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Abstract 

 

Initiation of the antiarrhythmic medication dofetilide requires an FDA-mandated 3 days of 

telemetry monitoring due to heightened risk of toxicity within this time period.  Although a 

recommended dose management algorithm for dofetilide exists, there is a range of real-world 

approaches to dosing the medication. In this multicenter investigation, we examined the 

decision process for dose adjustment of dofetilide during the observation period using 

machine-learning approaches, including supervised, unsupervised, and reinforcement learning 

applications.  Logistic regression approaches identified any dose-adjustment as a strong 

negative predictor of successful loading (i.e., discharged on dofetilide) of the medication (OR 

0.19, 95%CI 0.12 – 0.31, p < 0.001 for discharge on dofetilide), indicating that these 

adjustments are strong determinants of whether patients “tolerate” the medication. Using 

multiple supervised approaches, including regularized logistic regression, random forest, 

boosted gradient decision trees, and neural networks, we were unable to identify any model 

that predicted dose adjustments better than a naïve approach.  A reinforcement-learning 

algorithm, in contrast, predicted which patient characteristics and dosing decisions that 

resulted in the lowest risk of failure to be discharged on the medication. Future studies could 

apply this algorithm prospectively to examine improvement over standard approaches.  
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Introduction 

Decision analysis is an emerging field that uses outcomes from different decision approaches 

to guide future decision-making1.  In many cases, medical decisions can be formulated as 

Markov-decision processes (MDPs), in which a given state of conditions can predict future 

states based on a model for decision-making2.  Reinforcement learning, a subset of machine 

learning (ML), expands on MDPs by embedding reward-based feedback into decision 

outcomes so that an optimal decision approach, termed the policy, can be identified3. In recent 

years, this approach has achieved supra-human success rates in video and board games, 

among other applications4, 5. 

 

Reinforcement learning is one of three main categories of ML gaining popularity in medical 

applications, the other two being supervised and unsupervised learning6. Supervised 

applications use an example dataset to learn general rules (an algorithm) about the 

relationship of predictor variables (termed “features”) to an outcome of interest (termed a 

“label”). These general rules can then be applied to a new dataset to predict outcomes. 

Unsupervised learning, in contrast, does not use labelled outcomes and, instead, discovers 

relationships between different features on its own. The discovery process often restructures 

data into new classes, “shrinking” and consolidating features for more nimble use in 

supervised applications. In many applications, these methods complement each other, but 

whereas supervised and unsupervised methods lead to descriptive analyses, feedback from 

outcomes allows reinforcement learning to produce prescriptive analyses7. For this reason, 

reinforcement learning holds great promise as a tool to enrich clinical decisions. Currently, 

however, there are relatively few published applications in healthcare8, 9.  

 

Dofetilide is a common antiarrhythmic medication primarily used to treat atrial fibrillation. It is 

one of the few anti-arrhythmic medications other than amiodarone that has been approved for 

use in patients with coronary artery disease or cardiomyopathy. A known effect of the drug, 

however, is QT prolongation. Due to the risk of resultant fatal arrhythmias, the FDA has 

mandated a 3-day monitoring period for drug initiation10.  There is a recommended algorithm 

for making dose adjustments during initiation, but these adjustments are still made at the 

treating provider’s discretion10, 11. In this investigation, we examine the patterns of dofetilide 

dose adjustment and the role of machine learning to develop algorithms aimed at successful 

initiation of the medication.  
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Methods 

Study population 

The Antiarrhythmic Drug Genetic (AADGEN) study is a multi-center collaboration that includes 

investigators from the Massachusetts General Hospital (MGH, Boston, MA), Beth Israel 

Deaconess Medical Center (Boston, MA), the Boston-area Veterans Affairs Medical Center 

(West  Roxbury, MA), the Cleveland Clinic (Cleveland, OH), the Mayo Clinic (Rochester, MN), 

and the University of Colorado Hospital (Aurora, CO).  Patients were enrolled from July 7, 

2014 to September 19, 2018, with the inclusion criterion being any patient admitted to in-

patient telemetry for monitoring of initiation of dofetilide.  The exclusion criteria included failure 

to provide written informed consent and failure to obtain a pre-dofetilide ECG.  Massachusetts 

General Hospital served as the study’s coordinating center for this investigation.  Internal 

Review Board approval was obtained at all enrolling centers.  This study is a sub-study of a 

larger investigation into the genetic predictors of cardiac repolarization and drug toxicity of 

antiarrhythmic medications (Clinicaltrials.gov identifier: NCT02439658).   

