Diversity matters: Deep-sea mussels harbor multiple symbiont strains

Rebecca Ansorge1,2, Stefano Romano2#, Lizbeth Sayavedra1#, Anne Kupczok3, Halina E. Tegetmeyer1,5, Nicole Dubilier1,4*, Jillian Petersen1,2*

1Max Planck Institute for Marine Microbiology, Bremen, Germany
2Department for Microbiology and Ecosystem Science, University of Vienna, Austria
3Christian-Albrechts-University Kiel, Germany
4MARUM, University of Bremen, Bremen, Germany
5Center for Biotechnology, Bielefeld University, Bielefeld, Germany

#These authors contributed equally
*Corresponding authors

Abstract (150 words max)

Genetic diversity of closely-related free-living microbes is widespread and underpins ecosystem functioning, but most evolutionary theories predict that it destabilizes intimate mutualisms. Indeed, symbiont strain diversity has long assumed to be restricted in intracellular bacteria associated with animals. Here, we sequenced the metagenomes and metatranscriptomes of 18 Bathymodiolus mussel individuals from four species, covering their known distribution range at deep-sea hydrothermal vents in the Atlantic. We show that as many as 16 strains of intracellular, sulfur-oxidizing symbionts coexist in individual Bathymodiolus mussels. Co-occurring symbiont strains differed extensively in key metabolic functions, such as the use of energy and nutrient sources, electron acceptors and viral defense mechanisms. Most strain-specific genes were expressed, highlighting their adaptive potential. We show that fine-scale diversity is pervasive in Bathymodiolus symbionts, and hypothesize that it may be widespread in low-cost symbioses where the environment, not the host, feeds the symbionts.
Within-species variability is ubiquitous in natural bacterial populations and occurs at many levels, from single nucleotide polymorphisms (SNPs) to differences in gene content and regulation. These fine-scale differences can have major functional consequences and thus define microbial lifestyles. For example, a single regulatory gene or a mutation can dramatically alter the host range of bacterial symbionts and human pathogens. In the human gut microbiome, gene copy number variation among different strains of the same bacterial species is linked to host disease. However, many of these functional differences are invisible at the level of marker genes commonly used in microbiome studies, such as the gene encoding 16S rRNA.

In free-living microbial communities, diversity underpins ecosystem functioning and resilience. However, in symbiotic associations, genetic diversity of microbes within host individuals can destabilize relationships between hosts and their symbionts. This is because diversity can lead to increased conflict between hosts and symbionts, and among co-existing symbionts within single individuals. These inherent evolutionary conflicts can be alleviated by stabilizing mechanisms such as vertical transmission, partner choice and sanctioning, ensuring partner fidelity, or allowing hosts to discriminate against low quality partners. These stabilizing mechanisms are hypothesized to explain the remarkably restricted diversity of symbionts in a range of associations from aphids with their Buchnera endosymbionts to legume nodules that contain only a single strain of rhizobial symbiont. High-throughput sequencing of natural symbiont populations is beginning to uncover unexpected within-species diversity, despite low diversity at the species level. But does such within-species symbiont diversity bear a cost to the host? While higher diversity may create conflicts among symbionts residing in a single host, it may also bring benefits to hosts by allowing them to access a range of functions. However, it is not understood under which conditions within-species symbiont diversity is beneficial to hosts, and efforts to understand the evolutionary implications of complex host-associated communities are in their infancy.

Metagenomes are essential for understanding natural within-species diversity, how such diversity evolves, and how it affects function, particularly in uncultivable organisms. However, teasing apart highly similar strain genomes in metagenomes remains a major challenge. Deep-sea Bathymodiolus mussels are ideal for investigating the functional and evolutionary implications of symbiont strain diversity, as they host only two bacterial symbiont species: One sulfur-oxidizing (SOX), and one methane-oxidizing (MOX) symbiont. These symbionts co-occur inside specialized gill epithelial cells called bacteriocytes and use reduced compounds from hydrothermal fluids as energy sources for carbon fixation. The symbionts thus provide their hosts with nutrition in
the nutrient-poor deep sea, allowing these mussels to dominate hydrothermal vent and cold seep communities worldwide.

