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1 Association between LD score and confounding

To simplify the presentation we only consider the LD score as defined in LDSC, and not the weighted

version used by SumHer, although similar issues do arise for SumHer. We assume without loss of

generality that X is orthonormal with < n columns, and Z is standardised. Let Z = XB + E. Then

Cor(Z) = Cov(Z) = Cov(XB + E) = B′Cov(X)B + Cov(E) = B′B + Cov(E), (1)

Cov(Zj,Xβ) = Cov(XBj,Xβ) = B′jCov(X)β = B′jβ. (2)

Hence (B′jβ)2 = aj and we will write B′jβ =
√
aj which can be positive or negative. Now decompose

Bj into a multiple of β plus a vector ε̂j that is orthogonal to β. Then the coefficient of β is

β′Bj/β
′β =

√
aj/β

′β. Substituting (1) into the LD score expression, we obtain∑
i

r2ij =
∑
i

Cor(Z)2ij =
∑
i

(B′iBj + Cov(E)ij)
2 =

∑
i

((β
√
ai/β

′β + ε̂i)
′(β
√
aj/β

′β + ε̂j) + Cov(E)ij)
2

=
∑
i

(
√
aiaj/β

′β + ε̂′iε̂j + Cov(E)ij)
2

=
aj

(β′β)2

∑
i

ai + 2

√
aj

β′β

∑
i

√
ai(ε̂

′
iε̂j + Cov(E)ij) +

∑
i

(ε̂′iε̂j + Cov(E)ij)
2. (3)

The middle line above uses the orthogonality (by definition) of β and εj. As Eq. 1 in the main text

does not accommodate dependence between aj and
∑

i r
2
ij, resulting estimates of h2SNP are in general
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biased. As
√
ai, and ε̂′iε̂j + Cov(E)ij can be either positive or negative, the sum associated with

√
aj

will tend to cancel so that LD score is almost always positively correlated with aj, which in LDSC

will inflate estimates of h2SNP. As
∑

i ai =
∑

i Cov(Zi,Xβ)2, the magnitude of inflation increases

with the square correlations between the genotypes Z and the ignored confounding effect Xβ as well

as with the proportion of phenotypic variation attributed to the confounding effect.

To aid intuition about this effect, consider the widespread and successful use of principal compo-

nents of SNP genotypes to adjust for confounding due to population structure. In order to maximise

variation explained, the first principal component usually has high loadings from sets of SNPs in high

LD and it usually captures a large component of confounding, supporting our claim of an association

between LD and confounding. If the stratification is due to ignored sub-populations, SNPs with

greater allele frequency differences between sub-populations will have greater induced LD, so that

higher LD score will be associated with the SNPs more predictive of sub-population membership.

To illustrate the impact of the LD/confounding relationship on estimation of h2SNP, we extracted

the confounding effects Xβ from our simulations, and treated their standardised values as the phe-

notype in a GWAS analysis. The resulting estimate of h2SNP was multiplied by 0.1 to have the same

scale as the confounding component in a C1 phenotype. The positive relationship between LD and

confounding generates positive estimates of h2SNP (Figure S10), although these estimates tend to be

lower than the observed inflation in h2SNP estimates in the original analyses. This is consistent with

the expected cross-product of the confounding effect test statistic and confounding-free phenotype

test statistic also showing a positive relationship with LD score.

2 Approximate expectations of association statistics

We restate our general phenotype model

y = 1µ+ Xβ + Zα+ ε, α ∼ N (0,Σ), ε ∼ N (0, σ2
eI), (4)

here making no distributional assumption for β and assuming that columns of X are standardised.

2.1 Single-SNP analysis with no covariates fitted and Z known

In single-SNP regression of a quantitative phenotype,

T 2
j =

(y − ȳ1)′Zj(Z
′
jZj)

−1Z′j(y − ȳ1)

(y − ȳ1)′(I− Zj(Z′jZj)−1Z′j)(y − ȳ1)/(n−2)
. (5)
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Following [1], we consider the numerator and denominator of (5) separately. Some notation: J = 11′

is a matrix of ones, so that J2 = nJ, and Tr denotes the trace of a matrix. In particular if a is a

vector, Tr(aa′) = a′a. We require

E[(y − ȳ1))(y − ȳ1)′] = (I− J/n)E[yy′](I− J/n)′

= (I− J/n)(ZΣZ′ + σ2
eI + Xββ′X′)(I− J/n)′

= ZΣZ′ + σ2
e(I− 2J/n+ JJ/n2) + Xββ′X′ (6)

= ZΣZ′ + σ2
e(I− J/n) + Xββ′X′ (7)

with the final two equalities following from the standardisation of Z, which implies Z′J = 0m×n and

standardisation of X implying X′J = 0p×n. Using (7), the expected value of the numerator of (5),

which following ANOVA conventions we call SSRj, is

E[SSRj|Z,X] = E[(y − ȳ1)′Zj(Z
′
jZj)

−1Z′j(y − ȳ1)]

= Tr(Zj(Z
′
jZj)

−1Z′jE[(y − ȳ1))(y − ȳ1)′])

= Tr(Zj(Z
′
jZj)

−1Z′j{ZΣZ′ + σ2
e(In−J/n) + Xββ′X′})

= Tr(Zj(Z
′
jZj)

−1Z′j{ZΣZ′ + σ2
eIn + Xββ′X′})

= Tr((Z′jZj)
−1Z′jZΣZ′Zj + σ2

e(Z
′
jZj)

−1(Z′jZj) + (Z′jZj)
−1Z′jXββ

′X′Zj})

= (Z′jZΣZ′Zj + Z′jXββ
′X′Zj)/(n−1) + σ2

e . (8)

Note that Z′jZ = (n−1)Ĉor(Zj,Z), and if X is standardised, then Z′jX = (n−1)Ĉor(Zj,X). Since

Σ is diagonal, we can write

E[SSRj|Z,X] = (n−1)

{ m∑
i=1

r̂2ijσ
2
i +

( p∑
k=1

Ĉor(Zj,Xk)βk

)2}
+ σ2

e

= σ2
e + (n−1)σ2

j + (n−1)
∑
i 6=j

r̂2ijσ
2
i + (n−1)

