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The prion hypothesis states that misfolded proteins can act as infectious agents that trigger the
misfolding and aggregation of healthy proteins to transmit a variety of neurodegenerative diseases.
Increasing evidence suggests that pathogenic proteins in Alzheimer’s disease adapt prion-like mech-
anisms and spread across the brain along an anatomically connected network. Local kinetics models
of protein misfolding and global network models of protein diffusion provide valuable insight into the
dynamics of prion-like diseases. Yet, to date, these models have not been combined to simulate how
pathological proteins multiply and spread across the human brain. Here we model the prion-like
spreading of Alzheimer’s disease by combining misfolding kinetics and network diffusion through a
connectivity-weighted Laplacian graph created from 418 brains of the Human Connectome Project.
The nodes of the graph represent anatomic regions of interest and the edges represent their con-
nectivity, weighted by the mean fiber number divided by the mean fiber length. We show that
our brain network model correctly predicts the neuropathological pattern of Alzheimer’s disease
and captures the key characteristic features of whole brain models at a fraction of their computa-
tional cost. To illustrate the potential of brain network modeling in neurodegeneration, we simulate
biomarker curves, infection times, and two promising therapeutic strategies to delay the onset of
neurodegeneration: reduced production and increased clearance of misfolded protein.

PACS numbers: 87.10.Ed, 87.15.hj, 87.16.Ac, 87.19.L-, 87.19.lp, 87.19.xr

Introduction– A major advance in our understanding
of the brain has been the realization that the brain is
organized as a network, both at the physical and func-
tional levels [1]. This quiet revolution has been made
possible by the parallel development of medical imag-
ing and network theory [2]. Methods originating from
graph theory are now routinely used to study various as-
pects of brain function and the prevalent dogma is that
the brain operates as an efficient, modular, dynamic net-
work with strongly connected hubs [3]. This network
is optimized to quickly transmit electrical signals, but,
unfortunately, also toxic molecules that rapidly spread
within the brain’s connectome [4]. Studies have shown
that the eigenmodes of the brain network’s graph Lapla-
cian are correlated to atrophy in Alzheimer’s disease [4],
and probabilistic epidemiological models have used the
network to explain transference mechanisms [5].

The current prevalent theory for neurodegenerative
disorders is the prion-like paradigm [6] in which degen-
eration is caused by the invasion and conformational
autocatalytic conversion of misfolded proteins [7]. In
Alzheimer’s disease, tau protein is believed to act in a
prion-like manner [8]: it misfolds and becomes a toxic
template on which healthy proteins misfold, become toxic
themselves, and grow into increasingly larger aggregates
[9]. Tau is an intracellular protein that primarily spreads
along axonal pathways [10]. This creates a remarkably
consistent and predictable pattern [11]. Figure 1, top,
illustrates the typical spatio-temporal pattern of tau pro-
tein misfolding in Alzheimer’s disease inferred from neu-
ropathological observations of hundreds of human brains
[12].

Throughout the past decade, three conceptually
different models have emerged to simulate the physics
of protein misfolding and transport: (i) kinetic growth
and fragmentation models to study the interaction of
aggregates of different sizes using a set of ordinary
differential equations [14]; (ii) network diffusion models
to study the prion-like spreading of misfolded proteins

FIG. 1: Typical pattern of tau protein misfolding in
Alzheimer’s disease. Misfolded tau proteins occur first in
the locus coeruleus and transentorhinal layer from where they
spread to the transentorhinal region and the proper entorhi-
nal cortex and ultimately affect all interconnected neocortical
brain regions. Neuropathological observation (top) [12], con-
tinuum model (middle) [13], and network model (bottom).
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using graph theories [4]; and (iii) reaction-diffusion
continuum models to study the spatio-temporal evo-
lution of pathogenic proteins using partial differential
equations [15]. Figure 1, middle, shows that contin-
uum models with nonlinear reaction and anisotropic
diffusion accurately predict the typical pattern of tau
protein misfolding in Alzheimer’s disease [13]. This
simulation used a Fisher-Kolmogorov type equation
[16, 17], discretized with 400,000 tetrahedral finite
elements and 80,000 degrees of freedom. While the
continuum model displays an excellent agreement with
neuropathological observations, it is computationally
expensive and impractical for the quick assessment of a
variety of disease scenarios. The objective of this study
is therefore to create an efficient and robust simulation
tool that captures the key characteristic features of
pathogenic proteins in Alzheimer’s disease by combining
misfolding kinetics and network diffusion through a
connectivity-weighted graph from the Human Connec-
tome Project. Figure 1, bottom, shows that–even with
three orders of magnitude fewer degrees of freedom–
this dynamic network model accurately predicts the
typical spatio-temporal pattern of tau protein misfolding.