The SOX symbionts of Bathymodiolus are very closely related to a ubiquitous group of free-living bacteria called SUP05, and their symbioses with deep-sea mussels have likely evolved multiple times from within the SUP05 clade. With few exceptions, each Bathymodiolus host harbors a single 16S SOX symbiont phylotype. However, studies of the more variable ribosomal internal transcribed spacer indicated that more than one symbiont strain may colonize individual mussels. Metagenomics of one Bathymodiolus species recently showed that ‘subpopulations’ of SOX symbionts differed in key functions such as hydrogen oxidation and nitrate respiration. These observations raise a number of questions: How widespread is strain diversity, how many strains coexist in a host individual, and how is such fine-scale diversity stably maintained in symbiosis over evolutionary time? To address these questions, we performed high-resolution metagenomic and metatranscriptomic analyses of the symbiont populations of 18 host individuals from four Bathymodiolus species that were collected from four geochemically distinct, hydrothermal vents along the Mid-Atlantic Ridge.

Results and Discussion

Genome-wide symbiont heterogeneity

We assembled Illumina metagenomes and used differential coverage and contig connectivity data to retrieve a consensus reference genome of the Bathymodiolus SOX symbiont for each vent field and host species (from each vent field only one host species was found, see Methods) (Fig. 1). The symbiont bins ranged from 2 to 3 Mbp and were ≥ 94% complete (Tab. S1). In 12 out of 18 host individuals we did not detect any SNPs in the symbiont 16S rRNA genes. In the other six, we detected low-frequency SNPs, present in 8-16% of the symbiont population and some SNPs appeared in more than one individual (Extended Data Tab. 1). This supports a previous study detecting low-abundance SOX 16S rRNA phylotypes in some host individuals that are closely related to the known Bathymodiolus symbionts (> 98.8% similarity).

Heterogeneity in symbiont populations of individual mussels was 1 to 3 SNPs/kbp in the core genome, defined as the set of genes shared among the symbionts from all vent fields, and 5 to 11 SNPs/kbp in entire genome bins (Fig. S1, Extended Data Fig. 1). Heterogeneity was remarkably consistent in symbiont populations of different mussel individuals from the same vent field, but differed considerably between fields.
This variability is surprising, as genome-wide polymorphism rates of other sulfur-oxidizing
intracellular symbionts from *Solemya* clams and *Ridgeia* tubeworms, which were also sequenced
with Illumina, were an order of magnitude lower than in *Bathymodiolus* (Extended Data Tab. 2).
The *Bathymodiolus* SOX symbionts had polymorphism rates more similar to those of human gut
bacteria, which are 7-18 SNPs/kbp in individual microbial species within single host individuals.13
This similarity is unexpected as in contrast to the SOX symbiont, most human gut microbes are
extracellular, have a heterotrophic metabolism and frequently come into contact with a myriad of
diverse microorganisms and bacteriophages within the gut, promoting rampant gene exchange31,32.
The polymorphism rates in the SOX symbionts were also of the same order of magnitude as those
observed in subpopulations of *Prochlorococcus*, the most abundant free-living bacterium in the
ocean12,33.
Population genomic insights into transmission and infection