 

Demographic and clinical information were obtained on all study participants that included age, 

height, weight, body mass index (BMI), medications, past medical and cardiac history, 

including history of pacemaker/defibrillator, atrial fibrillation, ventricular fibrillation, left 

ventricular function from transthoracic echocardiogram, recent lab values including creatinine, 

potassium, and magnesium, and electrocardiograms that include underlying rhythm, rate, and 

relevant intervals (PR, QRS, QT). QT interval was corrected for heart rate using Fridericia’s 

formula12. The timing of electrical cardioversion was also recorded.   

 

The outcome of interest was successful discharge on dofetilide at any dose after at least 5 

administrations.  Data for all participants was collected retrospectively, after completion of the 

hospitalization; no clinical adjustments or changes were made by treating physicians as part of 

this investigation.  Data was maintained in a centralized RedCap database managed by the 

study coordinating center at MGH.   

 

Data Processing 
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Prior to analysis, quality control was performed by study investigators, with manual review of 

outlier values for ECG parameters (i.e., QTc > 600 ms) and for discordant data values (e.g., 

PR interval on an ECG with rhythm listed as ‘atrial fibrillation’).  When resolution or validation 

was not possible, values were replaced as missing.  Summary and descriptive statistics are 

based on analysis of non-missing data; only 4.2% of the total dataset was missing.  Due to the 

restrictions of machine-learning algorithms for complete datasets, missing values needed to be 

imputed with the median for numerical and integer values and most common for categorical.  

Categorical variables were also coded using ‘one-hot’ encoding and numerical variables were 

rescaled using min-max rescaling.  Dose adjustments were only included if they were a 

decrease in dose from a higher dose, as FDA guidelines for dofetilide initiation are for starting 

at the highest dose based on kidney function, and adjusting downward based on the QT 

changes on ECG; as such, any dose increase during the hospitalization was off-label.  Based 

on this criterion, 14 patients who underwent dose increases were excluded.  For all model 

evaluations, data was split into training  (80% of total data) and testing sets (20% of total data) 

at the patient level.   

 

Unsupervised Analysis 

For unsupervised analysis, we first performed principal component analysis.  Based on these 

plots, we determined that 8 clusters captured > 90% of the variability in the data. We then used 

a K-means approach to create these clusters for use in subsequent reinforcement learning 

analyses.  

 

Supervised Analysis 

Basic stepwise logistic regression was performed for successful initiation of dofetilide using a p 

value for exclusion of 0.05.  Based on the observation that dose adjustments were a significant 

predictor of successful initiation, we used ensemble methods to develop predictive models of 

dose adjustment process.  These models included L1 regularized logistic regression, random 

forest classification, a boosted decision tree classifier, support vector classification (radial 

basis function kernel), and K-nearest neighbors classification with a maximum of 10 neighbors.  

Comparison measures included accuracy, precision and recall scores, F1-score13, 14, and area 

under ROC curve.   

 

Reinforcement Learning 
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We next applied reinforcement learning using the SARSA algorithm (state–action–reward–

state–action) for selecting dose adjustments based on a negative reward for unsuccessful 

initiation15.  We applied two broad approaches to creation of action-value estimates (i.e., Q 

values) 16.  First, we defined 8 states created using K-means clustering from all clinical 

features (Table 4), and performed tabular updates to a Q table based on dynamic 

programming (step-by-step updates). Alternatively, we performed linear function approximation 

for the Q values using linear weights (termed ‘Q learning’17), with updates using stochastic 

gradient descent based on experience15.  The available actions in the Q value estimates 

included ‘continue the same dose’ or ‘decrease the dose’. The reward was -10 for doses 

leading to stopping of the medication (last dose before stopping) and 0 for all other doses.   