( p∑
k=1

Ĉor(Zj,Xk)βk

)2

(9)

where r̂ij = Ĉor(Zi,Zj). Write SSEj for n−2 times the denominator of (5). Then

E[SSEj|Z,X] = E[(y − ȳ1)′(I− Zj(Z
′
jZj)

−1Z′j)(y − ȳ1)]

= E[(y − ȳ1)′(y − ȳ1)]− E[SSR|Z,X]

= Tr(E[(y − ȳ1)y − ȳ1)′])− E[SSR|Z,X]

= Tr(ZΣZ′ + σ2
e(I− J/n) + Xββ′X′)− E[SSRj|Z,X]
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= Tr(Z′ZΣ) + (n−1)σ2
e + Tr(β′X′Xβ)− E[SSRj|Z,X]

= (n−1)

{ m∑
i=1

σ2
j + σ2

e + β′V̂ar[X]β

}
− σ2

e − (n−1)

{ m∑
i=1

r̂2ijσ
2
i −

( p∑
k=1

Ĉor(Zj,Xk)βk

)2}

= (n−2)σ2
e + (n−1)

{∑
i 6=j

(1−r̂2ij)σ2
i +

p∑
k=1

p∑
l=1

(V̂ar[X]kl−Ĉor(Zj,Xk)Ĉor(Zj,Xl))βkβl

}
(10)

2.2 Single-SNP analysis with no covariates fitted and Z unknown

The reported results from a GWAS typically do not include the sample SNP correlation matrix,

which is required for the expectations in section 2.1. Normally, it is replaced by an estimate from

a reference panel. Rather than use r̂2ij directly, [1] used a transformation to reduce bias: r2ij =

((n−1)r̂2ij−1)/(n−2). Substituting into (9) for SNP-SNP and SNP-covariate correlations, we obtain

E[SSRj|X] = σ2
e + (n−1)σ2

j + (n−1)
∑
i 6=j

{
(n−2)r2ij
n−1

+
1

n−1

}
σ2
j + (n−1)

( p∑
k=1

Ĉor(Zj,Xk)βk

)2

= σ2
e +

m∑
i=1

σ2
j + (n−2)σ2

j + (n−2)
∑
i 6=j

r2ijσ
2
i + (n−1)σ2

c Ĉor(Zj,Xβ)2

= σ2
e +

m∑
i=1

σ2
j + (n−2)σ2

j + (n−2)
∑
i 6=j

r2ijσ
2
i + (n−1)σ2

c

{
(n−2)Cor(Zj,Xβ)2

n−1
+

1

n−1

}

= σ2
y + σ2

c + (n−2)σ2
j + (n−2)

∑
i 6=j

r2ijσ
2
i + (n−2)

( p∑
k=1

Cor(Zj,Xk)βk

)2

. (11)

For large n,

E[SSRj|X] ≈ σ2
y + σ2

c + nσ2
j + n

∑
i 6=j

r2ijσ
2
i + n

p∑
k=1

p∑
l=1

Cor(Zj,Xk)Cor(Zj,Xl)βkβl. (12)

E[SSEj|X] = E[E[SSEj|Z,X]] = E[E[SST |Z,X]]− E[E[SSRj|Z,X]]

= (n−2)

[
σ2
y + σ2

c − σ2
j −

∑
i 6=j

r2ijσ
2
αi
−
( p∑

k=1

Cor(Zj,Xk)βk

)2
]

(13)

= (n−2)cj(σ
2
y + σ2

c ), (14)

where cj = 1−
∑

i r
2
ijh

2
i,b − (

∑p
k=1 Cor(Zj,Xk)βk)

2/(σ2
y + σ2

c ).
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2.3 Single-SNP analysis with covariates fitted and Z known

The sum of squares required to determine expectations when covariates are fitted corresponds to

quantities required for a partial F test comparing the fit of the nested models:

y = 1µ+ Xβ + ε (15)

y = 1µ+ Xβ + Zjγj + ε, (16)

where β, γj are fixed and ε ∼ N (0, σ2
eI). We use subscripts 1 and 2 to denote models (15) and (16).

E[SSRj,1|Z,X] = E[(y − ȳ1)′X(X′X)−1X′(y − ȳ1)]

= Tr(X(X′X)−1X′E[(y − ȳ1))(y − ȳ1)′])

= Tr(X(X′X)−1X′{ZΣZ′ + σ2
eIn −

σ2
e

n
J + Xββ′X′})

= Tr(X(X′X)−1X′{ZΣZ′ + σ2
eIn + Xββ′X′})

= Tr((X′X)−1X′ZΣZ′X + σ2
e(X

′X)−1X′X + (X′X)−1X′Xββ′X′X})

= Tr((X′X)−1X′ZΣZ′X) + pσ2
e + β′X′Xβ. (17)

E[SSRj,2|Z,X] = E

[
(y − ȳ1)′

(
X Zj

)(X′X X′Zj

Z′jX Z′jZj

)−1(
X′

Z′j

)
(y − ȳ1)

]

= Tr

((
X′X X′Zj

Z′jX Z′jZj

)−1(
X′

Z′j

)
E[(y − ȳ1))(y − ȳ1)′]

(
X Zj

))

= Tr

((
X′X X′Zj

Z′jX Z′jZj

)−1(
X′

Z′j

)
{ZΣZ′ + σ2

eIn + Xββ′X′}
(
X Zj

))

= Tr

((
X′X X′Zj

Z′jX Z′jZj

)−1(
X′ZΣZ′X X′ZΣZ′Zj

Z′jZΣZ′X Z′jZΣZ′Zj

))
+ (p+ 1)σ2

e

+ Tr

((
X′X X′Zj

Z′jX Z′jZj

)−1(
X′Xββ′X′X X′Xββ′X′Zj

Z′jXββ
′X′X Z′jXββ

′X′Zj

))
. (18)

To simplify, we expand the inverse in (18) using the block inversion formula, obtaining(
X′X X′Zj