The manner in which symbionts are transmitted can affect their heterogeneity, with vertically transmitted symbionts often displaying less heterogeneity than symbionts that are acquired horizontally34. Consistent with our findings of extensive SNP heterogeneity, symbiont nucleotide diversity π was 10 to 100 times higher in single \textit{Bathymodiolus} mussels compared to \textit{Solemya} clams35. Unlike \textit{Solemya} symbionts that are predominantly vertically transmitted, there is reasonable evidence that \textit{Bathymodiolus} juveniles acquire their symbionts horizontally36,25,37,27,28. However, it is unclear whether \textit{Bathymodiolus} symbionts are taken up only during a permissive window early in the mussels' development, or throughout their lifetime38. Horizontally transmitted symbionts acquired only during a short developmental period, similar to \textit{Ridgeia} tubeworms, would be subjected to a stronger bottleneck event than if they were continuously acquired39. Assuming genetic heterogeneity in the free-living stage of symbionts, within individual hosts symbiont populations would be isolated from each other, reminiscent of population dynamics in vertically transmitted symbionts (Extended Data Fig. 2). To test if this is the case, we compared the nucleotide diversity of the core genome within host individuals (π_{within}) to that between hosts (pairwise, π_{between}). Principal component analysis (PCA) and a PERMANOVA test on pairwise Bray-Curtis dissimilarities comparing π_{within} to π_{between} revealed that there was no significant difference between π values of hosts from the same vent field, whereas π_{within} differed significantly between vent fields (Fig. 2, Table S2, S3, S4, Extended Data Fig. 3). This suggests fully intermixed symbiont populations among co-occurring hosts (Fig. 2, Extended Data Fig. 2). Moreover, the fixation index (F_{ST}), a measure of population differentiation40,41 expressed as values between 0 (no differentiation) and 1 (complete differentiation), was mostly low within a vent field (0.04-0.24) (Fig. 2, Extended Data Fig. 4). This genetic homogeneity across symbiont populations from the same vent field supports a model of intermixed symbiont populations. Alltogether, our nucleotide diversity analyses thus indicate that \textit{Bathymodiolus} symbionts are continuously acquired from the environment throughout the host's lifetime, confirming an earlier study based on morphological observations of continuous symbiont uptake in \textit{Bathymodiolus}30.

107
Symbiont strains co-exist in single host individuals

Understanding the true level of strain diversity in natural populations is a fundamental challenge in microbial ecology. To quantify strains, SNPs must be linked across genes or, if possible, entire genomes. The most sensitive ‘marker gene’ for resolving strain variability is the one that evolves most rapidly, but this is unlikely to be the same gene in all natural populations. Therefore, we consider each distinct sequence of any coding gene to represent a different strain. We used more than 200 gammaproteobacterial single-copy marker genes to determine the maximum number of versions of each of these 200 genes, in each metagenome. Furthermore, we also analyzed all genes that had coverages similar to those of these single-copy marker genes, and were therefore likely present in all strains within the population. We considered a single well-supported SNP sufficient to distinguish different strains (see Methods and Supplement section 1.5).

Both approaches produced similar results, detecting up to 16 versions of the most variable symbiont genes within single mussel individuals (Fig. 3, Extended Data Fig. 5). To investigate whether sequencing depth influenced estimated strain numbers, we repeated our analyses after downsampling the reads to the lowest coverage found in our libraries (100x; Tab. S1). This reduced the estimated strain numbers to 4-9 per host individual, showing that read coverage influenced our results (Fig. 3).
We validated our approach for estimating strain numbers by analyzing a test dataset with simulated reads from 10 published *Escherichia coli* strains with 1% genetic heterogeneity, similar to that of the *Bathymodiolus* symbionts (Tab. S5). In this test dataset, read coverage also affected estimated strain numbers: these were underestimated at 100x coverage but were closest to accurate numbers at 300x coverage (see Supplement section 2.2; Fig. S2). Our estimate of 16 co-occurring SOX strains, from a library with 373x coverage, is therefore likely realistic. We could further confirm the accuracy of our approach with long PacBio reads of a *B. sp.* individual sampled at the vent field Wideawake. We detected a maximum number of 11 distinct contigs containing the same single-copy gene, which was similar to the 12 strains we estimated using Illumina reads from the same individual (Fig. 4). Taken together, these analyses support our conclusion that, at the very least 4 to 9, but as many as 16 symbiont strains co-occurred within single *Bathymodiolus* individuals. These results are surprising, as a very low level of symbiont diversity was previously assumed to be typical for these hosts based on commonly used marker genes \(^{22,23}\).