 

The SARSA algorithm15 updates a Q table with expected reward values based on state and 

action selected based on the following variation of the Bellman equation15: 

  

Qnew(St, At) = Qold(St, At) + α*[(Rt + γ*Q(St+1, At+1)) - Qold(St, At)] 

 

The Q table was initialized at 0 for all values, with gamma (discount factor) of different values 

ranging from 0.1 to 1.0, and alpha (learning rate) of 0.1.  Of note, a gamma close to 1 puts 

more weight on future states and rewards while a gamma of close to 0 tends to put more 

weight on immediate rewards.  Reinforcement learning algorithms were fitted with the testing 

set (see above) and compared with actual decisions on the held-out test set.  

 

Analysis 

Descriptive statistical analysis, including chi-square for categorical and t-test for continuous 

comparison, as well as univariate logistic regression, was performed using Stata IC, Version 

15.1 (StataCorp, LLC, College Station, TX).  Machine learning, including unsupervised, 

supervised, and reinforcement learning algorithms, were performed using Python 3, running 

scripts on Jupyter notebook (v5.0.0) deployed via Anaconda Navigator, on a MacPro laptop 

computer (High Sierra, v10.13.6).  Primary source of machine learning packages was scikit-

learn (see Supplemental Methods for details).   

 

 

Results 
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The baseline characteristics of the cohort are shown in Table 1.  A total of 356 subjects were 

enrolled, with successful initiation (discharged on dofetilide) in 310 (87.1%) and unsuccessful 

in 44. Use of calcium channel blockers and initial dose of dofetilide were different between 

patients with successful vs. unsuccessful initiation of dofetilide, although none of these p 

values reached statistical significance after Bonferroni adjustment for multiple testing (alpha = 

p/(# of rows in Table 1) = 0.05/24 = 0.002). There were no other differences in baseline 

parameters between patients. 

 

Figure 1 shows representative dosing approaches for dofetilide, as well as timing of 

cardioversions.  The most common dose regimens included subjects with no adjustments 

throughout the 5-6 dose course in order to obtain a steady-state of the medication.  Stepwise 

univariate regression was performed for successful initiation across the course of dofetilide 

initiation, which revealed that dose number, dose amount, dose adjustment, ejection fraction, 

history of heart failure, sinus rhythm, QRS, QTc, presence of a pacemaker, and coronary 

artery disease were predictors of successful discharge on dofetilide at p < 0.05 (Table 2). The 

strongest predictors for successful initiation of dofetilide (i.e., discharge on the medication) 

were starting dose of 500 mcg (OR 5.0, 2.5-10.0, p < 0.001) and dose adjustment during 

initiation (OR 0.19, 0.21-0.31, p < 0.001), which was a negative predictor. Because it had such 

a strong effect, we selected dose adjustment as the target for machine learning approaches. 

 

Unsupervised analysis was performed across 25 predictors, in which we noted that the first 

two principal components (PCs) accounted for 65.0% of the total variance (Figure 2A), with 

over 90% of the total variance explained by the first 8 PCs.  Qualitative assessment of these 

PCs revealed that there was apparent clustering along the first PC into 6 groups, which likely 

represent the dose number (Figure 2B).   

 

None of the supervised analyses resulted in improvement in identification of a medication 

adjustment by providers over a naïve approach (always no adjustment), as shown in Table 3.  

 

After training the model on the training set (80% of data), the accuracy of a tabular 

reinforcement-learning model for predicting actual decisions on the testing set (20%) was 

good, with only 25/410 (6.1%) disagreement noted. Sensitivity analysis using a range of 

learning rates (alpha) and discount rates (gamma) had no impact on the accuracy of 
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prediction; only the absolute Q values changed (not relative values).  The least disagreement 

was observed in the Q table cluster with the smallest (most negative) values for rewards.  

 

A linear reinforcement-learning policy function was able to achieve equal accuracy to tabular 

learning for certain hyper-parameter choices (alpha and gamma). Unlike the tabular learning 

model, however, the linear model was highly labile depending on hyper-parameter choices 

(Supplemental Figure 1).  These models also had unstable weight estimates (See 

Supplemental Table 1) across parameters.   

