts in a matching control
treatment. This pattern of mortality can be used to estimate the likelihood
a recovered individual dying at time t, recovered at an earlier time and then
survived until time t, when it died or was censored.

For example, in an experiment recording survival daily, the probability a
recovered individual dies on the second day (t2) can be estimated as,

[f3(t2) · S1(t2) · S2(t2)] · h1(t2) +

[f3(t1) · S1(t1) · S2(t1)] · [S1(t2)/S1(t1)] · h1(t2)

where the first line gives the probability an individual recovers on the second day
multiplied by the background rate of mortality on day 2. The second line gives
the probability an individual recovered on the first day, survived background
mortality from day 1 to day 2, S1(t2)/S1(t1), and died of background mortality
on day 2. Hence observed data for the times when recovered individuals die or
are censored can be used to estimate the unobserved distribution of recovery
times, f3(t)S1(t)S2(t).

When there is recovery from infection, the time when HOBS.INF (t) = 1 and
SOBS.INF (t) = 0.368 is still potentially useful for comparative purposes. How-
ever the time when HOBS.INF (t) = 1 is no longer when, HBCK (t)+HINF (t) = 1,
or, H1(t) +H2(t) = 1, in the notation above. Instead the cumulative exposure
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to the risk of dying from infection needs to correct for the probability hosts
recover from infection, ∫ t

0

h1(t) + h2(t) · S3(t) dt = 1

which is the cumulative sum of background mortality plus that due to infection
for hosts that are still infected.

Where recovery from infection occurs, and can be identified, it will also be
possible to compare the numbers of infected vs. recovered individuals contribut-
ing to the overall mortality in the infected treatment when SOBS.INF (t) = 0.368.

Code for analysis in R

The code to run this model in R (1) and to analyse the data using the bbmle
package by Ben Bolker and the R Core development team (2) is given in a
separate file (R-recovery-model.txt). A worked example and details of how to
specify the data file are given further below.

Analysis of Parker et al. data

In this analysis of the pooled Parker et al. data (3,4), Fréchet distribution
functions were used to describe background mortality and Weibull functions to
describe mortality due to infection and the recovery from infection.

The loss function for the model was 937.9 giving an AICc value of 1888.1 for
the 328 data and 6 parameters estimated (Table S13.1). This model fitted the
pooled Parker et al. data less well than the exposed-but-uninfected model with
an AICc of 1591.9 (S12).

Table S13.1: Parameter estimates (± standard error) for the recovery model for
the pooled data of Parker et al.

parameter estimate ± s.e.
a1 2.080 0.040
b1 0.555 0.033
a2 2.165 0.032
b2 0.176 0.016
a3 2.152 0.060
b3 0.614 0.079

Recovered vs. exposed-but-uninfected hosts

It will not always be possible to distinguish between exposed-but-uninfected
hosts and recovered hosts. However it may be possible to distinguish between
populations of exposed-but-uninfected hosts and recovered hosts based on the
distribution of their ages at death.

If hosts can avoid or resist becoming infected when exposed to infection,
without this incurring any costs to survival, the distribution of ages at death of
these exposed-but-uninfected hosts should equal that in a matching population
of uninfected hosts. This will also be the case for recovered hosts if recovery from
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infection is instantaneous and without incurring any costs to survival. However
this will not the the case if it takes time to recover from infection.

When it takes time to recover from infection, individuals are more likely to
contribute towards the recovered population the later they die. Relative to a
matching population of uninfected or exposed-but-infected hosts, the individuals
not contributing towards the distribution of recovered individuals will be those
with early ages at death, e.g., because they died of infection before recovering.
This will have an effect of truncating the distribution of ages at death in the
recovered population away from earlier ages at death, but not later ages at death.
Consequently the mean age at death in a recovered population is expected to
be later than in a matching population of uninfected or exposed-but-uninfected
hosts and to have a smaller variance.

