Supplementary information for "A deep learning approach to pattern recognition for short DNA sequences"

Phylum	References	Species	Genera	Families	Orders	Classes
Proteobacteria	7,053	5,061	1,106	158	55	9
Actinobacteria	4,768	3,313	383	68	29	6
Firmicutes	3,814	2,531	499	56	13	7
Bacteroidetes	1,934	1,525	360	39	8	7
Euryarchaeota	834	450	100	28	13	8
Tenericutes	266	195	8	5	4	1
Spirochaetes	146	100	16	6	4	1
Deinococcus-Thermus	118	99	9	3	2	1
Crenarchaeota	113	61	27	8	5	1
Cyanobacteria	113	88	59	30	8	2
Fusobacteria	75	37	10	2	1	1
Thermotogae	70	48	13	5	4	1
Verrucomicrobia	57	53	22	7	4	3
Acidobacteria	45	41	19	5	5	4
Planctomycetes	44	31	23	5	3	2
Chloroflexi	44	35	26	15	12	8
Aquificae	43	32	14	4	2	1
Synergistetes	31	25	15	1	1	1
Chlamydiae	28	18	7	5	2	1
Chlorobi	21	16	5	1	1	1
Deferribacteres	15	11	7	1	1	1
Thermodesulfobacteria	14	12	5	1	1	1
Nitrospirae	11	10	3	1	1	1
Fibrobacteres	10	4	3	3	3	3
Balneolaeota	9	9	4	1	1	1
Chrysiogenetes	6	4	3	1	1	1
Lentisphaerae	6	5	3	3	3	2
Dictyoglomi	5	2	1	1	1	1
Rhodothermaeota	5	5	3	2	1	1
Gemmatimonadetes	5	4	3	2	2	2
Ignavibacteriae	4	2	2	2	1	1
Armatimonadetes	4	3	3	3	3	3
Caldiserica	3	1	1	1	1	1
Calditrichaeota	2	2	1	1	1	1
Thaumarchaeota	2	2	2	2	2	2
Elusimicrobia	2	1	1	1	1	1
Kiritimatiellaeota	1	1	1	1	1	1
Nitrospinae	1	1	1	1	1	1

Appendix 1: NCBI Data

Extended Data Table 1: NCBI dataset breakdown by phylum. The distribution of reference sequences and species, genus, family, order, and class labels across the 38 different phyla represented in our NCBI dataset.

Our NCBI dataset is based on 19,851 16S ribosomal RNA sequences (18,902 bacterial and 949 archaeal) which have an average length of 1,454.13 base pairs, with individual sequences varying from 302 to 3,600 base pairs. During the labelling process, we excluded 129 reference sequences whose reported taxonomic labels in the NCBI Taxonomy Browser violated the tree structure of the overall taxonomy. The resulting dataset includes 13,838 distinct species which are distributed across 38 phyla

according to Extended Data Table 1. Subsequences from these 19,722 references comprise our synthetic NCBI_L read sets. The total number of synthetic reads contained in each of our NCBI_L datasets is determined by the length *L*: NCBI_L contains 28,219,784, 27,726,734, 26,740,634, 25,754,534, and 24,768,434 reads for lengths 25, 50, 100, 150, and 200, respectively.

Appendix 2: Model Architecture and Implementation

Extended Data Figure 1: Example input encoding. Input encoding for a sample 10 base pair sequence demonstrating how both canonical bases and IUPAC ambiguity codes are encoded using four-dimensional probability distributions.

For our models, we used the input representation in Extended Data Figure 1. Each read is a short sequence of canonical nitrogenous bases (A, C, T, G) and IUPAC ambiguity codes (K, M, R, Y, S, W, B, V, H, D, X, N). We one-hot encoded each canonical base as a four-dimensional vector and resolved each ambiguity code to the appropriate probability distribution over these four bases. Note that this approach to input encoding does not make use of any quality scores; it would be straightforward to extend our approach to include this information, for example by using an extra input channel.

A key feature of our proposed model architecture is its use of depthwise separable convolutions. Initially studied by Sifre & Mallat (2013), depthwise separable convolutions separate the task of learning spatial features from that of integrating information across channels by decomposing a typical convolution into two sequential operations: a spatial convolution applied independently over each input channel followed by a pointwise convolution across channels. We use of 1D depthwise separable convolutions, formalized as follows given input *x* with *C* channels and a filter of width *F*:

$$PointwiseConv(W, x)_{(i)} = \sum_{c}^{C} W_{c} \cdot x_{(i,c)}$$
$$DepthwiseConv(W, x)_{(i)} = \sum_{f}^{F} W_{f} \circ x_{(i+f)}$$

SeparableConv(W_p , W_d , x)_(i) = PointwiseConv_(i)(W_p , DepthwiseConv_(i)(W_d , x)) where W denotes a weight matrix and \circ is element-wise multiplication.