Z′jX Z′jZj

)−1
=

(
(X′X)−1 + (X′X)−1X′ZjB

−1
j Z′jX(X′X)−1 −(X′X)−1X′ZjB

−1
j

−B−1j Z′jX(X′X)−1 B−1j

)
, (19)
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where Bj = Z′j(I −X(X′X)−1X′)Zj. Substituting (19) into (18) and noting that only the diagonal

blocks of (19) are of interest, we find for the blocks associated with ZΣZ′,

(
(X′X)−1 + (X′X)−1X′ZjB

−1
j Z′jX(X′X)−1 −(X′X)−1X′ZjB

−1
j

)(X′ZΣZ′X

Z′jZΣZ′X

)
= (X′X)−1X′ZΣZ′X− (X′X)−1X′ZjB

−1
j Z′j(I−X(X′X)−1X′)ZΣZ′X (20)(

−B−1j Z′jX(X′X)−1 B−1j

)(X′ZΣZ′Zj

Z′jZΣZ′Zj

)
= B−1j Z′j(I−X(X′X)−1X′)ZΣZ′Zj. (21)

For the blocks associated with Xββ′X′, we get

(
(X′X)−1 + (X′X)−1X′ZjB

−1
j Z′jX(X′X)−1 −(X′X)−1X′ZjB

−1
j

)(X′Xββ′X′X

Z′jXββ
′X′X

)
= ββ′X′X + (X′X)−1X′ZjB

−1
j Z′jXββ

′X′X− (X′X)−1X′ZjB
−1
j Z′jXββ

′X′X = ββ′X′X(22)(
−B−1j Z′jX(X′X)−1 B−1j

)(X′Xββ′X′Zj

Z′jXββ
′X′Zj

)
= −B−1j Z′jXββ

′X′Zj + B−1j Z′jXββ
′X′Zj = 0(23)

Substituting (20)-(23) into (18), we obtain

E[SSRj,2|Z,X] = Tr((X′X)−1X′ZΣZ′X− (X′X)−1X′ZjB
−1
j Z′j(I−X(X′X)−1X′)ZΣZ′X)

+ Tr(B−1j Z′j(I−X(X′X)−1X′)ZΣZ′Zj) + (p+ 1)σ2
e + Tr(ββ′X′X)

= Tr((X′X)−1X′ZΣZ′X)− Tr(X(X′X)−1X′ZjB
−1
j Z′j(I−X(X′X)−1X′)ZΣZ′)

+ Tr(ZjB
−1
j Z′j(I−X(X′X)−1X′)ZΣZ′) + (p+ 1)σ2

e + β′X′Xβ

= Tr((X′X)−1X′ZΣZ′X) + Tr((I−X(X′X)−1X′)ZjB
−1
j Z′j(I−X(X′X)−1X′)ZΣZ′)

+ (p+ 1)σ2
e + β′X′Xβ. (24)

The difference in regression sum of squares between model 1 (15) and model 2 (16) is

E[SSRj,2 − SSRj,1|Z,X] = Tr((I−X(X′X)−1X′)ZjB
−1
j Z′j(I−X(X′X)−1X′)ZΣZ′) + (p+ 1)σ2

e − pσ2
e

+ Tr((X′X)−1X′ZΣZ′X)− Tr((X′X)−1X′ZΣZ′X) + β′X′Xβ − β′X′Xβ

= σ2
e + Tr((I−X(X′X)−1X′)ZjB

−1
j Z′j(I−X(X′X)−1X′)ZΣZ′), (25)

and the error sum of squares for model 2 is
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E[SSEj,2|Z,X] = E[(y − ȳ1)′(y − ȳ1)]− E[SSRj,2|Z,X]

= Tr(ZΣZ′) + (n−1)σ2
e + Tr(Xββ′X′)− E[SSR2|Z,X]

= Tr(ZΣZ′) + (n−1)σ2
e + β′X′Xβ − Tr(X(X′X)−1X′ZΣZ′)

− Tr((I−X(X′X)−1X′)ZjB
−1
j Z′j(I−X(X′X)−1X′)ZΣZ′)− (p+ 1)σ2

e − β′X′Xβ

= Tr((I−X(X′X)−1X′)ZΣZ′)− Tr((I−X(X′X)−1X′)ZjB
−1
j Z′j(I−X(X′X)−1X′)ZΣZ′)

= (n−p−2)σ2
e (26)

2.4 Expected sums of squares when Z,X unknown and independent

Having marginalised expectations over Z in section 2.2, the next step is to marginalise over X in

order to deal with the case that X is not available. Since there are usually no reference panels of

covariates, stronger assumptions are needed than for Z. One plausible assumption is that X and Z

are independent, so the X includes covariates and not confounders. In addition, and without loss of

generality, we will assume that the columns of X are mutually independent.

2.4.1 Single-SNP analysis with no covariates fitted, Cor(X,Z) = 0.

The expected sum of squares when X is independent of Z and was included in the analysis model

correspond to (12) and (14) with Cor(Zj,Xk) = 0 ∀k. These expectations are,

E[SSRj] = E[E[SSRj|X]] = σ2
y + σ2

c + (n−2)

(
σ2
j +

∑
i 6=j

r2ijσ
2
i

)
(27)

E[SSEj] = E[E[SSEj|X]] = (n−2)

(
σ2
y + σ2

c − σ2
j −

∑
i 6=j

r2ijσ
2
αi

)
= (n−2)cj(σ

2
y + σ2

c ), (28)

where cj = 1−
∑

i r
2
ijh

2
i,b.

2.4.2 Single-SNP analysis with covariates fitted, Cor(X,Z) = 0.

We note that ZΣZ′ = ZjΣjZ
′
j+
∑

i 6=j ZiΣiZ
′
i and substitute the result into the RHS of (25), obtaining

= σ2
e + Tr((I−X(X′X)−1X′)ZjB

−1
j Z′j(I−X(X′X)−1X′)ZΣZ′) (29)

= σ2
e +

∑
i 6=j

Tr((I−X(X′X)−1X′)ZjB
−1
j Z′j(I−X(X′X)−1X′)ZiΣiZ

′
i) + Tr((I−X(X′X)−1X′)ZjΣjZ

′
j)

7



For Tr((I−X(X′X)−1X′)ZjΣjZ
′
j) = Z′j(I−X(X′X)−1X′)ZjΣj = BjΣj, we need

E[Bj] = E[Z′j(I−X(X′X)−1X′)Zj] = n−1− E[(n−1)

p∑
k=1

Ĉor(Zj,Xk)
2] ≈ n−1− (n−1)

p

n−1
= n−1−p,(30)

For the second trace in the expected value, rather than with Zi directly, we use the equivalent

Zi = Zj r̂ij + êij,

where r̂ij is the sample correlation and the estimated coefficient for a simple linear regression of Zi

on Zj, since Z is standardised, and êij is the estimated residual vector from the same regression.