From the pangenome to the environment: Habitat chemistry drives symbiont genome heterogeneity

Understanding the geochemical environment experienced by deep-sea organisms is challenging. In addition, the relative availability of potential energy sources can be more important than absolute availability in determining which microbial energy-generating processes are most favorable\(^ {43}\).
compared symbionts from vent fields with different environmental conditions, an ideal natural experiment for investigating potential links between strain diversity and the environment. We developed a bioinformatic pipeline that used metagenomic read coverage to identify differences in gene content among co-occurring strains in our dataset of four host species from geographically and geochemically distinct vent fields. Due to uneven DNA replication rates across the entire genome, even single-copy genes encoded by all strains have a range of coverages in metagenomes. To define this range, we calculated the coverage of known, single-copy gammaproteobacterial genes in each metagenome (Fig. S3). Genes with coverage values below this range were likely only encoded by a subset of the population, and were thus considered strain-specific.

Between 30 and 50% of all genes in symbiont populations from individual mussels were potentially strain-specific, indicating massive differences in the gene contents of co-occurring strains (Extended Data Tab. 3). The functions of proteins encoded by the strain-specific genes differed markedly between the four vent fields, but within a field, these were mostly consistent among host individuals (Tab. S6, Fig. 5). With few exceptions, all strain-specific genes with annotated functions could also be detected in metatranscriptomes, suggesting that differences in gene content between different strains resulted in functional differences that likely influence the fitness of symbionts and host (see Supplement section 2.3 for details, Tab. S6).
More than 80% of the strain-specific genes encoded hypothetical proteins with unknown functions. Remarkably, although only a small proportion of the strain-specific genes could be annotated, these genes encode proteins involved in key functions such as synthesis of cell-surface components, environmental phosphate (P_i) sensing and acquisition, cell-cell interactions and phage defense (Fig. 5, Extended Data Fig. 6, Extended Data Fig. 7, Tab. S6). Hydrogen oxidation and nitrate reduction genes were also strain-specific in Mid-Atlantic Ridge populations, as shown previously in B. septemdierum from the West Pacific (Fig. 5)²⁹. Some of the strain-specific symbiont genes may provide a selective advantage depending on the vent environment. For example, all mussels from vent fields with the highest hydrogen concentrations had a larger proportion of strains encoding hydrogenases, and those from fields with the lowest concentrations had the smallest proportion of strains encoding these enzymes (see Supplement 2.3). Ikuta et al.²⁹ also found differences in the relative proportions of strains that could oxidize hydrogen in a single Bathymodiolus species sampled from two vents. However, as most individuals sampled from one field were small juveniles, and most collected from the second field were adults, it was unclear whether this reflected site-specific differences in hydrogen availability, or changes during host development.

Genes involved in phosphate metabolism were another example of strain-specific variability that could provide a selective advantage depending on vent conditions. These genes were in a single cluster and encoded the high-affinity phosphate transport system PstSCAB, the regulatory protein PhoU and the two-component regulatory system PhoR-PhoB⁴⁵. In addition to phosphorous metabolism, PhoR-B can also affect other functions such as secondary metabolite production and virulence^{46–48}. Considering the key role of these genes in cellular metabolism, it is surprising that this gene cluster was only encoded by the entire population of symbiont strains in mussels from two vent fields (Fig. 5). These genes were not present in any of the symbiont strains from Lilliput mussels, and only in some symbiont strains of Lucky Strike mussels, as confirmed by read mapping against symbiont bins (Fig. 5). At most hydrothermal vents P_i concentrations are unknown. However, soluble P_i depends on iron concentrations, which are reported to vary substantially between vent fields, raising the possibility that environmental P_i availability drives the loss or gain of P_i-related genes in symbiont populations (see Supplement section 2.3). Genes involved in P_i uptake and regulation were also strain-specific in Prochlorococcus, and their presence was linked to environmental P_i concentrations^{49,50}. The SOX symbionts of vesicoymid clams and free-living relatives Thioglobus spp. from the SUP05 clade appear to also lack the PstSCAB genes based on our analyses of their published genomes (accession numbers of symbionts: JARW01000002, DDCF01000009, NC_009465, NC_008610; SUP05: CP010552, CP006911, CP008725, GG729964). However, to our knowledge no other bacteria have been described to miss both, the PhoR-B and PstSCAB systems. The symbiotic and free-living SOX bacteria that lack PstSCAB...
might use a low-affinity P_ι-transporter to acquire P_ι, as genes for these transporters were encoded in all of the analyzed genomes.

