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Abstract

Transcriptome profiling has been shown really useful in the understanding of the aging 1

process. To date, transcriptomic data is the second most abundant omics data type 2

following genomics. To deconvolute the relationship between transcriptomic changes and 3

aging one needs to conduct an analysis on the comprehensive dataset. At the same time, 4

biological aging clocks constructed for clinical use needs to robustly predict new data 5

without any further retraining. In this paper, we develop a transcriptomic deep-learned 6

age predictor. Deep neural networks (DNN) are trained and tested on more than 6 000 7

blood gene expression samples from 17 datasets. We apply methods based on output 8

derivatives of DNN to rank input genes by their importance in age prediction and reduce 9

the dimensional of the data. We also show that batch effect in transcriptome datasets of 10

healthy humans is indeed significant, but the existing normalization techniques, while 11

removing technical variation quite effectively, also remove age-associated changes. So 12

robust methods of age prediction are needed. 13

Introduction 14

The rates of aging may vary substantially among the different individuals and population 15

groups and are significantly influenced by the environmental and hereditary factors. 16

Multiple attempts have been made to develop the biologically-relevant biomarkers of 17

human aging. 18

However, the biomarkers proposed so far usually focus on monitoring a restricted 19

number of processes known for being directly correlated with the chronological age 20

such as the telomere length-based or DNA methylation. There is a need for the 21

biologically-relevant quantifiable, interpretable and therapeutically-targetable multi- 22

modal biomarkers of aging. Even though these clocks were developed using traditional 23

machine learning approaches as a linear regression with regularization the results suggest 24
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that gradual changes during aging can be tracked using various data types with reasonable 25

accuracy. 26

Previous studies demonstrated age-associated changes in the transcriptome 27

of model organisms [1] and multiple human tissues [2, 3, 4]. In 2015, Peters and 28

colleagues performed the massive analysis of transcriptional profiles of aging and used 29

six blood expression profiles (7,074 samples in total) to build a predictor of age with 30

leaving a dataset out as validation [3]. Using elastic-net regularized linear regression, 31

their approach achieved an average MAE of 7.8 years. In the analysis, 1,497 genes were 32

identified as age-related. In 2018, Mamoshina et al proposed a panel of transcriptomic 33

age predictors and the approach of comparing different methods of selecting age-related 34

genes [4]. A deep neural network was the most accurate age predictor showing the 35

accuracy of 0.91 in terms of Pearson correlation and mean absolute error of 6.14 years. 36

Further validation on the external GTEx dataset showed the accuracy of 0.80 with 37

respect to the actual age bin prediction. Another promising finding was that the list 38

of the features most relevant to age prediction identified by the deep neural network is 39

the closest results to the final consensus ranking produced by other ML age predictors 40

suggesting the superior generalization abilities. 41

However, most the age predictors so far use a limited number of samples from a 42

relatively small cohort of people for independent validation. The impact of the technical 43

variability or so-called batch effect on the age prediction also remains largely unaddressed 44

in the literature. This remains a key challenge in developing of aging biomarkers that 45

can be used in the clinical setting as they should robustly predict the age of previously 46

unseen samples from an independent dataset. 47

In this work, we decided to use deep learning models for predicting age of 48

humans by their gene expression profiles as they demonstrated impressive results on 49

blood biochemistry and cell counts [5, 6, 7], transcriptomics [4], microbiome [8], facial 50

images [9], bone X-ray images [10], brain MRI images [11]. 51

Here we firstly collect a large dataset (6465 samples from 17 datasets) of 52

transcriptomic datasets of healthy and diseased human blood samples profiled using two 53

microarray platforms (Illumina HT12 v3.0 and v4.0). We then identify the technical 54

variability in blood transcriptome and showing that has a stronger impact on expression 55

than disease state or age. We apply several normalization techniques, showing that 56

while some of them are quite effective in removing the batch effect, they also mitigate 57

age-associated changes in the blood transcriptome. 58

Materials and Methods 59

Data 60

Gene expression profiles were collected from the publicly available repository Gene 61

Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/). In total, we analyzed 6465 62

transcriptomic samples, labeled according to the chronological age of the tissue samples’ 63

donors, from 17 datasets (Table 1). 64
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GEO Accession N of samples Tissue N of selected samples
Training
GSE65907 2112 PBMC 2112
GSE56045 1202 Monocytes 1202
GSE33828 881 Whole blood 881
GSE78840 653 Whole blood, Lymphocytes 653
GSE61672 546 Whole blood 126
GSE35846 128 Whole blood 128
GSE63060 326 Whole blood 104
GSE47728 228 Whole blood 228
GSE47727 122 Whole blood 122
Total for training 5555
Testing
GSE102008 733 Whole blood 94
GSE107990 671 PBMC 171
GSE63061 388 Whole blood 134
GSE86434 249 Lymphocytes, Whole blood 249
GSE56580 214 Lymphocytes 214
GSE94496 208 Monocytes 208
GSE74629 50 Whole blood 14
GSE75025 24 PBMC 24
Total for testing 910

Total 6465

Table 1. List of datasets analysed with number of samples. Nine expression datasets
were selected as training set and eight were used as external testing set. Only healthy
samples were selected

Train and test set design 65

To evaluate the performance of the age predictors robustly, we selected three datasets as 66

external testing sets. We also selected only samples of healthy subjects for the training 67

purposes, for age predictors to fit to age-associated changes in the transcriptome, rather 68

than disease-associated changes. 69

Normalization techniques 70

We compare non-normalized data (raw) to the following commonly used for gene expres- 71

sion normalization methods: 72

1. Normalization by Reference Gene (RefGenNorm) calculated as following: 73

gnormb = log2( gb
mean(rgb) )) 74

where g is the gene to normalize, rg is the reference gene (we choose C1ORF43), 75

b is a some batch (GEO in our case). Reference genes or housekeeping genes should have 76

the constant level of the expression across different tissues and experimental designs, 77

diseases. Here we explored the Chromosome 1 Open Reading Frame 43 (C1orf43) gene 78

as a reference one (Figure 1), that has been shown to have the most stable expression in 79

different human tissue and experiments[12]. 80
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Figure 1. Distribution of the Chromosome 1 Open Reading Frame 43 (C1orf43) gene
expression across datasets.

2. Cross-platform normalization method (XPN) proposed by Shabalin et al[13]. 81

3. Quantile normalization (QN) [14] 82

4. Distribution Transformation (DisTran) [15] 83

In contrast to RefGenNorm method, which is independent of other datasets, 84

the latter three methods require the reference dataset for data transformation. Here we 85

have selected GSE65907 as the most comprehensive one. We used R implementation of 86

XPN, QN and DisTran normalizations developed by Rudy et al [16]. 87

Despite applying normalization provided above, there are a lot of outliers left in 88

the normalized data. To handle it we used the standard technique for outliers detection 89

and exclusion called three-sigma rule [17]. We adapted this rule for our large dimensional 90

data (13454 genes) and classified sample as an outlier if it did not satisfy the three-sigma 91

rule over more than 99% of genes within each of four presented tissues. Without such 92

an adaptation we would lose more than half of the data. 93

Regression model implementation 94

We adapted a deep feed-forward neural network with a weighted layer providing a way to 95

rank the input features and ElasticNet-based regularization to this weighted layer provid- 96

ing the ability to control sparsity/smoothness of weights[18]. We build and train models 97

using Keras (https://keras.io) library with Tensorflow (https://www.tensorflow.org/) 98

backend. Grid search over a space of model parameters with five-fold cross-validation 99
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was used in order to find the best performing neural network architecture. The best 100

model was the one trained on 1000 selected genes (by deep feature selection method) and 101

has four layers with accordingly 800, 700, 600 and 500 neurons, Exponential Linear Unit 102

(ELU)[19] activation function after each hidden layer. Also, we used Adam[20] algorithm 103

for loss function optimization. For the purposes of regularization, we used dropout[21] 104

with 15% probability after each layer and combined ridge and lasso regularization with 105

10e−6 coefficients as additional loss term. 106

All experiments were conducted using an NVIDIA 1080Ti (Pascal) graphics 107

processing unit. 108

Model evaluation 109

We used the following metrics to evaluate the accuracy of age prediction models: 110

1. Mean absolute error: MAE = 1
N

∑N
i=1 (ŷi − yi) 111

where ŷi is a predicted age of a sample i, yi is the chronological age value of 112

a sample i, and N is a number of samples. MAE demonstrates average disagreement 113

between the chronological age and the predicted age. MAE of 0 means that the predicted 114

age and actual age are in a perfect agreement. 115

2. Coefficient of determination: 116

R2 = 1−
∑N

i=1
(ŷi−yi)

