Structural Determinants of Coiled Coil Mechanics

Patricia López-García1, Melis Goktas1, Ana E. Bergues-Pupo2, Beate Koksch3, Daniel Varón Silva4, Kerstin G. Blank1,*

1Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Science-Park Potsdam Golm, 14424 Potsdam, Germany

2Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Science-Park Potsdam Golm, 14424 Potsdam, Germany

3Freie Universität Berlin, Institute of Chemistry and Biochemistry - Organic Chemistry, Takustrasse 3, 14195 Berlin, Germany

4Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Science-Park Potsdam Golm, 14424 Potsdam, Germany

Corresponding Author

*Kerstin.Blank@mpikg.mpg.de

Author Contributions

PLG and MG performed experiments. PLG, MG and AEBP analyzed the data. All authors discussed the experimental design and the results. PLG and KGB wrote the manuscript.
ABSTRACT:

The natural abundance of coiled coil (CC) motifs in the cytoskeleton and the extracellular matrix suggests that CCs play a crucial role in the bidirectional mechanobiochemical signaling between cells and the matrix. Their functional importance and structural simplicity has allowed the development of numerous applications, such as protein-origami structures, drug delivery systems and biomaterials. With the goal of establishing CCs as nanomechanical building blocks, we investigated the importance of helix propensity and hydrophobic core packing on the mechanical stability of 4-heptad CC heterodimers. Using single-molecule force spectroscopy, we show that both parameters determine the force-induced dissociation in shear loading geometry; however, with different effects on the energy landscape. Decreasing the helix propensity lowers the transition barrier height, leading to a concomitant decrease in the distance to the transition state. In contrast, a less tightly packed hydrophobic core increases the distance to the transition state. We propose that this sequence-structure-mechanics relationship is evolutionarily optimized in natural CCs and can be used for tuning their mechanical properties in applications.

KEYWORDS:

Coiled coil • Force spectroscopy • Mechanical properties • Rational design • Single-molecule studies
Coiled coils (CCs) are self-assembled, superhelical motifs that are naturally found in numerous proteins in the cytoskeleton and the extracellular matrix.1 CCs consist of two (or more) α-helices, each characterized by a repetitive pattern of seven amino acids, called heptad ($abcdefg$)\textsubscript{n} (Figure 1A). Positions a and d form the hydrophobic core of the superhelical structure; e and g are mostly charged amino acids, which participate in interhelical salt bridges; b, c and f are solvent-exposed, often polar amino acids, which contribute to the helix propensity of the individual helices.2

![Figure 1. Experimental design. A) CC heptad pattern. B) SMFS setup showing mechanical loading of a CC heterodimer in the shear geometry. C) Sequences of the CCs used in this study. The terminal cysteines define the shear pulling geometry. The helix propensity of the CC-forming peptides was calculated using AGADIR.16](image)

Utilizing this simple design, CCs serve as model systems for studying protein folding and stability. As a result, they are increasingly used as templates for protein design and sequences with a pre-determined thermodynamic stability can now be synthesized de novo.3,4 Such sequences find application in peptide-based hydrogels7-10 and protein origami structures11,12 as well as in biosensors13 and drug delivery systems.8,14-15 Considering their natural role as a mechanical scaffold, surprisingly little information is available about the sequence-structure-mechanics relationship of CCs. With the goal of introducing CCs as nanomechanical building blocks, we have characterized three different CC heterodimers with atomic force microscope (AFM)-based single-molecule force spectroscopy (SMFS; Figure 1B). We show that hydrophobic core packing and helix propensity affect the thermodynamic stability in similar ways; however, the underlying changes to the energy landscape are different.
Using the thermodynamically and mechanically well characterized CC A₄B₄ as the starting point (Figure 1C),³,¹⁷ we used the standard rules of CC design²-³ to obtain one sequence with a reduced helix propensity and a second sequence with a different hydrophobic core packing. To reduce the helix propensity, Ala in the b position was substituted with Ser in all heptads¹⁸ (A₄sB₄s; Figure 1C). Hydrophobic core packing was altered using another β-branched amino acid in position a (Val instead of Ile; A₄vB₄v). The Asn in the third heptad was not replaced to maintain hetero-specificity.¹⁹-²⁰ To define the points of force application, Cys was introduced at the desired termini for coupling the CC to the surface and the AFM cantilever. For A-peptides, Cys was located at the N-terminus, while it was placed at the C-terminus of B-peptides, thus establishing a shear pulling geometry (Figure 1B).