Tr((I−X(X′X)−1X′)ZjB
−1
j Z′j(I−X(X′X)−1X′)ZiΣiZ

′
i)

= (r̂ijZ
′
j + ê′ij)(I−X(X′X)−1X′)ZjB

−1
j Z′j(I−X(X′X)−1X′)(Zj r̂ij + êij)Σi. (31)

After expanding out terms and noting that by definition e′ijZj = 0, (31) corresponds to

r̂2ijBjΣi − 2r̂ij ê
′
ijX(X′X)−1X′ZjΣi + ê′ijX(X′X)−1X′ZjB

−1
j Z′jX(X′X)−1X′êijΣi. (32)

We can write (32) in sample covariance notation, which due to standardisation is equivalent to

correlation except for the case of Ĉov(êij,Xk) = Ĉor(êij,Xk)
√

1−r̂2ij. Thus we have

(n−1−p)r̂2ijσ2
j − 2(n−1)r̂ij

√
1−r̂2ij

p∑
k=1

Ĉor(êij,Xk)Ĉor(Zi,Xk)σ
2
j +

(1−r̂2ij)(n−1)

p∑
k=1

p∑
l=1

p∑
m=1

p∑
o=1

Ĉor(êij,Xk)Ĉor(Zj,Xk)Ĉor(êij,Xl)Ĉor(Zj,Xl)

1−Ĉor(Zj,Xm)Ĉor(Zj,Xo)
σ2
j . (33)

To take the expectation of (33) with respect to X, note if k = l = m = o, we have to scale the square

of a t-distributed random variable (n−2)Ĉor(Zj,Xk)
2/(1−Ĉor(Zj,Xk)

2), giving us an approximate

expectation, (
(n−1−p)r̂2ij + (1−r̂2ij)

np

(n−2)2

)
σ2
j , (34)

which, marginalising over Z and assuming n large, can be simplified:

n−p
n−1

(
(n−2)r2ij + 1

)
σ2
j +

p

n−2

(
1−

(n−2)r2ij
n−1

− 1

n−1

)
σ2
j . (35)
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The resulting approximation for E[SSRj,2 − SSRj,1] is,

σ2
e + (n−1−p)σ2

j +

{
(n−1−p)(n−2)− p

n−1

}∑
i 6=j

r2ijσ
2
j +

(n−1−p) + p

n−1

∑
i 6=j

σ2
j

= σ2
e + (n−1−p)σ2

j + (n−2−p)
∑
i 6=j

r2ijσ
2
j +

∑
i 6=j

σ2
j

= σ2
y + (n−2−p)

∑
i

r2ijσ
2
j . (36)

For E[SSEj,2], we need the expectation of Tr((I−X(X′X)−1X′)ZΣZ′), which is,

m∑
i=1

E[(n−1)σ2
j + (n−1)

p∑
k=1

Ĉor(Zi,Xk)
2σ2

j ] ≈
m∑
i=1

(n−1)σ2
j + (n−1)

p

n−1
σ2
j = (n−1−p)

m∑
i=1

σ2
j (37)

Combined with (26) and (36), we obtain

E[SSEj,2] ≈ (n−2−p)σ2
e + (n−1−p)

m∑
i=1

σ2
j − (n−2−p)σ2

j − (n−2−p)
∑
i 6=j

r2ijσ
2
j −

m∑
i=1

σ2
j

= (n−2−p)
(
σ2
y − σ2

j −
∑
i 6=j

r2ijσ
2
j

)
(38)

2.5 Single-SNP analysis with covariates fitted, Cor(X,Z) 6= 0

In a multiple regression, the t statistic for a covariate i is conditional on all other covariates fitted in

the model. Hence, statistics about Zj from a regression with both Zj and X fitted can be written as

testing for an effect for the covariate êj, where êj is the estimated residual from the regression,

Zj = Xγ̂j + êj. (39)

Since Z is standardised, the estimated residual has sample variance 1−R2
j , where R2

j is the coefficient

of determination, or equivalently the inverse of the variance inflation factor [2]. Standardising êj to

ẽj we obtain to a linear model equivalent to (4):

ỹ = 1µ+ ẽα+ ε, α ∼ N (0, Σ̃), ε ∼ N (0, aσ2
eI), (40)

where Σ̃jj = (1−R2
j )σ

2
j , ỹ is the covariate corrected phenotype and a = (n−2−p)(n−2). We still

need to convert the LD score from the observed to the residualised scale. To do this, we note

9



r̂ij = Ĉor(Zi,Zj) := Ĉov(Zi,Zj)

= Ĉov(Xγ̂i,Xγ̂j) + Ĉov(Xγ̂i, êj) + Ĉov(êi,Xγ̂j) + Ĉov(êi, êj)

= γ̂ ′iVar[X]γ̂j + γ̂ ′iĈov(X, êj) + Ĉov(êi,X)γ̂j + Ĉov(êi, êj)

= γ̂ ′iV̂ar[X]γ̂j + Ĉor(êi, êj)
√

(1−R2
i )(1−R2

j ), (41)

giving an “LD score” on the residualised scale of,

r̂′ij = Cor(êi, êj) =
r̂ij − γ̂ ′iV̂ar[X]γ̂j√

(1−R2
i )(1−R2

j )
. (42)

substituting (40) and (42) into (8) and (10) respectively, with X = 0, obtaining

E[SSRj|Z,X] = aσ2
e + (n−1)(1−R2

j )σ
2
j + (n−1)

∑
i 6=j

(r̂′ij)
2(1−R2

i )σ
2
i

= aσ2
e + (n−1)(1−R2

j )σ
2
j + (n−1)

∑
i 6=j

(r̂ij − γ̂ ′iV̂ar[X]γ̂j)
2(1−R2

i )σ
2
i

(1−R2
i )(1−R2

j )

= aσ2
e + (n−1)(1−R2

j )σ
2
j + (n−1)