After each convolutional and fully-connected layer, we use the following version of leaky rectified-linear activation (Maas, Hannun, & Ng, 2013; Xu, et al., 2015) after every convolutional and fully-connected layer:

 $LReLU(x)_i = max(x_i, ax_i) = \{x_i \text{ if } x_i \ge 0, ax_i \text{ if } x_i < 0 \}$ where the slope $a \in (0, 1)$ for each model is as in Extended Data Table 2.

Name	Training Read Length	Spatial Conv Widths	Pointwise Conv Depths	Number FC Layers	Number FC Units	IReLU Slope	Learning Rate	Decay Rate	Keep Prob	Weight Init Scale
DNN ₂₅	25	13, 9, 9	34, 48, 37	3	2,969	1.1619e ⁻²	5.2225e ⁻⁴	5.0277e ⁻²	87.107%	1.6181
DNN ₅₀	50	13, 35, 13	51, 151, 114	2	2,919	1.1699e ⁻²	7.4034e ⁻⁴	7.8038e ⁻²	89.161%	2.2217
DNN ₁₀₀	100	5, 9, 13	84, 58, 180	2	2,828	1.2538e ⁻²	4.6969e ⁻⁴	6.5505e ⁻²	94.018%	1.1841
DNN ₁₅₀	150	5, 9, 21	59, 221, 119	3	2,908	5.7478e ⁻³	7.5135e⁻⁵	9.1889e ⁻²	88.834%	2.4636
DNN ₂₀₀	200	9, 5, 21	197, 116, 119	2	2,733	1.1491e ⁻²	6.7080e ⁻⁴	6.4534e ⁻²	91.967%	0.5878

Extended Data Table 2: Selected neural network hyperparameters. The best deep neural network (DNN) model hyperparameters identified for each read length *L*={25, 50, 100, 150, 200}.

During training, we initialized each layer's parameters according to a truncated random normal distribution with standard deviation S/\sqrt{N} , where *S* is the weight initialization scale in Extended Data Table 2 and *N* is the number of inputs to the layer. On each parameter update, we clipped the gradients to have norm at most 20.

Appendix 3: Data Splits and Model Selection

For model selection, we split our NCBI_L datasets into three smaller subsets: NCBI-0_L, NCBI-1_L, and NCBI-2_L. We constructed NCBI-0_L by first taking a random sample of 90% of the species in each genus (selecting at least one species per genus), then sampling 90% of the reads for each selected species. The remaining 10% of the reads for these species form NCBI-1_L, and NCBI-2_L contains all the reads for the 10% of species excluded from NCBI-0_L. As an example, Extended Data Table 3 enumerates the contents of our NCBI-0₁₀₀, NCBI-1₁₀₀, and NCBI-2₁₀₀ subsets.

NCBI-0 ₁₀₀		1	NCBI-1 ₁₀₀	r	NCBI-2 ₁₀₀		
90% of reads from 90% of species per genus		Remaining 10% of r from species in NCE	Remaining 10% of reads from species in NCBI0		100% of reads from remaining 10% of species per genus		
Reads	21,899,715	Reads	2,431,551	Reads	2,409,368		
Superkingdoms	2	Superkingdoms	2	Superkingdoms	2		
Phyla	38	Phyla	38	Phyla	23		
Classes	91	Classes	91	Classes	48		
Orders	202	Orders	202	Orders	110		
Families	479	Families	479	Families	227		
Genera	2,768	Genera	2,768	Genera	577		
Species	12,609	Species	12,609	Species	1,229		

Extended Data Table 3: NCBI subset contents for 100 base pair data. The contents of each subset of our NCBI₁₀₀ dataset in terms of the total number of reads and the number of distinct labels at each taxonomic rank.

For $L = \{25, 50, 100, 150, 200\}$ we selected a model DNN_L by training on noiseless reads from NCBI-0_L and performing a hyperparameter search to maximize read-level accuracy on a validation set comprised of the reads in NCBI-1_L and NCBI-2_L with base-flipping noise injected at a rate of 1%. Because reads in NCBI-2_L are from species held out during training, we measured read-level accuracy on this validation set as follows:

- If the current example arose from the reference sequence of a species represented in NCBI-0_L, the prediction by DNN_L is correct if the model assigns the most probability mass to the true species label.
- 2. Otherwise, if the example arose from the reference sequence of a held-out species, the model's prediction is correct if the true genus label receives the most probability mass when the model's output is marginalized to the genus-level distribution.

We used Google Vizier (Golovin, et al., 2017) with the default search algorithm to explore the hyperparameter space and optimize the objective computed in this manner. The hyperparameters in Extended Data Table 2 are the best ones discovered by this search.

Appendix 4: Pooling Studies

In the current work, we explored one straightforward approach for handling the variable read lengths produced by next-generation sequencing technologies: we enabled running a given model on any query at least as long as the fixed input dimension of the fully-connected layers by tiling the fully-connected layers and adding a pooling layer between the last fully-connected layer and the softmax output layer. We determined which type of pooling works best on our species classification problem by training several models on our NCBI-0₁₀₀ data with the effective width of the fully-connected layers set to 80 base pairs to trigger modeling tiling and pooling. For both average and max pooling, we fixed the number of depthwise separable convolutional layers to 1 and performed random search over the remaining hyperparameters. We trained each model for 200,000-400,000 training iterations and then evaluated on a validation set as described in Appendix 3.