Recovery file details

Specifying the data file

The recovery model requires the data file to be specified with 10 columns named
as,
control.d,
control.c,
infected.d,
infected.c,
recovered.d,
recovered.c,
censor,
d,
t,
fq

The first six columns use a combination of ‘1’s and ‘0’s to specify the six possible
categories of hosts, as follows;
1,0,0,0,0,0 : control individuals that died during the experiment
0,1,0,0,0,0 : control individuals that were censored
0,0,1,0,0,0 : infected individuals that died while still infected
0,0,0,1,0,0 : infected individuals censored while still infected
0,0,0,0,1,0 : recovered individuals that died during experiment
0,0,0,0,0,1 : recovered individuals that were censored

The 7th column ‘censor ’ uses ‘1’ to code for individuals that were censored,
otherwise ‘0’.
The 8th column ‘d ’ uses ‘1’ to code for individuals that died during the experi-
ment, otherwise ‘0’; it is the complement of the ‘censor ’ column.
The 9th column ‘t ’ is for the time of the observations, e.g., in days. NB this
must be an integer and there must be line for each time between t = 1 and the
last time of sampling, t = tmax, for all 6 categories of hosts; do not include a
line for t0.
The 10th columnn ‘fq ’ codes for the frequency of individuals in each category
of hosts, including ‘0’s.

The file ‘R-recovery-data-file.pdf ’ provides an example of data coded in this
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way and to provide an example analysis. Its contents need to be saved in a file
named ’R-recovery-data-file.dat ’ to run the model below.

Running the model

(i) Change the working of directory of R to where the data file, ‘R-recovery-
data-file.dat ’ is held.

(ii) Copy and paste the contents of the file ‘R-recovery-model.txt ’ into R

This will create the various functions needed for the recovery model to run and
perform an analysis on the data in the file ‘R-recovery-data-file.dat ’ using the
package ‘bbmle’ by Ben Bolker (2).

The data in the file ‘R-recovery-data-file.dat ’ are simulated and loosely based
on data from Gervasi et al. (5). Background mortality, mortality due to infec-
tion and recovery times were each simulated according to Weibull distributions.
The parameter values used to generate the data were; a1 = 2.80, b1 = 0.50, a2
= 2.20, b2 = 0.35, a3 = 2.35, b3 = 0.35.

The recovery model assumes background mortality, mortality due to infec-
tion and recovery rates are distributed according to the Weibull distribution; this
can be changed by appropriate changes to the functions; ‘survival.functions’,
‘calc.f3S1S2 ’ and ‘calc.St.Sr ’. The parameter values estimated by the model
should equal those in Table S13.2.

Table S13.2: Parameter estimates for recovery data

Estimate Std. Error lower 95% c.i. upper 95% c.i.
a1 2.817413 0.020930 2.7765511 2.8588220
b1 0.456838 0.017250 0.4243728 0.4920590
a2 2.421926 0.041126 2.3473672 2.5104079
b2 0.318360 0.022074 0.2785871 0.3664888
a3 2.544519 0.036482 2.4831253 2.6409698
b3 0.362418 0.055935 0.2772404 0.5063117

Figure S13.1a shows the simulated data for the observed cumulative survival
in the control and infected treatments, where the latter does not take distinguish
between infected or recovered hosts.

Observed and estimated distribution for times at death in the control treat-
ment, f1(t), are shown in Figure S13.1b.

Observed and estimated distribution for times of death of infected hosts,
while still infected, f1(t)S2(t)S3(t)+f2(t)S1(t)S3(t), are shown in Figure S13.1c.

The recovery model estimated the unobserved probability density function
for the distribution of recovery times, f3(t)S1(t)S2(t), based on observed times of
death (or censoring) of individuals that recovered from infection (Fig. S13.1d).

(1) https://www.R-project.org/
(2) https://CRAN.R-project.org/package=bbmle
(3) doi:10.1111/evo.12418
(4) doi:10.5061/dryad.24gq7
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Figure S13.1: Simulated recovery data and model estimates. Simulated data
(dots, stepped lines), estimated values (smooth curves). (a) cumulative survival
in the control (black) and infected (blue) populations, (b) distribution of times
at death in the control treatment, (c) distribution of times at death of infected
individuals in the infected treatment, and (d) the unobserved distribution for
the probability of recovering from infection (grey) and the observed distribution
of times at death of recovered individuals (blue).
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(5) doi.org/10.1098/rspb.2017.1090
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S14 Lorenz & Koella pooled data

In these analyses data (1) from the six dose treatments in the study by Lorenz
& Koella (2) were pooled together to produce a single infected population in
which virulence was known to be heterogeneous.

Virulence homogeneous

Here the infected population was modelled assuming there was no variation in
virulence among infected hosts and the unimodal pattern of virulence observed
at the level of the population could be described by the Fréchet distribution.
The likelihood model was,

logL =

n∑
i=1

{d log [hBCK (ti) + ghINF (ti)] + log [SBCK (ti)] + g log [SINF (ti)]}

where the survival and hazard functions, SBCK (t) and hBCK (t), describing
background mortality at time t were those of the Gumbel distribution. The
survival and hazard functions SINF (t) and hINF (t) describing mortality due to
infection at time t, respectively, were those of the Fréchet distribution. d is a
death indicator taking values of (0,1) for individuals that were censored or died,
respectively, and g an indicator of infection taking values of (0,1) for uninfected
and infected individuals, respectively.