∑
i 6=j

(r̂ij − γ̂ ′iV̂ar[X]γ̂j)
2

(1−R2
j )

σ2
i . (43)

For SSEj|Z,X, the expectation can be determined by taking the expectations of the individual

components, SST |X− SSRj|Z,X. These expected values are,

E[SST |X] = (n−1)

(
aσ2

e +
m∑
i=1

(1−R2
i )σ

2
i

)
E[SSEj|Z,X] = (n−1)

(
aσ2

e +
∑
i 6=j

(1−R2
i )σ

2
i −

∑
i 6=j

(r̂ij − γ̂ ′iV̂ar[X]γ̂j)
2

(1−R2
j )

σ2
i

)
− aσ2

e . (44)

2.6 Meta-analysis test statistics

We have shown that the definition of h2SNP is dependent on the covariates fitted. Now, we show how

this impacts estimation of h2SNP from meta analysis summary statistics, including when there are

individuals shared between studies. We focus on two types of meta-analysis, sample size weighted

[3], where Tj,Meta is calculated as,

10



∑
s Tj,sws√∑

sw
2
s

, (45)

with ws =
√
ns, the sample size of study s, and inverse variance weighted [4], where a new estimate

of the effect and the variance of the estimate is obtained and weights ws are equal to 1/Var[α̂j,s],

α̂j,Meta =

∑
swsα̂j,s∑
sws

, Var[α̂j,Meta] =
1∑
sws

. (46)

Ideally, each study s in the set S would have performed identical analyses. In practice models may

differ between studies. If the covariates missing from the analysis model in study s are independent

of the SNPs Z, then unbiasedness of the estimated SNP effect α̂j,s would still hold for all s [5]

if the response is continuous [6]. This is sufficient for meta-analysis to gain statistical power at

identifying causal loci without introducing bias, but insufficient for h2SNP estimation. To prove this

point, consider the case where there are always effects associated with X, where X is standardised

and independent of Z but y is not standardised. Now partition S into the set S1 where the analysis

model ignored covariates and S2 which did not,

ys = 1µ+ Zj,sαj + ε, if s ∈ S1 (47)

ys = 1µ+ Zj,sαj + Xβ + ε if s ∈ S2. (48)

For a sample-size weighted meta-analysis, and remembering that Xβ is absorbed into εs for studies

s ∈ S1,

E[T 2
j,Meta]=

EZ[Eα,ε[(
∑

s Tj,sws)
2]]∑

sw
2
s

=
EZ[Eα,ε[(

∑
s α̂j,sws/

√
Var[α̂j,s)]

2]]∑
sw

2
s

≈ 1∑
sw

2
s

EZ

[
Eα,ε

[(∑
s

E[α̂j,s|α, ε]ws√
E[Var[α̂j,s]]

)2]]
=

1∑
sw

2
s

EZ

[
Eα,ε

[(∑
s

(
∑

i r̂ij,sαi + cs(Z
′
j,sZj,s)

−1Z′jεs)ws√
E[Var[α̂j,s]]

)2]]
=

1∑
sw

2
s

(
EZ

[∑
s,s′

Eα[(
∑

i r̂ij,sαi)(
∑

i r̂ij,s′αi)]wsws′√
E[Var[α̂j,s]]E[Var[α̂j,s′ ]]

]
+ EZ

[
Eε

[(∑
s

cs(Z
′
j,sZj,s)

−1Z′j,sεsws√
E[Var[α̂j,s]]

)2]])
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=
1∑
sw

2
s

(∑
i

σ2
i

∑
s,s′

r̂ij,sr̂ij,s′wsws′√
E[Var[α̂j,s]]E[Var[α̂j,s′ ]]

+
∑
s,s′

(σ2
e + 1s,s′∈S1σ

2
c )cscs′wsws′(nss′ − 1)

(ns−1)(ns′ − 1)
√

E[Var[α̂j,s]]E[Var[α̂j,s′ ]]

)
,(49)

where cs = 1 and cs =
√

(ns−1)/(ns−p−1) for analysis models (47) and (48). To complete the

derivation of the approximate expectation, we need

E[Var[α̂j,s]] =


σ2
y+σ

2
c−

∑
i r

2
ijσ

2
i

ns−1 ≈ σ2
y+σ

2
c

ns−1 ≈
σ2
y+σ

2
c

w2
s

if cs = 1
σ2
y−

∑
i r

2
ijσ

2
i

ns−p−1 ≈ σ2
y

ns−p−1 ≈
σ2
y

c2sw
2
s

if cs =
√

(ns−p−1)/(ns−1).
(50)

If cs = 1 ∀s or cs =
√

(ns−p−1)/(ns−1) ∀s and assume that p � ns∀s ⇒ cs ≈ 1, (49) can be

reduced to,

E[T 2
j,Meta] =

1∑
sw

2
s

(∑
i

σ2
i

∑
s,s′

r̂ij,sr̂ij,s′csc
′
sw

2
sw

2
s′

σ2
T

+ (σ2
T −

∑
i

σ2
i )
∑
s,s′

c2sc
2
s′w

2
sw

2
s′(nss′ − 1)

(ns−1)(n′s − 1)σ2
T

)
,

≈ 1∑
sw

2
s

(∑
i

σ2
i

∑
s,s′

r̂ij,sr̂ij,s′w
2
sw

2
s′

σ2
T

+ (σ2
T −

∑
i

σ2
i )
∑
s,s′

nss′

σ2
T

)
, (51)

where σ2
T = σ2

y + σ2
c and noting that σ2

e + 1s,s′∈S1σ
2
c = σ2

T −
∑

i σ
2
i when no covariate correction

was applied, and σ2
y if covariate correction was applied. When the approximate expectation for the

sample LD in studies s and s′,

E[r̂ij,sr̂ij,s′ ] = r2ij +
nss′

nsns′
(52)

is substituted into (51), we find

E[T 2
j,Meta] ≈

1∑
sw

2
s

(∑
i

r2ijσ
2
i

σ2
T

∑
s

w2
s

∑
s′

w2
s′ +

σ2
T −

∑
i σ

2
i +

∑
i σ

2
i

σ2
T

∑
s,s′

nss′

)
,

=
∑
s

ns
∑
i

r2ijσ
2
i

σ2
T

+

∑
s,s′ nss′∑
ns

,

≈

1 + 2
n

∑
s 6=s′ nss′ + n

∑
i r

2
ijh

2
i,b if cs = 1 ∀s

1 + 2
n

∑
s 6=s′ nss′ + n

∑
i r

2
ijh

2
i,a if cs =

√
(ns−1)/(ns−p−1) ∀s

. (53)