Kinetic model– To model the misfolding of tau protein,
we consider the simplest possible kinetic model that ac-
counts for two protein configurations, the natural healthy
state p and the misfolded state p̃ [18, 19]. In this model,
misfolded proteins recruit healthy proteins at a rate k11′ ,
healthy proteins bind to misfolded proteins and adopt
their conformation at a rate k1′2′ , and the resulting poly-
mer fragments into infectious seeds at a rate k2′2,

p + p̃
k11′→ p p̃ p p̃

k1′2′→ p̃ p̃ p̃p̃
k2′2→ p̃ + p̃ . (1)

For simplicity, we collectively represent the conforma-
tional conversion from the healthy to the misfolded state
as a single step through the rate constant k12,

p + p̃
k12→ p̃ + p̃ . (2)

These considerations motivate a system of governing
equations for the spatio-temporal evolution of the total
amount of healthy and misfolded proteins p and p̃,

∂p̃

∂t
= ∇ · (D · ∇p) + k0 − k1 p− k12 p p̃

∂p̃

∂t
= ∇ · (D · ∇p̃) − k̃1 p̃ + k12 p p̃ ,

(3)

where D is the diffusion tensor that characterizes
protein spreading, k0 is the production rate of healthy
protein, k1 and k̃1 are the clearance rates of p and p̃,
and k12 is the conversion rate from the healthy to the
misfolded state, as shown in Fig. 2. In the initial healthy
state, the healthy and misfolded protein concentrations
are p0 = k0/k1 and p̃0 = 0; in the diseased state, they

FIG. 2: Kinetic model. Misfolded tau proteins p̃ organize
in infectious seeds that recruit healthy proteins p to misfold
on them and then fragment into new seeds.

converge towards p∞ = k̃1/k12 and p̃∞ = k0/k̃1−k1/k12.
Interestingly, close to the initial healthy state, when
p � p̃, the set of kinetic equations (3) collapses into a
single equation of Fisher-Kolmogorov type [15].

Brain network model– We model the spreading of
healthy and misfolded proteins as the diffusion across the
brain’s connectome, which we represent as a weighted
graph G with N nodes and E edges. We extract the
graph G from the tractography of diffusion tensor im-
ages of 418 healthy subjects of the Human Connectome
Project [20] using the Budapest Reference Connectome
v3.0 [21]. We map the original graph with N = 1015
nodes and E = 37477 edges onto a graph with N = 83
nodes and E = 1130 edges in which the degree, the num-
ber of edges per node, varies from 6 at the frontal pole
to 48 at the caudate. We weight each edge by the mean
fiber number nij divided by the mean fiber length lij av-

min max
mean fiber number nij

sagittal coronal

longitudinal

FIG. 3: Brain network model. Misfolded tau pro-
teins spread across the brain’s connectome represented as a
weighted graph G with N = 83 nodes and E = 1130 edges.
Edges are weighted by the mean fiber number nij divided by
the mean fiber length lij averaged over 418 healthy brains.
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min maxadjacency Aijmin maxdegree  Dii

non-weighted

connectivity-weighted

FIG. 4: Brain network model. The connectivity of the
graph G is represented through the degree Dii, the number
of edges per node, and the adjacency Aij = nij/lij , the ra-
tio of fiber number and length. Degree Dii of non-weighted
graph (top) and connectivity-weighted graph (bottom), and
adjacency Aij of connectivity-weighted graph (right) averaged
over 418 healthy brains.

eraged over all 418 brains. The mean fiber number varies
between 1 ≤ nij ≤ 596, with an average of n̄ij = 40.2
fibers per edge, and most fibers between the superior
parietal and precuneus regions. The mean fiber length
varies between 11.3 mm ≤ lij ≤ 136.8 mm, with an av-
erage of l̄ij = 38.40 mm. Figure 3 illustrates our graph
G with the edges color-coded by the mean fiber number
nij , mapped onto a three-dimensional brain model [22].