Table S14.1: Estimated parameter values

parameter estimate ∼ s.e.
aBCK 22.694 0.554
bBCK 4.760 0.330
aINF 2.844 0.026
bINF 0.218 0.022

Table S14.1 gives the parameter values estimated by this model with their
approximate standard errors. The loss function was 757.58, giving an AICc of
1523.3

Virulence heterogeneous

Here the infected population was modelled allowing for unobserved variation
in virulence among infected hosts. This univariate frailty model assumed the
unobserved variation followed the gamma distribution with a mean of 1.0 and
a variance of θ. The form of the likelihood model was as above, but now the
hazard function describing the pattern of mortality in the infected population
due to infection at time t, hINF (t) was,

hINF (t) =
hV (t)

1 + θHV (t)

where the hV (t) and HV (t) are the hazard and cumulatiave hazard functions
for the underlying virulence experienced at the level of individual hosts at time
t, respectively.
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The corresponding function for the survival due to infection at time t was,

SINF (t) = [1 + θHV (t)]
−1/θ

Substituting these expressions into the likelihood model gave,

logL =

n∑
i=1

{
d log

[
hBCK (ti) + g

hv (ti)

1 + θHV (ti)

]
+ log [SBCK (ti)]− g

[
1

θ

]
log [1 + θHV (ti)]

}
The hazard and cumulative hazard functions for the underlying pattern of

virulence at time t, hV (t) and HV (t), respectively, were those of the Weibull
distribution,

hV (t) =
1

bV t
exp (zV ) and HV (t) = exp (zV )

where, zV = log t−aV
bV

.

Table S14.2: Estimated parameter values

parameter estimate ∼ s.e.
aBCK 22.789 0.599
bBCK 4.763 0.340
aV 2.857 0.037
bV 0.090 0.019
θ 2.620 1.094

Table S14.2 gives the parameter values estimated by this model with their
approximate standard errors. The loss function was 757.49, giving an AICc of
1525.8

(1) doi: 10.5061/dryad.2s231
(2) doi: 10.1111/j.1752-4571.2011.00199.x
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S15 Shared and correlated frailty models

Zahl (1) adapted univariate frailty models to allow for frailty effects acting on
both the background rate of mortality and mortality due to infection.

Shared frailty

Zahl (1) cites earlier work by Hougaard (2) for this model. For a shared frailty
effect the hazard function, h (t), depends on the frailty effect, λ, such that,

h (t, λ) = λ [hBCK (t) + hINF (t)]

where hBCK (t) and hINF (t) are the background rates of mortality and mortality
due to infection at time t, respectively. In this case the frailty effect multiplies
the two rates of mortality by the same amount.

If λ is assumed to follow the gamma distribution, with a mean of one, the
hazard function for the observed rate of mortality of infected hosts at time t,
hOBS.INF (t), is,

hOBS.INF (t) =
hBCK (t) + hINF (t)

1 + θ [HBCK (t) +HINF (t)]

and their observed cumulative survival at time t, SOBS.INF (t), is

SOBS.INF (t) = (1 + θ [HBCK (t) +HINF (t)])
−1/θ

where the indices BCK and INF identify the background rate of mortality and
that due to infection, respectively, while θ is the variance of λ and a constant
to be estimated.

The corresponding likelihood model can be written as,

logL =

n∑
i=1

{
d log

[
hBCK (ti) + ghINF (ti)

1 + θ [HBCK (ti) + gHINF (ti)]

]
+ log

[
(1 + θ [HBCK (ti) + gHINF (ti)])

−1/θ
] }

where d is a death indicator (0,1) for (censored, dead) individuals and g an indi-
cator of infection (0,1) for individuals in the (uninfected, infected) treatments,
respectively.