 

Discussion 

In this investigation of decision-making surrounding dofetilide initiation, we examined several 

approaches for evaluating dose adjustment decisions.  It is important to note that while 

dofetilide initiation is performed in the hospital primarily for safety reasons (adverse event 

monitoring), the goal of these admissions is successful initiation of the drug (discharge on 

dofetilide) while minimizing the risk of subsequent TdP or potentially fatal ventricular 

arrhythmias11. With this in mind, there are important insights to be drawn from this novel 

application of advanced analytics and machine learning to decision-making surrounding 

dofetilide initiation.   

 

First, it was evident from several models that making dose adjustments, particularly at later 

time points, was associated with less probability of successful initiation of the medication.  This 

association was evident in both simple logistic regression models, as well as reinforcement-

learning models in which the cluster with the most negative reward (#5) was composed of 

doses at a later state in the hospitalization (dose 4-5 vs. 1-2), and of smaller size.  This finding 

suggests that making a decision to lower the dose of dofetilide in a patient who has already 

received 3-4 doses and is already on a lower dose (250 or 125mcg) is very unlikely to result in 

successful initiation.  While further work is needed to validate these models prospectively, this 

finding could have an important impact on reducing healthcare costs. It would save time and 

money to stop the initiation process early in a patient in whom the probability of successful 

initiation is unlikely, rather than staying another day or night in the hospital, or perhaps start at 

a lower dose in patients at higher risk of an unsuccessful initiation.    
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Second, we found that none of the supervised learning algorithms were able to improve 

prediction about providers’ dose decisions based on the clinical information available.  In other 

words, we were unable to ‘mimic’ the decisions of providers using a statistical model when it 

came to making dose adjustments of dofetilide.  This finding suggests that future efforts based 

on a gold standard of human decision-making may not lead to the desired outcomes of 

creating a computer algorithm to replace humans in the process, and that focusing efforts on 

approaches using reinforcement learning may be a better option.   

 

The key difference of reinforcement learning is that it allows the computer to ‘learn’ its own 

approach to obtain a given reward, rather than relying on human behavior as the gold 

standard.  This finding has already been noted in creation of algorithms to win at the board 

game Go4, 18, in which the AlphaGo algorithm based on supervised learning of human 

decisions18 was bested by the AlphaGoZero algorithm, which learned entirely on its own, 

without attempting to replicate human decisions4.  Reinforcement learning is only in its infancy 

in applications outside of computer games5, but there is clearly an opportunity for this 

approach to greatly improve on clinical decision-making.  A number of investigators have 

recently used this approach to enhance decision-making in clinical care19, including in the 

intensive care unit20.  

 

Finally, our study also highlighted a key limitation in applications of machine learning in 

healthcare data, in which the practical process of data and technology integration limits the 

ability to build better learning systems.  This study was entirely observational, which is in great 

contrast with most other reinforcement learning applications in which the learning agent is able 

to practice and improve its policy based on interaction with the environment.  A key principle in 

reinforcement learning is exploration15, in which better policies can be found by randomly 

attempting a new action that has been found to already provide the best reward.  Without the 

ability to act on behalf of the policies learned, we were unable to determine if these actions are 

truly the optimal ones, or if there are conditions in which a decision to change the dose 

(perhaps at an earlier time in the loading course) could result in a greater likelihood of 

successful initiation.  Whether this limitation was also responsible for the lack of convergence 

we observed using linear function approximation, which has been described in other 

circumstances21, 22, remains to be determined.  Only through future prospective applications 
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can we verify that the approach applied in this study is the best method to maximize likelihood 

of successful dofetilide initiation.   

 

Limitations 

There were a number of key limitations in this study.  First, we did not examine long-term 

outcomes, including recurrence of AF or drug toxicity, including torsade de pointes.  This latter 

limitation is of obvious importance, as the ultimate goal of the 3-day monitoring period is to 

prevent toxicity11; however, there are benefits to identification of factors and approaches to 

maximize safe initiation of dofetilide as we identified, which can lead to improved patient 

satisfaction and cost savings.  A second limitation was that our investigation was limited to the 

modest number of covariates collected on patients undergoing dofetilide initiation.  To truly 

capture the benefits of many methods of machine learning, particularly deep learning, we 

would need to have a much larger number of patients and variables to include in the model.  In 

the future, through more efficient data collection and storage, especially of high-density data 

such as telemetry information, we will be able to further leverage these ‘big data’ methods to 

improve healthcare decision-making23, 24.  Finally, as discussed above, we were unable to 

prospectively apply and further improve the policy models developed from the observations in 

this data.  Future implementations of these models within a reinforcement learning framework 

will be needed to determine if this approach is optimal, or if there are better algorithms for 

ensuring safe and efficient initiation of dofetilide and other medications.   