We can summarize the connectivity of the graph G in
terms of the degree matrix Dii, a diagonal matrix that
characterizes the degree of each node i, and the weighted
adjacency matrix Aij , the ratio of mean fiber number
and length. Their difference defines the weighted graph
Laplacian Lij ,

Lij = Dij −Aij with Aij =
nij

lij
and Dii =

∑N
j=1Aij .

(4)
To discretize Eqns. (3) on our weighted graph G we in-
troduce the healthy and misfolded protein concentrations
pi and p̃i as unknowns at the i = 1, ..., N nodes and as-
sume that the weighted Laplacian Lij characterizes their
spreading across the brain network,

dpi
dt

= −
∑N

j=1 Lij pj + k0 − k1 pi − k12 pi p̃i

dp̃i
dt

= −
∑N

j=1 Lij p̃j − k̃1 p̃i + k12 pi p̃i .

(5)

Figure 4 illustrates the degrees Dii of the non-
weighted and connectivity-weighted graphs, left, and
the adjacency Aij , right. The degree varies between
2.1 ≤ Dii ≤ 127.6, with an average degree of D̄ii = 42.8
per node, and the lowest and highest degrees in the
frontal pole and precentral gyrus, shown in blue and red.

The adjacency varies between 0.01 ≤ Aij ≤ 35.32, with
an average adjacency of Āij = 1.57 per edge, and lowest
and highest values between the superior parietal and
precuneus regions and between the lateral orbitofrontal
and isthmus cingulate regions. The adjacency matrix
clearly reflects the small world architecture of our brain
with strongly connected hubs within the right and left
hemispheres, the lower left and upper right quadrants,
and strong connections within the four lobes, the eight
red regions along the diagonal.

Biomarker model– A biomarker is a global metric to
characterize the evolution of neurodegeneration [23], for
example, the sum of all misfolded proteins p̃i at all i
nodes,

P̃(t) =
∑N

i=1 p̃i(t)/N . (6)

To simulate Alzheimer’s disease, we seed misfolded
tau proteins in the entorhinal cortex and allow them
to spread across the brain. This takes 30 years in the
model and less than a second on a standard laptop
computer. The dashed gray and black lines in Fig. 5
show the biomarker of the network model in Fig. 1,
bottom, and, for comparison, of the continuum model
in Fig. 1, middle. The quantitative comparison of both
curves confirms that our network model excellently
captures the global characteristics of continuum models
for Alzheimer’s disesase [13]. The solid lines in Fig. 5
summarize the biomarker abnormality in all four lobes.
The activation sequence, from the temporal to the
frontal, parietal, and occipital lobes, agrees well with the
neuropathological spreading patterns in Fig. 1, top [11].
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FIG. 5: Biomarker abnormality. Summing the concentra-
tion of misfolded proteins p̃ across individual lobes reveals the
characteristic activation sequence in Alzheimer’s disease from
the temporal lobe to the frontal, parietal, and occipital lobes.
The dashed gray and black lines highlight the biomarker ab-
normality P̃ of the network and continuum models in Fig. 1
integrated across the entire brain.
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All biomarker curves display a smooth sigmoidal form,
which is in excellent agreement with clinical biomarker
models of neurodegeneration [23].
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FIG. 6: Infection time. Biomarker abnormality for N =
83 seeding regions illustrates the regional vulnerability of the
brain network. The dashed gray line highlights the lower limit
of the infection time associated with a homogeneous seeding
across all regions.

Infection times– To characterize the vulnerability of
different brain regions, we now seed misfolded proteins
in all N = 83 regions, simulate their spreading, and
calculate their individual biomarker curves and infection
times. Fig. 6 summarizes the biomarker curves and
their associated brain regions color-coded by infection
time. Misfolded proteins spread fastest when seeded in
the putamen and insula with a total infection times of
20.2 years, shown in red, and slowest when seeded in the
frontal pole and entorhinal region with infection times
of 30.4 and 28.8 years, shown in blue. This significant
variation in infection time underlines the heterogeneity
of our brain network model [24]. For comparison, the
dashed gray line illustrates the lower limit of the infec-
tion time of 16.6 years, associated with a homogeneous
seeding across all N = 83 regions. The entorhinal
cortex, the region where misfolded tau proteins are first
observed [11], is associated with the second longest in
infection time. This could explain–at least in part–why
tau pathology is so slow and difficult to diagnose during
the early stages of Alzheimer’s disease [8].