Unlike the single study considered earlier, E[T 2
j,Meta] can be inflated in such a way that the inclusion

of an intercept term is sufficient to obtain unbiased estimates of h2SNP. However this inflation is due

to individuals being included in multiple studies, not the explicit ignoring of confounders we focus

on in this paper. If studies from sets S1 and S2, are combined, a meaningful interpretation of the
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slope as a function of a heritability parameter is no longer possible, as in

E[T 2
j,Meta] =

∑
i σ

2
i∑

sw
2
s

( ∑
s,s′∈S1

√
(ns−1)(ns′ − 1)r̂ij,sr̂ij,s′wsws′

σ2
y + σ2

c

+
∑
s,s′∈S2

√
(ns−p−1)(ns′−p−1)r̂ij,sr̂ij,s′wsws′

σ2
y

+
∑

s∈S1,s′∈S2

√
(ns−1)(ns′−p−1)wsws′ r̂ij,sr̂ij,s′

σ2
y

√
1 + σ2

c/σ
2
y

)

+
σ2
e∑
sw

2
s

( ∑
s,s′∈S2

wsw
′
s

σ2
y

+
∑

s∈S1,s′∈S2

wsw
′
s

σ2
y

√
1 + σ2

c/σ
2
y

)
+
σ2
e + σ2

c∑
sw

2
s

∑
s,s′∈S1

wsw
′
s

σ2
y + σ2

c

, (54)

the denominator changes depending on the study’s choice of S1 or S2. Similar problems arise in the

case of inverse variance weighting, both for the test statistic T 2
j,Meta and the effect size α̂j,Meta. The

expected value of α̂2
j,Meta from an inverse variance weighted meta-analysis is,

E[α̂2
j,Meta] = E[(

∑
s α̂j,sws∑
sws

)2] ≈
∑

s,s′ E[(α̂j,sα̂j,s′ ]wsws′

(
∑

sws)
2

=
∑
i

σ2
i

∑
s,s′(r

2
ij +

nss′
nsns′

)wsws′

(
∑

sws)
2

+
∑
s,s′

(σ2
e + 1s,s′∈S2σ

2
c )

nss′cscs′wsws′

(ns−1)(ns′ − 1)(
∑

sws)
2

≈
∑
i

r2ijσ
2
i

(
∑

sws)
2

(
∑

sws)
2

+
∑
s,s′

(σ2
e + 1s,s′∈S2σ

2
c )
nss′cscs′wsws′

nsns′(
∑

sws)
2

+
∑
i

σ2
i

∑
s,s′

nss′wsws′

nsns′(
∑

sws)
2

=
∑
i

r2ijσ
2
i +

∑
s,s′

(σ2
e + 1s,s′∈S1σ

2
c )
nss′cscs′wsws′

nsns′(
∑

sws)
2

+
∑
i

σ2
i

∑
s,s′

nss′wsws′

nsns′(
∑

sws)
2
, (55)

The expected values of the weights in (55) are,

ws ≈ 1/E[Var[α̂j,s]] =
ns−1

σ2
y + σ2

c −
∑

i r
2
ijσ

2
i

≈ ns−1

σ2
y + σ2

c

, if cs = 1 (56)

ws ≈ 1/E[Var[α̂j,s]] =
ns−p−1

σ2
y −

∑
i r

2
ijσ

2
i

≈ ns−p−1

σ2
y

=
c2s(ns − 1)

σ2
y

if cs =
√

(ns−p−1)/(ns−1).(57)

which upon substitution into (55) and again assuming p� n so that cs ≈ 1 ∀s gives,

E[α̂2
j,Meta] ≈



(
1∑

s ns−1 +
2
∑

s 6=s′ nss′(∑
s ns−1

)2)(σ2
y + σ2

c ) +
∑

i r
2
ijσ

2
i if cs = 1 ∀s(

1∑
s ns−1 +

2
∑

s 6=s′ nss′(∑
s ns−1

)2)σ2
y +

∑
i r

2
ijσ

2
i if cs =

√
ns−1
ns−p−1 ∀s

(σ2
y+σ

2
c )

∑
s,s′∈S1

nss′(∑
s ns−1

)2 +
σ2
y

∑
s,s′∈S2

nss′(∑
s ns−1

)2 +
σ2
y

∑
s∈S1,s

′∈S2
nss′(∑

s ns−1
)2 +

∑
i r

2
ijσ

2
i in general.

,(58)
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Similarly, the test statistic T 2
j,Meta = α̂2

j,Meta

∑
sws has an approximate expected value of

E[T 2
j,Meta] ≈


1 +

2
∑

s6=s′ nss′∑
s ns

+
∑

s ns
∑

i r
2
ijh

2
i,b if cs = 1∀s

1 +
2
∑

s 6=s′ nss′∑
s ns−1 +

∑
s ns

∑
i r

2
ijh

2
i,a if cs =

√
ns−1
ns−p−1∀s( (σ2

y+σ
2
c )

∑
s,s′∈S1

nss′+σ
2
y(

∑
s,s′∈S2

nss′+
∑

s∈S1,s
′∈S2

nss′ )(∑
s
ns

)2 +
∑
i

r2ijσ
2
i

)
(
∑
s∈S1

ns−1
σ2
y+σ

2
c

+
∑
s∈S2

ns−p−1
σ2
y

)in general.

,(59)

so like sample weighted meta-analysis shows additive inflation in the presence of shared individu-

als, and cannot estimate a meaningful heritability parameter when different studies did not apply

equivalent covariate corrections. The presence of additive inflation should be viewed as analogous

to the expectation of the cross product of test statistics given in Bulik-Sullivan et al. [7] in order to

estimate genetic correlation.