Oxygen concentrations fluctuate at vents due to dynamic mixing of anoxic hydrothermal fluids and oxygen-rich deep-sea seawater, and accordingly, mussel symbionts can use alternative electron acceptors such as nitrate. Complete reduction of nitrate to dinitrogen gas (N_2) requires four enzymes: respiratory nitrate reductase (Nar), nitrite reductase (Nir), nitric oxide reductase (Nor) and nitrous oxide reductase (Nos). In contrast to the genes needed for oxygen respiration, which were present in all symbiont populations, the prevalence of genes encoding all four steps of nitrate reduction to N_2 was highly variable among vent fields, among mussels from the same field, and even within symbiont populations of single mussels (Fig. 5, Extended Data Fig. 6). For example, in Lucky Strike individuals, the enzyme for the reduction of nitrate to nitrous oxide (N_2O) was encoded by 30 to 100% of the population, whereas the ability to perform the last step from N_2O to N_2 was not encoded at all. These variable abundances within symbiont populations suggest that each of the three steps of nitrate reduction to N_2O might be performed by a different subset of strains within a single host (Fig. 5, Extended Data Fig. 6). The remarkable modularity of nitrate respiration genes in Bathymodiolus symbionts, as well as in other symbiotic and free-living bacteria, suggests that these genes are particularly prone to loss and gain. This raises the intriguing possibility that intricate interactions between microbes exchanging N intermediates are widespread in natural populations. Such a ‘division of labor’ may be beneficial as it could increase community nutrient consumption and avoid accumulation of toxic intermediates. In fact, when individual reactions of the denitrification pathway are subdivided among strains, the toxicity of the intermediates might result in dependence between strains producing and strains consuming toxic intermediates.

Our results revealed that Bathymodiolus SOX symbionts have pangenomes with considerable functional diversity among co-existing strains, and this metabolic diversity may be linked to vent geochemistry. Together with our findings of continuous uptake of symbionts throughout the mussel’s lifetime, these results suggest constant symbiont strain shuffling between the environment and host as well as among co-occurring hosts. Given that the Bathymodiolus SOX symbiosis has evolved multiple times in convergent evolution from within the SUP05 clade, it is possible that some of this strain reshuffling might also involve free-living SUP05 bacteria. This would allow Bathymodiolus to associate with those strains that are best adapted to the vent environment, even within the lifetime of an individual mussel. Rapid reshuffling of microbes has also been observed in other systems such as the human gut microbiota, where food intake has a direct and immediate effect on the microbial community. At hydrothermal vents, exchange of symbiont strains would
result in rapid holobiont adaptation to local conditions within the lifetime of individual mussel
hosts. Such genomic flexibility of the symbionts may underpin the productivity and global success
of Bathymodiolus mussels in these ecosystems.

A new model of evolutionary stability for one-to-many symbioses

Ecological theory predicts that if two different organisms share a limited resource, one will out-
compete the other, unless mechanisms such as niche partitioning allow their stable co-existence61,62. Can these theories explain our results of co-existing strains, and how strain diversity and
competition impact symbiosis stability? If competing symbionts differ in the net mutualistic benefit
they provide, hosts can benefit by evolving mechanisms to differentially distribute costly resources
to their partners. This can drive the evolution of specialized structures, such as compartments, with
low symbiont diversity. In these cases, discrimination by hosts is important because a costly
resource, such as photosynthate in the legume-Rhizobia symbioses, is provided63. But what if the
symbiosis has low costs to the host?