Treatment opportunities– Two promising therapeu-
tic strategies are currently emerging to delay or even
prevent the progression of Alzheimer’s disease [25]:
reducing misfolding [26] and increasing clearance [27].
Figures 7 and 8 probe the effect of reduced misfolding.
A turnover rate of k12 = 0.50 predicts the baseline
progression of Alzheimer’s disease in agreement with
Fig. 1. Decreasing the turnover rate to k12 = 0.45
and k12 = 0.40 delays and reduces the accumulation
of misfolded tau protein p̃ and with it the biomarker
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0.0 1.0
misfolding p~

20 years 30 years 40 years

k1
 =

 0
.5

~
k 1

 =
 0

.6
~

k 1
 =

 0
.7

~

k12 = 0.50

k12 = 0.45

k12 = 0.40

FIG. 7: Reducing misfolding. Lower turnover rates k12
delay and reduce the accumulation of misfolded tau protein
p̃. Baseline Alzheimer’s disease (top) and Alzheimer’s dis-
ease with moderately (middle) and markedly (bottom) re-
duced turnover k12 from healthy to misfolded tau protein.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

age [years]

de
ge

ne
ra

tio
n 

[−
]

Student Version of MATLAB

time [ yr ]0 20 40
0

100

bi
om

ar
ke

r a
bn

or
m

al
ity

 [%
]

60

k12 = 0.50
k12 = 0.45
k12 = 0.40
k12 = 0.35
k12 = 0.30
k12 = 0.25

80

FIG. 8: Reducing biomarker abnormality through re-
duced misfolding. Decreasing the turnover k12 delays and
reduces the accumulation of misfolded tau protein p̃ and with
it the biomarker abnormality P̃.

abnormality P̃. In the early stages of neurodegener-
ation, even a small reduction of misfolding can delay
disease progression by several decades [26] and reduce
the resting state of misfolded protein p̃∞ to 89% and
75% of its baseline value of Alzheimer’s disease. Figures
9 and 10 probe the effect of increasing the clearance of
misfolded tau protein k̃1. A clearance rate of k̃1 = 0.50
predicts the baseline progression of Alzheimer’s in
agreement with Fig. 1. Increasing the clearance rate
to k̃1 = 0.60 and k̃12 = 0.70 has similar effects as
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FIG. 9: Increasing clearance. Higher clearance rates k̃1
delay and reduce the accumulation of misfolded tau protein
p̃. Baseline Alzheimer’s disease (top) and Alzheimer’s disease
with moderately (middle) and markedly (bottom) increased

clearance k̃1 of misfolded tau protein.
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FIG. 10: Reducing biomarker abnormality through in-
creased clearance. Increasing the clearnace k̃1 delays and
reduces the accumulation of misfolded tau protein p̃ and with
it the biomarker abnormality P̃.

decreasing the turnover rate k12; it delays and reduces
the accumulation of misfolded tau protein p̃ and with it
the biomarker abnormality P̃, see Supplemental Movies.
Similar to a decreased turnover, an increased clearance
can delay disease progression by several decades [27] and
reduce the resting state of misfolded protein p̃∞ to 67%
and 43% of its baseline value of Alzheimer’s disease.
It would be interesting to explore how our simulations
would change if we not only modeled tau but the com-
bined effects of tau and amyloid beta aggregation [12, 25].

Conclusions– Despite their complexity, neurodegen-
erative diseases display remarkably consistent damage
and atrophy patterns. In Alzheimer’s disease, these
invasion patterns are highly correlated with the spread-
ing pattern of misfolded tau proteins. Here we model
the spreading of tau proteins by combining misfolding
kinetics and network diffusion through a connectivity-
weighted graph. In our dynamic brain network model,
the concentrations of healthy and misfolded proteins
emerge dynamically at each node and propagate across
the graph through its connectivity-weighted edges. Our
model correctly predicts the spatio-temporal spreading
pattern of tau in Alzheimer’s disease. Its computational
efficiency allows us to rapidly screen the landscape of
process parameters that govern the kinetics of protein
misfolding. We demonstrate the potential of our model
by simulating biomarker curves, infection times, and
therapeutic intervention. A better understanding of the
spreading of misfolded proteins could open new thera-
peutic opportunities towards blocking protein misfolding
and promoting protein clearance using antibodies or
small molecules.
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