In the main text we showed that if Cov[X,Z]=0, the SumHer model intercept is 1 and there is

no need to fit A/C. In Figure S9, we show what happens if we repeat this analysis with sample

overlap. Specifically the meta-analysis now consists of two studies, one with all 8000 individuals and

the with 4000 of the individuals. Based on the theory given in section 2.6, either h2SNPa or h2SNPb

can still be estimated without/with covariate correction in both studies, but with model intercept

2×4000/12000 = 5/3. Our simulations are consistent with this theory under both LDAK and GCTA

models.

2.7 Mixed model test statistics

For the purposes of this section, we will assume the phenotype model

y = 1µ+ Zα+ ε, α ∼ N (0,Σ), ε ∼ N (0, σ2
eI), (60)

where µ is an intercept, Z a n×m matrix of standardised SNP genotypes, α a vector of SNP effect

sizes, and Σ a diagonal matrix with jth entry σ2
j . We assume the model fitted in the association

study is,

y = 1µ+ Zjαj + Zα−j + ε, α−j ∼ N (0, Σ̃), ε ∼ N (0, σ̃2
eI), (61)

where the effect of SNP j is treated as a fixed effect, and the elements of Σ̃ and σ̃2
e need not match

the equivalent entries in the true model. The test statistic for testing the hypothesis whether αj = 0

calculated under the assumed model of (61) is,

T 2
j,LMM = y′V−1Zj(Z

′
jV
−1Zj)

−1Z′jV
−1y (62)
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where V = Z−jΣ̃Z′−j + σ̃2
eI. Note that part of the simplicity of (62) is due to the centring required

to standardise Z, which implies cov(µ̂, α̂j) = 0. Now

E[T 2
j,LMM ] = E[y′V−1Zj(Z

′
jV
−1Zj)

−1Z′jV
−1y]

= Tr(V−1Zj(Z
′
jV
−1Zj)

−1Z′jV
−1E[yy′])

= Tr(V−1Zj(Z
′
jV
−1Zj)

−1Z′jV
−1(µ211′ + σ2

jZjZ
′
j + Z−jΣ−jZ

′
−j + σ2

eI))

= Tr(V−1Zj(Z
′
jV
−1Zj)

−1Z′jV
−1(σ2

jZjZ
′
j + Z−jΣ−jZ

′
−j + σ2

eI))

= Z′jV
−1Zj(Z

′
jV
−1Zj)

−1Z′jV
−1Zjσ

2
j + Tr(V−1Zj(Z

′
jV
−1Zj)

−1Z′jV
−1(Z−jΣ−jZ

′
−j + σ2

eI))

= Z′jV
−1Zjσ

2
j + Tr(V−1Zj(Z

′
jV
−1Zj)

−1Z′jV
−1(Z−jΣ−jZ

′
−j + σ2

eI)). (63)

Lastly, define VTrue = Z−jΣ−jZ
′
−j + σ2

eI and E = VTrue −V. Then we can write (63) as,

E[T 2
j,LMM ] = Z′jV

−1Zjσ
2
j + Tr(V−1Zj(Z

′
jV
−1Zj)

−1Z′jV
−1(V + E))

= Z′jV
−1Zjσ

2
j + 1 + Z′jV

−1EV−1Zj(Z
′
jV
−1Zj)

−1. (64)

For the purposes of trying to re-estimate h2SNP from mixed model association statistics, while Z′jV
−1Zj =

Var[β̂] is a readily obtainable quantity, Z′jV
−1 is not. More importantly, re-estimation of h2SNP would

only be of interest in the case E 6= 0.

3 Additional simulation results

3.1 Phenotypes generated assuming under a GCTA model

To show that our conclusions are not dependent on the simulation model, we simulated phenotypes

using a GCTA model and analysed using LDSC. Results are presented in Figures S1-S4.

In Figure S1(a-c), we see the same patterns as in the LDAK simulations, namely ignoring covari-

ates means only h2SNPb can be estimated, while conditioning on covariates, means only h2SNPa can be

estimated from T 2
j , while both h2SNPa and h2SNPb can be estimated from nα̂2

j . By changing the subset

of SNPs, the degree of negative bias when estimating h2SNP from nα̂2
j and fixing the intercept to one

when covariates were adjusted for is less than for the LDAK simulations presented in the main paper.

For meta-analysis test statistics (Figure S2), we find as expected the same patterns as in the

LDAK simulations. If there is consistency in the GWAS analysis method, a meaningful definition

of h2SNP is estimated. If there is inconsistency in analysis models between component GWAS s, the

estimate of h2SNP obtained from a meta-analysis is not interpretable.

In Figure S3, we see that only full adjustment for confounders in the original GWAS results
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in an unbiased estimate of h2SNPa. As with the LDAK simulations, biased estimates of h2SNP were

obtained with both the case of no adjustment or partial adjustment at the GWAS stage. Compared

to the LDAK simulations, the level of bias in h2SNP was lower when simulating under a GCTA model

(Figures S3 and S4).

Like the LDAK simulations, we find that the positive bias in the estimate of h2SNPb and the scale

of A/C (Figure S4) for C1, C2, and C3 phenotypes correspond to the proportion of phenotypic

variation attributed to confounding. Again like the LDAK simulations, and as expected both from

the positive linear relationship between LD score and aj and from results in [8], the estimates of A/C

were below the mean level of confounding.

3.2 Estimation of h2
SNP when applying filtering

In many of the simulations with unaccounted confounding, we generate Sj with values sufficiently

high that SNP j would be removed from analysis using the filtering methods proposed in [9] as an

outlier. We applied this filtering approach to see what impact it had on the estimate of h2SNP and

A/C from phenotypes simulated under both a GCTA and LDAK model.

The results presented for LDAK simulations in Figures S5-S6 are equivalent to Figures 3-4 in

the main paper, but with filtering applied before summary statistic h2SNP analysis. The filtering

consisted of removing SNPs where Sj > 80 and also those SNPs in linkage disequilibrium (defined

as r2ij > 10) with such SNPs from analysis. Similarly the results presented for GCTA simulations in

Figures S7-S8 are equivalent to Figures S3-S4 in the main paper, but with filtering applied before

summary statistic h2SNP analysis.