2∑N

i=1
(yi−ȳ)2

117

where yi is the chronological age value of a sample i, ŷi is the predicted age 118

value of a sample i, and ȳ the mean chronological age in the distribution. R2 shows the 119

percentage of variance explained by the regression between predicted and actual age. R2
120

of 1 demonstrates that all of the variance in the actual age explained by the prediction. 121

Results 122

To examine associations between transcriptional changes in blood and chronological 123

age, we collected and analyzed 17 datasets. We collected 6465 samples of 13454 gene 124

expression values. The mean age of the collected samples was 61 years (Figure 2). 125

To distinguish batch effect from biological differences between different samples, 126

we performed t-Distributed Stochastic Neighbor Embedding (t-SNE) [22] and visualized 127

first two components of the manifold (Figure 3). We compare several methods of adjusting 128

for batch effect. Compared to other methods, the XPN algorithm demonstrated great 129

improvement in batch effect removal, improving the entanglement of datasets (Figure 3). 130

Age prediction results are summarized in Table 2 and showed in Figure 4. 131

Baseline accuracy, where all samples are predicted as the median for distribution, is 132

8.14 years in terms of MAE and R2 of 0.50 on the testing set and 9.07 MAE and 133

R2 of 0.12 on the training set. DisTran method achieved the highest accuracy on 134

cross-validation compared to other methods (MAE of 5.05 years and R2 of 0.70) and 135

the accuracy lower than the baseline on testing set (MAE of 9.29 and R2 of 0.44). 136

Quantile normalization showed relatively good accuracy on cross-validation (MAE of 137

5.41 years and R2 of 0.66), which was reduced, however, on the testing set to accuracy 138
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Figure 2. Age distribution of samples in the training and testing sets.

compared to baseline accuracy. At the same time, RefGenNorm normalization displayed 139

the greater improvement compared to baseline, with MAE of 7.98 years and R2 of 140

0.61. It is interesting because only RefGenNorm transformation of the raw data is truly 141

independent of other datasets. While XPN algorithm demonstrated the best results 142

in mitigation of batch effect, the model trained on this data only achieved 15.68 years 143

MAE and R2 < 0 on the testing set (model fits worse than a median). 144

Data MAE (years) ↓ R2 ↑

Baseline
9.07 0.12
8.14 0.50

Raw
5.42 0.65
9.15 0.52

RefGenNorm
5.99 0.58
7.98 0.61

XPN
5.77 0.61
15.68 <0.00

QN
5.41 0.66
8.19 0.55

DisTran
5.05 0.70
9.29 0.44

Table 2. The performance of models trained on the five data before (Raw) and after
cross-dataset normalization (RefGenNorm, XPN, QN, DisTran, See Methods for details).

We compared the batch effect for the top 10, 50, 100, 500 and 1000 the most 145

important genes for the age prediction identified by the model (Figure 5). Interestingly, 146

top-ranked genes (up to 20) are not related to batch, suggesting that DNNs still capture 147

genes that are strongly related to age rather than batch effect. It is critical because age 148
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Figure 3. Visualization of presence of batch effect in raw and normalized datasets.
RAW is for raw data, DIST is for data normalized with Distribution Transformation.
REF is for normalization by Reference Gene. XPN is for cross-platform normalization
method proposed by Shabalin et al[13]. QN is for quantile normalization.

distributions of different datasets are indeed different and could bring certain bias. 149

Discussion 150

In this article, we illustrated the size of the batch effect in 17 publicly available gene 151

expression datasets of healthy human blood. We compared several standard normalization 152

methods with non-transformed data, showing that normalization by reference gene 153

returning the best results in terms of accuracy of age prediction. We also showed that 154

while some methods are removing batch effect significantly, also removing age-related 155

changes. Given the magnitude of batch effect in transcriptomic datasets and that, 156

cross-validation cannot replace independent-data validation for transcriptomic aging 157

biomarkers. 158

Effective batch-effect removal techniques remains a key challenge for transcrip- 159

tomic aging markers. 160
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Figure 4. Actual vs. predicted age plots on cross-validation and testing sets before and
after normalization. RAW is for raw data, DIST is for data normalized with Distribution
Transformation. REF is for normalization by Reference Gene. XPN is for cross-platform
normalization method proposed by Shabalin et al[13]. QN is for quantile normalization.
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