To validate the design and to compare mechanical and thermodynamic stability, the CCs were first investigated with circular dichroism (CD) spectroscopy. Wavelength scans, showing an α-helical signature with minima at 208 nm and 222 nm and thermal denaturation experiments are shown in Figure S1. As expected, A₄B₄ shows the highest melting temperature Tₘ, while A₄sB₄s and A₄vB₄v were significantly destabilized (Table 1). The corresponding free energy difference between the folded (F) and the unfolded (U) state (ΔGₕ₋ₚ) was obtained from van’t Hoff plots (Figure S2). In comparison to A₄B₄, both modified CCs also show a lower ΔGₕ₋ₚ, which follows a similar trend compared to other CCs reported in the literature.³,²¹-²²

To address the question whether the thermodynamic and mechanical stabilities are correlated and how the respective substitutions affect the energy landscape, SMFS was carried out. The B-peptide was immobilized to the cantilever, while the corresponding A-peptide was immobilized to the surface (Figure S3). The CC only forms when the cantilever is in contact with the surface. When retracting the cantilever, the CC experiences a steadily increasing force until it ruptures (Figure 1B). At a retract speed of 400 nm s⁻¹, both A₄sB₄s and A₄vB₄v are mechanically less stable than A₄B₄ (Figure 2A). At this retract speed, the most probable rupture forces decrease 20 pN and 15 pN for A₄sB₄s and A₄vB₄v, respectively. This provides a first indication that the substitutions also lower the mechanical stability of the CCs.

Subsequent dynamic SMFS, performed over a range of loading rates (r = dF/dt)³³ from approximately 15 pN s⁻¹ to 11000 pN s⁻¹, revealed that both modified CCs possess a lower mechanical
stability over the complete range of loading rates (Figures S4-S6); however, their dependence on the loading rate is different. Fitting the data to the Bell-Evans model23 (Figure 2B) allows for obtaining more detailed information about the energy landscape of the CC two-state system (folded CC vs. random coil peptides): k_{off}, the force-free dissociation rate, and $\Delta x_{F,TS}$, the distance from the folded to the transition state (TS). Using the Arrhenius equation, also the barrier height between the folded and the transition state ($\Delta G_{F,TS}$) can be calculated, provided that the Arrhenius pre-factor is known. Here, we use an Arrhenius pre-factor of $5 \times 10^8 \text{ s}^{-1}$, which was estimated for the dimeric GCN4 leucine zipper.24 Table 1 summarizes the obtained fit values, as well as the calculated $\Delta G_{F,TS}$ values.

Table 1 summarizes the obtained fit values, as well as the calculated $\Delta G_{F,TS}$ values.

Figure 2. Single-molecule force spectroscopy. A) Representative rupture force histograms obtained at a retract speed of 400 nm s$^{-1}$, with $n = 284$ (A$_4$B$_4$), $n = 243$ (A$_{4S}$B$_{4S}$) and $n = 420$ (A$_{4V}$B$_{4V}$). The dashed lines show Gaussian fits, applied to extract the most probable rupture forces. The inset shows representative force-distance curves for each CC. B) Dynamic SMFS plot. Each CC was measured in triplicate using a different cantilever and surface (different shades of the same color). The solid lines represent fits to the Bell-Evans model.

Comparing the k_{off} values of A$_{4S}$B$_{4S}$ and A$_{4V}$B$_{4V}$ to A$_4$B$_4$ shows that both modifications lower the height of the transition state barrier (higher k_{off} and lower $\Delta G_{F,TS}$). This lower barrier height is
correlated with the different thermodynamic stabilities (Table 1) and helix propensities of the three CCs (Figure 1C). This suggests that a reduced helix propensity lowers the barrier height, thereby affecting both the thermodynamic and mechanical stability of the CCs. Interestingly, the Δx_{F-TS} values do not correlate with the thermodynamic stabilities. The Ala-Ser modification ($A_4S B_4S$) reduces Δx_{F-TS}, whereas the Ile-Val modification ($A_4V B_4V$) increases Δx_{F-TS}. This suggests that modifications in the solvent-exposed residues affect the energy landscape of the CC interaction differently when compared to hydrophobic core modifications.

Table 1. Thermodynamic and kinetic parameters obtained with CD thermal denaturation experiments and SMFS at 25 °C (298 K).

<table>
<thead>
<tr>
<th></th>
<th>T_m (°C)</th>
<th>ΔG_{F-U} (k_BT)</th>
<th>F (pN)*</th>
<th>Δx_{F-TS} (nm)</th>
<th>k_{off} (s$^{-1}$)</th>
<th>ΔG_{F-TS} (k_BT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_4B_4</td>
<td>77.0 ± 0.3</td>
<td>14.2 ± 0.3</td>
<td>43.1 ± 0.2</td>
<td>1.3 ± 0.2</td>
<td>3.2 ± 2.1 x 104</td>
<td>29.2 ± 1.4</td>
</tr>
<tr>
<td>$A_4S B_4S$</td>
<td>54.3 ± 0.3</td>
<td>5.3 ± 0.2</td>
<td>23.6 ± 4.8</td>
<td>0.9 ± 0.1</td>
<td>2.8 ± 1.1 x 101</td>
<td>21.3 ± 0.2</td>
</tr>
<tr>
<td>$A_4V B_4V$</td>
<td>59.0 ± 0.6</td>
<td>7.1 ± 0.6</td>
<td>28.2 ± 0.1</td>
<td>1.7 ± 0.0</td>
<td>2.4 ± 1.7 x 103</td>
<td>26.6 ± 0.7</td>
</tr>
</tbody>
</table>

*most probable rupture force F determined at a retract speed of 400 nm s$^{-1}$. All values are depicted as mean ± standard error of the mean (SEM).