Table S15.1: Parameter values estimated by the shared frailty model

parameter estimate ∼ s.e.
aBCK 22.896 0.777
bBCK 3.600 0.452
aINF 18.728 0.707
bINF 3.350 0.430
θ 0.346 0.160

This model was applied to the Lorenz & Koella data where individuals from
each dose treatment were pooled into a single infected population. The Gumbel
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Figure S15.1: Probability density (solid line) and cumulative density (dashed
line) functions for the distribution of λ as estimated by the shared frailty model,
assuming λ follows a gamma distribution with a mean of 1.0 (vertical dotted
line).

distribution was used to describe both the background mortality and that due
to infection. Table S15.1 gives the parameter values estimated by this model
with their approximate standard error and Figure S15.1 gives the estimated
distribution of ‘frailty‘ around the value 1.0 at the beginning of the exeperiment.
The loss function was 763.29, giving an AICc of 1536.8

See Zahl (1) for a discussion of the short-comings of this type of model.

Correlated frailty

This model allows for separate, but positively correlated, frailty effects acting
on background mortality and mortality due to infection, where the strength of
this correlation is a variable to be estimated.

NB the expressions for SBCK (t) and SINF (t) correct for an error in the orig-
inal paper where the cumulative hazard terms were multiplied by

√
θi, instead

of θi; i = U,V.
The observed rate of mortality due to infection at time t in the infected

population, hOBS.INF (t), is

hOBS.INF (t) = hBCK (t) + hINF (t)

− ρ
√
θB
√
θV

hBCK (t)HV (t) + hINF (t)HB (t)

1 + θBHB (t) + θVHV (t)

where hBCK (t) and hINF (t) are the population wide rates of mortality due to the
background mortality and that due to infection at time t, respectively. HB (t)
and HV (t) are the cumulative hazard functions for the underlying background
mortality and the underlying virulence of the pathogen at time t, respectively;
θB and θV are the variances of the unobserved variation in the background mor-
tality and that due to infection, respectively, and constants to be estimated. ρ
is the strength of the positive correlation between the two frailty effects (ρ ≥ 0).
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The estimated value of ρ will tend towards zero as the difference in the variance
of the two frailty effects increases.

The population wide rate of background mortality at time t, hBCK (t), is

hBCK (t) =
hB (t)

1 + θBHB (t)

where hB (t) and HB (t) are the hazard and cumulative hazard functions for the
underlying rate of background mortality at time t, respectively. The population
wide rate of mortality due to infection at time t, hINF (t), is

hINF (t) =
hV (t)

1 + θVHV (t)

where hV (t) and HV (t) are the hazard and cumulative hazard functions for the
underlying rate of mortality due to infection at time t, respectively.

The observed cumulative survival of infected hosts at time t, SOBS.INF (t),
is given by

SOBS.INF (t) =
[
SBCK (t)

−θB + SINF (t)
−θV − 1

]−ρ/√θB√θV
· SBCK (t)

1−ρ
√
θB
√
θV SINF (t)

1−ρ
√
θV
√
θB

where

SBCK (t) = [1 + θBHB (t)]
−1/θB

and

SINF (t) = [1 + θVHV (t)]
−1/θV

Table S15.2 gives the parameter values estimated by this correlated frailty
model with their approximate standard errors when the lower boundary level for
each parameter estimate was set to zero. The loss function was 757.59, giving
an AICc of 1529.6.

Table S15.2: Parameter values estimated by correlated frailty model

parameter estimate ∼ s.e.
aB 22.789 0.622
bB 4.776 0.350
aV 16.916 0.642
bV 1.266 0.324
θB 0.000 0.027
θV 3.861 1.578
ρ 0.000 0.281

The parameter values estimated by the model (Table S15.2) found there was
little or no unobserved variation associated with the background mortality, θB .
In contrast, unobserved variation was estimated for the pathogen’s virulence,
θV , which was known to be the case for the pooled population of infected hosts.
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Correspondingly, the correlation between these two sources of frailty, ρ, was
weak.

Setting ρ = 0 simplifies the model as the observed mortality rate for the
infected population at time t, hOBS.INF (t), reduces to,

hOBS.INF (t) =
hB (t)

1 + θBHB (t)
+

hV (t)

1 + θVHV (t)

and the observed cumulative survival at time t, SOBS.INF (t), to

SOBS.INF (t) = [1 + θBHB (t)]
−1/θB [1 + θVHV (t)]

−1/θV

When applied to the Lorenz & Koella data, this ‘uncorrelated’ frailty model
gave the same estimates as in Table S15.2, confirming the previous estimate for
there being little or no unobserved variation in the rate of background mortality.

The model allowing only for unobserved variation in mortality rates due to
infection is presented in the main text.

(1) doi: 10.1002/(SICI)1097-0258(19970730)16:14¡1573::AID-SIM585¿3.0.CO;2-Q

(2) doi: 10.1093/biomet/71.1.75
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