While as expected, the estimates of h2SNP drop compared to the no filtering case for both LDAK

and GCTA simulations, in no case was the drop sufficient to eliminate bias. While some of the GCTA

simulations may appear to be unbiased, with the average estimate of h2SNP sitting on the black line,

it is always the red line that is the estimable definition of h2SNP in these simulations. Furthermore, as

the filtering is based on a fixed cut-off, as the proportion of phenotypic variation, σ2
c/(σ

2
y + σ2

c ) due

to confounding increased, an increasing number of SNPs were removed in the filtering process. This

meant the patterns linking σ2
c/(σ

2
y + σ2

c ) to the level of bias in the estimate of h2SNP are broken as

seen in Figures S6 and S8. From a statistical perspective, this indicates ad-hoc filtering approaches

may be insufficient to remove all influential SNPs that could bias the estimation of parameters.
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Figure S1: Estimates of h2
SNP obtained from LDSC analysis of GWAS summary statistics constructed for phenotypes

simulated under a GCTA model. The black and red horizontal lines indicate the values of h2
SNPa and h2

SNPb. Zero,
CEPT and GC refer to no, A and C confounding terms in the analysis model. (a) Phenotypes with no covariate
effects. (b) Phenotypes with covariate effects but X ignored in the analysis. (c) Phenotypes with covariate effects and
X adjusted for in the analysis.

●

●

●

● ● ● ●

Zero CEPT GC Zero CEPT GC Zero CEPT GC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h S
N

P
2

X ignored in both studies
X adjusted in both studies
X ignored in one study, adjusted in the other

Figure S2: Estimates of h2
SNP obtained from LDSC analysis of summary statistics calculated from a meta-analysis

of two GWAS constructed from phenotypes simulated under a GCTA model.
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Figure S3: Similar to Figure S1, but here GWAS phenotypes (specifically C1) are subject to confounding: phenotype
means differ among three subpopulations that each consist of three sub-subpopulations. The sub-populations were
the same as used in the LDAK simulations. Estimates of h2

SNP from a GWAS with (a) no covariate adjustment, (b)
adjustment for the three subpopulations but not the sub-subpopulations, (c) full covariate adjustment. Note that the
y-axis differs among (a), (b) and (c).
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Figure S4: Estimating h2
SNP and confounding parameters from phenotypes with differing proportion of phenotypic

variation due to confounding when h2
SNPa = 0.5. The confounding corresponds to ignoring sub-populations, which are

the same as used in the LDAK simulations. The black lines in (a,b) indicates the simulated value of h2
SNPa and the

red lines the simulated value of h2
SNPb. In (c), the black line corresponds to A/C = 1, which is normally assumed to

indicate no confounding and the red line the mean level of confounding, estimated as S̄j − 1− n
∑

i r
2
ijh

2
j,b. Note that

the y-axis differs between plots.
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Figure S5: Same as Figures 3 in the main paper, but with filtering out of SNPs where Sj > 80 prior to summary
statistic h2

SNP analysis. Estimates of h2
SNP from a GWAS with (a) no covariate adjustment, (b) adjustment for the three

subpopulations but not the sub-subpopulations, (c) full covariate adjustment. Note that the y-axis differs between
plots.

●

●

●

●

C1 C2 C3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Additive confounding adjustment

a

h S
N

P
2

●

●

●

●

●

C1 C2 C3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Multiplicative confounding adjustment

b

h S
N

P
2

●

●●

C1 C2 C3

0.
95

1.
00

1.
05

1.
10

1.
15

Estimated confounding parameter

c

A
/C

C1, 10 % confounding C2, 5 % confounding C3, 2 % confounding

Figure S6: Same as Figure 4 in the main paper, but with filtering out of SNPs where Sj > 80 prior to summary
statistic h2

SNP analysis. The black lines in (a,b) indicates the simulated value of h2
SNPa and the red lines the simulated

value of h2
SNPb. In (c), the black line corresponds to A/C = 1, which is normally assumed to indicate no confounding

and the red line the mean level of confounding, estimated as S̄j −1−n
∑

i r
2
ijh

2
j,b. Note that the y-axis differs between

plots.
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Figure S7: Same as Figure S3, but with filtering out of SNPs where Sj > 80 prior to summary statistic h2
SNP analysis.

Estimates of h2
SNP from a GWAS with (a) no covariate adjustment, (b) adjustment for the three subpopulations but

not the subsubpopulations, (c) full covariate adjustment. Note that the y-axis differs among (a), (b) and (c).
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Figure S8: Same as Figure S4, but with filtering out of SNPs where Sj > 80 prior to summary statistic h2
SNP analysis.

The black lines in (a,b) indicates the simulated value of h2
SNPa and the red lines the simulated value of h2

SNPb. In (c),
the black line corresponds to A/C = 1, which is normally assumed to indicate no confounding and the red line the

mean level of confounding, estimated as S̄j − 1− n
∑

i r
2
ijh

2
j,b. Note that the y-axis differs between (a,b) and (c).
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Figure S9: Similar as Figure 2 in the main paper, but now the meta-analysis includes overlapping 4000 individuals
out of a total of 12,000. The black and red horizontal lines in (a,c) indicate the values of h2

SNPa and h2
SNPb. The

black horizontal line in (b,d) indicates the expected intercept. CEPT and GC refer to A and C confounding terms
in the analysis. Plots (a) and (c) gives estimates of h2

SNP obtained under either an A or C view of the confounding
parameter, while plots (b) and (d) gives estimates of the confounding parameter. Plots (a,b) are obtained from
phenotypes simulated from a LDAK model, (c,d) from phenotypes simulated from a GCTA model.
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Figure S10: Estimates of h2
SNP (called h2

confound) when the phenotype is the confounding effect Xβ only, scaled to
match the contribution of confounding to a C1 phenotype compared to the observed bias in h2

SNP when confounding
correction was not and was included in the GWAS. The y = x line is shown in black, which corresponds to the bias in
h2
SNP being completely explained by the confounding-only test statistic. The red line is the fit of simple linear regression

of the bias on scaled h2
confound. Bias was calculated for each phenotype using ĥ2

SNP,ignored−ĥ2
SNP,corrected(h2

SNPb/h
2
SNPa),

i.e by comparing estimates from a confounding ignored and a confounding corrected GWAS while accounting for the
change in estimable h2

SNP parameter. One confounding-only phenotypes did not produce convergent estimates so was
removed for comparison purposes.
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