 

In conclusion, we found that although most patients admitted for initiation of dofetilide are able 

to successfully complete the loading protocol (i.e., discharged on dofetilide), reinforcement 

learning approaches to model dose adjustments offer promise to optimize decision making.  

Future investigations are needed to explore this emerging approach to machine learning and 

automated clinical decision support.  
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Table 1. Baseline demographics 
 

  Successful 
initiation 
 (N = 310) 

Unsuccessful 
initiation  
(N = 44) 

P value 

Age (Mean ± SD)  66.6 ± 10.7 67.7 ± 9.7 0.53 
Female Sex (%)  91 (29.4%) 18 (40.9%) 0.12 
BMI (Mean ± SD)  30.2 ± 7.2 29.6 ± 7.5 0.57 
History of:     
 AF 297 (95.8%) 44 (100%) 0.17 

 VT 12 (3.9%) 0 (0%) 0.18 
 PPM 20 (6.5%) 3 (6.8%) 0.93 
 ICD 20 (6.5%) 3 (6.8%) 0.93 
 HTN 142 (45.8%) 18 (40.9%) 0.54 
 DM 38 (12.2%) 3 (6.8%) 0.29 
 CAD 68 (21.9%) 7 (15.9%) 0.36 
 CHF 35 (11.3%) 8 (18.2%) 0.19 
LV EF (%)  54.8 ± 12.3 50.9 ± 16.2 0.10 
Medications:     
 Beta blockers 117 (57.1%) 27 (61.4%) 0.59 
 Calcium channel 

blockers 
67 (21.6%) 17 (38.6%) 0.01 

Baseline lab values:     
 Potassium 4.3 ± 0.47 4.4 ± 0.36 0.28 
 Magnesium 2.0 ± 0.26 2.0 ± 0.19 0.98 
 Creatinine 1.01 ± 0.25 1.04 ± 0.28 0.46 
Baseline ECG:     
 Sinus Rhythm (%) 114 (37.8%) 12 (27.3%) 0.18 
 HR 80.8 ± 20.5 86.3 ± 24.0 0.11 
 PR 179.2 ± 40.8 190.2 ± 56.9 0.39 
 QRS 102.4 ± 25.8 98.8 ± 25.1 0.38 
 QT 428.2 ± 50.4 436.5 ± 59.4 0.33 
 QTc 445.0 ± 39.2 451.9 ± 39.2 0.25 
Initial Dose     
 500 mcg 227 (73.5%) 25 (56.8%) 0.02 
 250 mcg 74 (24.0%) 16 (36.4%) - 
 125 mcg 4 (1.3%) 3 (6.8%) - 

Note: Dose excludes 4 patients with different starting dose than listed.  Chi-square for dose based 
on distribution of all doses.  None of the values reached statistical significance based on p < 0.002 
(Bonferroni correction).   
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Table 2. Association with successful loading of dofetilide 
 OR CI p value 
500mcg 
dose* 

5.0 2.5 – 10.0 <0.001 

250 mcg 
dose* 

1.5 0.8 – 2.9 0.21 

Dose number 1.3 1.1 – 1.5 0.001 
Dose 
adjustment 

0.19 0.12 – 0.31 < 0.001 

Sinus rhythm 2.8 1.8 – 4.2 < 0.001 
PPM 3.3 1.4 – 7.4 0.004 
LVEF 1.03 1.01 – 1.05 0.001 
CHF 1.8 1.0 – 3.0 0.04 
QRS 1.02 1.01 – 1.03 0.001 
QTc 0.992 0.987 – 0.997 0.002 
CAD 0.33 0.19 – 0.59 < 0.001 