CCs respond to an applied axial stretching force in three phases.$^{17,25-27}$ Initially, the force increases linearly with extension and the helices remain intact (phase I). At a strain of 10-20 %, the individual helices start uncoiling at an almost constant force (phase II). In long CCs, the force increases sharply after the helices are uncoiled and the resulting structure is extended further (phase III). For CCs with a length of \leq4 heptads loaded in the shear geometry, the CC chains separate in phase I or just at the transition to phase II.17 This is a direct result of the chain separation mechanism. At loading rates typically used in SMFS, the applied force causes the uncoiling of helical structure at the points of force application. This, in turn, destabilizes the CC thermodynamically and facilitates the subsequent dissociation of the CC chains (uncoiling-assisted dissociation). This mechanism allows for explaining the effects of helix propensity and hydrophobic core packing on CC shearing.
When mechanically loaded in shear geometry, the hydrogen bonds stabilizing the individual helices are aligned parallel to the force vector, whereas the hydrophobic side chains are arranged almost perpendicularly. The torsional angles and helical propensities of the individual amino acids, which are responsible for maintaining stable hydrogen bonds in the helices,18,28-29 are thus critically determining the resistance of CCs to shear forces. For CCs with a lower overall helix propensity less force is required to uncoil the individual helices. In addition, a lower helix propensity is correlated with a lower thermodynamic stability. Uncoiling of only small parts of helical structure thus destabilizes an already less stable CC further, an affect that was observed earlier when decreasing CC length.17 Assuming that the hydrophobic core is not altered, this suggests that chain separation occurs at smaller extensions. In the case of A\textsubscript{4S}B\textsubscript{4S}, a higher $k\text{off}$ value is thus accompanied by a shorter Δx_{F-TS}. This result is in line with the observation that artificial constraints, which stabilize the helices against uncoiling, lead to an increase in the forces required for chain separation.10,30

Figure 3. Energy landscape of the CCs. The horizontal line represents the distance from the folded (F) to the transition state (TS) (Δx_{F-TS}), while the vertical solid arrow represents the transition barrier height (ΔG_{F-TS}). The dotted arrow shows the energy difference between the folded and the unfolded state (ΔG_{F-U}).

Following this line of argumentation, Δx_{F-TS} for A\textsubscript{4V}B\textsubscript{4V} is expected to lie in between the values obtained for A\textsubscript{4S}B\textsubscript{4S} and A\textsubscript{4}B\textsubscript{4}; however, A\textsubscript{4V}B\textsubscript{4V} shows an increase in Δx_{F-TS}. This suggests that substituting Ile with Val does not only affect the helix propensity. It also causes a less tightly packed and more flexible CC interface. The increased Δx_{F-TS} can thus be explained as follows: the pre-existing flexibility at the hydrophobic core permits a more dynamic rearrangement of the Val side chains in
response to the applied force. In other words, a less densely packed hydrophobic core facilitates a relative displacement of the helices prior to or during helix uncoiling. This agrees with other protein unfolding studies, where destabilizing substitutions in the hydrophobic core loosened the packed interface.31-32 Likewise, higher unfolding rates and larger distances to the transition state were detected, an effect that has been termed \textit{mechanical softening}. Alternatively, the increase of Δx_{F-TS} can as well be explained with a different solvation of the core amino acids in the transition state.22,33

In summary, the combination of helix propensity and hydrophobic core packing determines the mechanical stability of CCs; however, with different effects on the energy landscape (Figure 3). Whereas a reduced helix propensity decreases both the barrier height and the distance to the transition state, an increase in the transition state distance is obtained when decreasing the hydrophobic core packing. It appears likely that natural CCs are evolutionary optimized to balance these different effects. Clearly, both parameters can be utilized when designing CCs with controlled mechanical properties for future applications. Most interestingly, these parameters can be used to obtain CCs with similar thermodynamic stabilities that possess a different dynamic response to an externally applied force. Such systems will find application as molecular force sensors34 or as physical hydrogel crosslinks, which show a pre-defined response to mechanical deformation.

\section*{ASSOCIATED CONTENT}

\textbf{Supporting Information}: Experimental and data analysis procedures, results from CD spectroscopy and SMFS.

\section*{ACKNOWLEDGEMENT}

The authors thank Isabell Tunn and Alberto Sanz de Leon for inspiring discussions. This work was funded by the Max Planck Society and the International Max Planck Research School (IMPRS) on Multiscale Bio-Systems.
REFERENCES