Knowledge of costs and benefits of symbiotic associations is central to understanding their
evolutionary trajectories. Beyond nutritional benefits gained through symbiont digestion64, the
benefits as well as the costs for Bathymodiolus mussels have not been extensively investigated.
Possible costs include maintaining host-symbiont recognition mechanisms, transporting symbiont
substrates into bacteriocyte vacuoles and waste products out, and dealing with toxic reactive oxygen
species produced by symbiont metabolism. We currently understand even less about the costs and
benefits for the symbionts. They may benefit from improved access to reduced and oxidized
substrates, such as sulfide and oxygen, which often do not overlap spatially or temporally (although
see65). Costs possibly include maintenance of recognition and intracellular survival mechanisms,
and loss of a substantial part of the population through intracellular digestion.

In contrast to many well-characterized symbioses (e.g. see63), there is one substantial cost that
Bathymodiolus does not have to bear - the cost of ‘feeding’ its symbionts. This is because the
symbionts’ major energy sources come from the vent environment. Bathymodiolus symbioses
therefore more closely resemble byproduct mutualisms, which are considered ‘low-to-no-cost’
associations66. Such lower costs for the host would shift the cost-benefit balance so that a greater
range of symbiont strains with distinct metabolic capabilities could still provide a net benefit to the
host. This implies that ‘low-quality’ symbionts that grow more slowly could thus co-occur
alongside high-quality symbionts. Moreover, strain diversity has additional ecological and
evolutionary benefits such as bacterial protection against bacteriophage attacks, and holobiont
adaptation to new and changing environments. A ‘low-quality’ symbiont under certain conditions can become a ‘high-quality’ symbiont when environmental conditions change67.

Low costs can also remove potential incentives for partners to ‘cheat68’. ‘Cheating’ is defined as using services provided by the host, and providing fewer or no services in return66. In the case of \textit{Bathymodiolus}, the host would appear fully in control of the transfer of benefits from symbionts to the host. Regardless of whether symbionts share the products of carbon fixation immediately with their hosts through ‘leaking’ of small compounds, or whether these are primarily directed towards symbiont cell biosynthesis, intracellular digestion of symbiont cells ensures that all the products of symbiont primary production are eventually transferred to the host. Furthermore, because the symbionts gain the bulk of their energy from the environment, instead of destabilizing the association as described by current evolutionary models, competition between different symbiont types could be beneficial for the host, if it results in the dominance of strains that more effectively transform geochemical energy in the vent environment into biomass and thus into host nutrition14.

\textbf{Conclusion}

Our view of microbial diversity has long been shaped by our limited ability to accurately assess the enormous diversity of natural communities69. Metagenomics is rapidly changing this view, revealing that strain diversity has been vastly underestimated. Our study shows that strain diversity is pervasive in the sulfur-oxidizing symbionts of \textit{Bathymodiolus} mussels, and that this diversity, invisible at the level of marker genes, has massive genome-wide effects. Symbioses between corals and their intracellular photosynthetic algae are another prominent example where strain diversity may be common, although it is still unclear how much of this diversity is due to different gene copies within a single eukaryotic genome15,70,71. High symbiont diversity was also recently identified in the photosynthetic symbionts of marine protists72.

This unexpected diversity has wide-ranging implications for the function and evolution of host-microbe associations. Despite this, it is currently not considered by most evolutionary theories, because these theories have been shaped by decades of study focused on models of symbiosis in which the host bears the enormous cost of ‘feeding’ the symbionts, and symbiont genetic diversity is highly restricted. We provide a new theoretical framework that could explain the unexpected prevalence and evolutionary stability of strain diversity in beneficial host-microbe associations, where the environment provides for the symbionts’ nutrition. This is the case for a diverse range of host-microbe associations from marine chemosynthetic and photosynthetic symbioses to the human digestive tract. Considering the substantial evidence that biodiversity underpins ecosystem stability,
productivity, and resistance to invasion and parasitism, we predict that strain variation should be widespread in ‘low-cost’ associations such as these. Clearly, new concepts are needed that extend evolutionary theories that were developed based on earlier studies of beneficial associations to a more united framework that can explain the wide range of host – microbe associations recent research is unveiling.