Univariate logistic regression results for associations with successful loading of dofetilide.  Dose 
number refers to the dose of dofetilide given in the course of loading (i.e., 1-6), dose adjustment is 
any decrease in dose from prior. PPM = Presence of a pacemaker; LVEF = Left ventricular ejection 
fraction (by transthoracic echocardiogram); CHF = Congestive Heart Failure; QRS = QRS interval; 
QTc = Corrected QT interval; CAD = Coronary artery disease. *Comparison is with 125mcg dose.  
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Table 3. Supervised Learning approaches to decision-making 
 Accuracy Precision Score Recall Score F1 Score AUC 

Naïve Classifier 0.93 0.0 0.0 0.0 0.5 

L1 Logistic Regression 0.93 0.0 0.0 0.0 0.5 

Random Forest Classifier 0.93 0.0 0.0 0.0 0.5 

Boosted Decision Tree 0.93 0.5 0.03 0.065 0.52 

SVM with RBF kernel 0.93 0.0 0.0 0.0 0.5 

KNN (k = 1) 0.86 0.14 0.17 0.15 0.54 

KNN (k = 10) 0.93 0.0 0.0 0.0 0.5 

SVM = Support vector machine, RBF = Radial basis function, KNN = K-nearest neighbor 
classification 
  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 27, 2019. ; https://doi.org/10.1101/531285doi: bioRxiv preprint 

https://doi.org/10.1101/531285


 

 

Table 4. Cluster characteristics 
Cluster 1 2 3 4 5 6 7 8 
Number 241 229 255 287 369 251 184 221 

Dose 
number 
(% of 
dose) 

2-125 
(51.9%) 
3-116 
(48.1%) 

4-229 
(100%) 

1- 255 
(100%) 

5-166 
(57.9%) 
6-121 
(42.2%) 

5-167 
(45.3%) 
6-202 
(54.7%) 

3-135 
(53.8%) 
4-116 
(46.2%) 

2-98 
(53.3%) 
3-86 
(46.7%) 
 

1-99 
(44.8%) 
2-122 
(55.2%) 

Dose 
amount 

500mcg-
241 
(100%) 

500mcg-
182 
(82.0%) 
250mcg-
40 
(18.0%) 
 
 

500mcg-
255 
(100%) 

500mcg-
287 
(100%) 

250mcg-
218 
(79.9%) 
125mcg-
55 
(20.1%) 
 

250mcg-
197 
(84.6%) 
125mcg-
36 
(15.5%) 
 

500mcg-
184 
(100%) 

250mcg-
188 
(90.8%) 
125mcg-
19 (9.2%) 
 

Age 
(years) 

62.6 ± 10.5 64.6 ± 10.8 64.6 ± 10.2 64.9 ± 9.8 68.0 ± 10.9 70.1 ± 10.2 67.3 ± 8.3 70.8 ± 10.6 

Female 
Sex 

55 
(22.8%) 

48 
(21.0%) 

64 
(25.1%) 

61 
(21.3%) 

138 
(37.4%) 

113 
(45.0%) 

44 
(23.9%) 

99 
(44.8%) 

Sinus 
Rhythm 

125 
(52.3%) 

158 
(70.5%) 

93 
(37.1%) 

229 
(80.6%) 

284 
(79.8%) 

125 
(51.4%) 

87 
(48.1%) 

86 
(40.4%) 

Heart rate 
(bpm) 

74.7 ± 17.0 68.2 ± 15.4 80.7 ± 20.1 65.9 ± 13.6 70.0 ± 17.6 73.6 ± 18.5 71.9 ± 16.5 78.5 ± 21.0 

QRS 100.0±21.2 103.7±24.1 102.8±24.9 104.3±24.8 100.9±24.0 102.5±30.9 107.5±38.3 103.3±26.5 

QTc 465.1±34.5 469.5±35.1 443.7±35.6 468.6±35.2 477.1±39.0 486.1±42.2 463.1±36.6 466.6±46.7 

Creatinine 0.96±0.21 1.00±0.25 0.98±0.22 0.98±0.23 1.04±0.27 1.07±0.28 0.99±0.22 1.09±0.31 