Methods

Sample collection

Four Bathymodiolus species from four vent fields were collected during three research cruises at hydrothermal vents along the Mid-Atlantic Ridge (MAR). Mussels from the same vent field belonged to the same host species based on their mitochondrial cytochrome c oxidase subunit I sequences. Symbiont-containing gill tissues were dissected from five mussel individuals from each of the following vent fields: Lucky Strike (site 'Montsegur' 37°17’19.1760”N, 32°16’32.0520”W; site 'Eiffel Tower' 37°17’20.8320”N, 32°16’31.7640”W), Clueless (4°48’11.7594”S, 12°22’18.4814”W) and Lilliput (9°32’47.6412”S, 13°12’35.0388”W). From these fields, samples were always dissected from the middle of each gill. From the Semenov-2 field, gill pieces were dissected from the gill edges of three individuals (location 'Ash Lighthouse' 13°30’48.4812”N, 44°57’47.2788”W). One additional mussel individual was sampled at Wideawake (4°48’37.5599”S, 12°22’20.5201”W, 730 m from Clueless). From this individual, the whole gill was homogenized in a Dounce tissue grinder (Sigma, Germany) and a subsample used for DNA sequencing. For an overview of these locations and samples, see the map in Fig. 1 and Tab. S7. Gill tissue pieces were either frozen directly at -80 °C or fixed in RNAlater according to the manufacturer’s instructions (Sigma, Germany) and subsequently frozen at -80 °C.

Nucleic acid extraction and metagenome sequencing

DNA was extracted from gill pieces with commercially available kits (Tab. S8). RNA was extracted using the AllPrep kit (Tab. S9, Qiagen, Germany). From the symbiont homogenate from Wideawake, DNA was extracted according to Zhou et al.73. For each vent field, one reference SOX symbiont bin was produced from co-assemblies of metagenomes from multiple individuals as follows (see Tab. S1 for reference genome statistics). Metagenomes were sequenced with Illumina or PacBio technology (see Supplement section 1.1 for details). Metagenomes were assembled from Illumina reads using IDBA-ud (v 1.1.1)74 and SPAdes (v 3.2.2)75, and genome bins were produced
using a custom combination of differential coverage analysis with GBtools (v 2.4.5)76 and contig connectivity analysis77, and annotated with RASTtk79 (see Supplement section 1.2 for details).

Transcriptome sequencing and analysis

Transcriptome reads were mapped to reference genomes with BBMap (v 36.x, Bushnell B. - BBMap - sourceforge.net/projects/bbmap/). The number of transcripts per gene was estimated with featureCounts79. Transcripts were normalized for different sequencing depths across libraries and for the gene length using edgeR with trimmed mean of M values (TMM) normalization80,81.

SNP calling and population structure analysis

SNPs were called from reads of each individual sample mapped to the consensus symbiont bin and filtered, both performed with the Genome Analysis Toolkit (GATK v3.3.0; see Supplement section 1.3 for details)82. Rather than using the default settings for diploid genomes, we chose a ploidy setting of 10, as this better reflects a mixture of coexisting bacterial strains (Tab. S10). The symbiont population structure within and between host individuals was investigated by calculating nucleotide diversity π and the fixation index F_{ST} based on SNP frequencies (see Supplement section 1.6 for details)13.

Core genome calculation and detection of strain-specific genes

We developed a bioinformatic pipeline to identify strain-specific genes in metagenomes based on relative read coverage (see Supplement section 1.4 for details). Briefly, we defined the coverage range of genes that are encoded by each strain in the population, based on single-copy gammaproteobacterial marker genes83, and regarded all genes with coverage below this range as potentially strain specific. For some of these, multiple gene copies (coding sequences with the same annotation) were present in one metagenome. We excluded these genes from further analyses because it is possible that all strains encoded these, but that rearrangements led to different gene neighborhoods, causing these genes to fall on different contigs in the genome assemblies.

Strain number estimation and test simulation

We estimated the number of strains by using the number of gene sequence versions that could be reconstructed based on SNP linkage and frequency as a proxy. These distinct sequence versions
were reconstructed for gammaproteobacterial marker genes from PhylaAmphora as well as for all the genes encoded by each strain in the symbiont population in a single mussel (identified by read coverage, see above) using the tool ViQuaS (v 1.3). We created a test dataset with parameters that were similar to the sequencing data used in this study, by simulating Illumina reads from 10 publicly available E. coli genomes with ART (v 2.5.8) (Tab. S5). Reads were pooled in even and uneven ratios to simulate different abundance patterns of strains in the population. Both datasets were analyzed with our strain estimation pipeline for two coverage depths 100x and 300x (see Supplement section 1.5 for details).

Code and data availability

Custom code is available on the github repository https://github.com/rbcan/MARsym_paper for detailed information of the computing steps. All sequencing reads and symbiont bins used in this study can be found at ENA under the accession number PRJEB28154.

Acknowledgements

We thank the captains, crews and ROV teams on the cruises BioBaz (2013), ODEMAR (2014), M78-2 (2009), Atalante Cruise Leg – 2 (2008) on board of the research vessels Pourquoi Pas?, FS Meteor and L’Atalante and the chief scientists François Lallier, Javie Excartin and Muriel Andreani, Richard Seifert and Colin Devey. Thank you to Adrien Assié, Christian Borowski, Corinna Breusing and Karina van der Heijden for sample treatment and fixation on board, and Målin Tietjen for the extraction of RNA from the samples of vent fields Semenov, Clueless and Lilliput. We also thank Christian Quast and Hanno Teeling for technical support. We thank Tal Dagan for the discussions and input during the project and on the written manuscript.

This study was funded by the Max Planck Society, the MARUM DFG-Research Center / Excellence Cluster “The Ocean in the Earth System” at the University of Bremen, the DFG CRC 1182 "Origin and Function of Metaorganisms", the German Research Foundation (RV Meteor M78-2 cruise), an ERC Advanced Grant (BathyBiome, 340535), and a Gordon and Betty Moore Foundation Marine Microbial Initiative Investigator Award to ND (Grant GBMF3811).

Contributions

R.A., J.P., L.S. and N.D conceived the study. R.A. and J.P. wrote the manuscript, with support from N.D., and contributions and revisions from all other co-authors. R.A. developed the metagenomic
workflow for polymorphism detection, strain reconstruction, identification of strain-specific genes and analyzed the data with the exceptions described in the following. S.R. conducted the core-genome calculation, read simulation analyses, provided support for the statistical analyses and drafted respective manuscript sections. L.S. extracted nucleic acids for samples from Lucky Strike, Semenov and Wideawake, and conducted and evaluated the PacBio assembly. A.K. developed and provided an R-script for the calculation of π and F_{ST}. H.T. sequenced metagenomes from vent fields Clueless and Lilliput.
References

42. Lan, Y., Rosen, G. & Hershberg, R. Marker genes that are less conserved in their sequences are useful for predicting genome-wide similarity levels between closely related prokaryotic strains. *Microbiome* **4**, 18 (2016).

80. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for
(2010).

81. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression

82. McKenna, A. *et al.* The Genome Analysis Toolkit: A MapReduce framework for analyzing next-

84. Jayasundara, D. *et al.* ViQuaS: an improved reconstruction pipeline for viral quasispecies

85. Huang, W., Li, L., Myers, J. R. & Marth, G. T. ART: a next-generation sequencing read