Beta 
Blocker 

122 
(50.6%) 

113 
(49.3%) 

144 
(56.5%) 

162 
(56.5%) 

217 
(58.8%) 

173 
(68.9%) 

108 
(58.7%) 

138 
(62.4%) 

CCB 39 
(16.2%) 

54 
(23.6%) 

53 
(20.8%) 

59 
(20.6%) 

90 
(24.4%) 

57 
(22.7%) 

59 
(32.1%) 

61 
(27.6%) 

CHF 12 (5.0%) 17 (7.4%) 27 
(10.6%) 

24 (8.4%) 54 
(14.6%) 

47 
(18.7%) 

26 
(14.1%) 

39 
(17.7%) 

CAD 24 
(10.0%) 

31 
(13.5%) 

47 
(18.4%) 

47 
(16.4%) 

88 
(23.9%) 

79 
(31.5%) 

49 
(26.6%) 

58 
(26.2%) 

HTN 0 (0%) 81 
(35.4%) 

106 
(41.6%) 

121 
(42.2%) 

182 
(49.3%) 

139 
(55.4%) 

184 
(100%) 

110 
(49.8%) 

DM 12 (5.0%) 22 (9.6%) 31 
(12.2%) 

35 
(12.2%) 

42 
(11.4%) 

33 
(13.2%) 

41 
(22.3%) 

23 
(10.4%) 

PPM 14 (5.8%) 14 (6.1%) 15 (5.9%) 20 (7.0%) 25 (6.8%) 16 (6.4%) 14 (7.6%) 13 (5.9%) 

ICD 11 (4.6%) 12 (5.2%) 16 (6.3%) 16 (5.6%) 22 (6.0%) 22 (8.8%) 11 (6.0%) 18 (8.1%) 

LVEF 54.6 ± 12.6 54.7 ± 12.3 54.3 ± 13.0 54.4 ± 13.0 54.5 ± 12.1 53.9 ± 13.0 53.6 ± 13.0 54.3 ± 13.1 

 
All values listed at mean ± SD or number (%).  Sinus rhythm = sinus or atrial paced rhythm (not 
atrial fibrillation/flutter); CCB = Calcium channel blocker; CHF = heart failure; CAD = coronary 
artery disease; HTN = hypertension; DM = diabetes mellitus; PPM = pacemaker present; ICD = 
implantable cardioverter-defibrillator present; LVEF = left ventricular ejection fraction based on 
transthoracic echocardiography 
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Table 5. Q table. Expected reward for each action for each cluster.  Based on alpha = 0.05 and 
gamma = 0.2.  Listed is also cluster where clinical decision was different from maximum from Q 
table (total 25). 

Cluster Keep Dose Lower Dose Different choice 
1 0.0 0.0 3 
2 -0.0057 0.0 4 
3 0.0 0.0 3 
4 -0.00002 0.0 2 
5 -0.227 -2.26 1 
6 -0.021 0.0 4 
7 0.0 0.0 3 
8 -0.00015 0.0 5 
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Figure 1. Dose Patterns of Dofetilide.  Includes the most common dose patterns.  Excludes 29 subjects 
with excessive missing or atypical dose regimens (i.e., increases in dose).  Bottom row is subjects with 
incomplete dosing due to lack of initiation of dofetilide. The numbers provided during doses are the 
number of electrical cardioversion procedures performed after that specific dose.   
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Figure 2.  A. Cumulative and per-component variance explained for each sequential principal 
component (PC).  B. Scatter plot of the first two PCs, with dose adjustments labeled in green (other 
in red).   
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Number Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 Dose 6 Total No CV 
150 1 4 11 9 25 125 

52 1 5 4 10 42 

2 1 1 1 

11 3 1 4 7 

14 0 14 

15 1 1 2 13 

11 2 2 9 

3 1 1 2 

3 0 3 

1 0 1 

5 1 1 2 3 

2 1 1 1 

1 0 1 

2 0 2 

1 0 1 

1 0 1 

2 1 1 1 

44 1 5 2 8 36 

500 mcg 250 mcg 125 mcg 

Figure 1. Dose Patterns of Dofetilide. 
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Figure 2A.
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