Extended Data Figure 2: Differences in accuracy and cross entropy loss for average and max pooling. Performance comparison for average and max pooling trials for both (a) read-level accuracy and (b) cross entropy loss on validation data, where trial IDs (x-axis) are assigned according to descending validation accuracy.

In total, we trained 40 models with max pooling and 27 with average pooling. Despite the skew in number of attempted trials, we found models with average pooling to perform significantly better than those with max pooling; the models with average pooling attained higher accuracies and lower loses at both train and evaluation time (Extended Data Figure 2). 27 of the models with max pooling layers either failed to converge or never outperformed random guessing, compared to only 9 such models with average pooling. The head-to-head comparison of the highest achieved read-level accuracies on the validation set further reveals the extent of this performance differential: the best average pooling model outperforms the best max pooling model by more than 34.6%. This pooling exploration established a sound method of constructing relatively flexible models for read-level species classification of 16S sequencing data. Based on these results, all models presented in the current study use average pooling.

Appendix 5: Hypervariable Regions

While read-level classification rates are a key measure of the deep learning models' performance on our taxonomic classification benchmarking problem, they obscure the probabilistic nature of their predictions. To investigate whether these probability assignments themselves have any interesting properties, we compared the probability weights assigned by DNN₁₀₀ across the length of a fixed reference sequence. Extended Data Figure 3a shows that DNN₁₀₀ made no within-genus mistakes on synthetic reads from the *Salmonella enterica* reference sequence, whereas in Figure 3b within-genus mistakes were common in regions of the reference sequence where DNN₁₀₀ assigned low probability weights to the true *Salmonella bongori* label. In both of these cases we found that the neural network made its most confident predictions on 100 base pair synthetic reads containing portions of the hypervariable regions (as identified using analysis by Chakravorty et al. (2007) and *E. coli* coordinates from Brosius et al. (1978)). Thus, although the model did not learn to perfectly recapitulate every

hypervariable region (for example, it made mistaken species assignments on reads containing portions of the V5 region in Extended Data Figure 3b), it nonetheless appears to have learned to make its most accurate, confident predictions within the hypervariable regions. Indeed, the lack of overly confident predictions on reads from purely conserved regions of the reference sequences further suggests the model has learned from reasonable signal in the data rather than overfitting to artifacts present in our particular set of training reference sequences.

However, when we repeated this analysis on a reference sequence for *Streptomyces libani*, one of the 681 distinct species from the most prevalent genus in the training set, we found that the model's predicted probabilities followed an entirely different trend (Extended Data Figure 3c and d). Unlike in the *Salmonella* cases, probabilities assigned to the correct species label are low across the entire reference and within-genus mistakes dominated. Figure 3d, on the other hand, shows that the model's genus-level predictions were both confident and accurate on the same synthetic reads, with DNN₁₀₀ making no genus mistakes and assigning at least 0.8 probability to the true *Streptomyces* label everywhere except for a small region between V2 and V3. This suggests that predicted probability mass is divided amongst multiple closely-related species which cannot be disambiguated due to an insufficient proportion of distinctive 100 base pair segments within their reference sequences, so that the particular region a given synthetic read was pulled from does not appear to matter. This issue is likely caused or exacerbated by the fact that no adjustments were made for differential dataset coverage.

Examining the DNN's confidence in its read-mapping assignments along the length of 16S references provides some initial evidence that these models achieve their good performance by learning salient read-level information. Extended Data Figure 3 shows that, in general, the vast majority of queries which yield confident, correct species-level predictions tend to cover parts of the hypervariable regions. However, it also exposes the impact that differential coverage in the training set may have on individual predictions: the model made many within-genus mistakes for the less prevalent *Salmonella bongori* (2 references) but none for *Salmonella enterica* (11 references), a trend which was even more apparent for *Streptomyces libani*, one of the species from the most prevalent genus in our dataset. A more robust training or inference scheme which properly adjusts for skewed coverage might improve the quality of these individual predictions and allow the model's predicted probability estimates to be leveraged to give calibrated confidence estimates for label assignments.

Extended Data Figure 3: Variations in confidence of deep learning approach along fixed 16S reference sequences. Probability weight assigned to the correct species label by DNN₁₀₀ for every 100 base pair subsequence of **(a)** *Salmonella enterica* (RefSeq ID NR_116126.1), **(b)** *Salmonella bongori* (NR_116124.1), and **(c)** *Streptomyces libari* (NR_042301.1) reference sequences. Offset from the beginning of the reference to the start of the subsequence is specified on the x-axis, and color represents whether DNN₁₀₀'s most confident prediction is the correct label (yellow), another species label in the correct genus (cyan), or a species outside the genus (blue). **(d)** The genus-level probability weights assigned by DNN₁₀₀ to the Streptomyces label for the same reference sequence as **(c)**.

Appendix 6: Baseline Methods

We computed alignment baselines based on BLAST and BWA mappings against the original reference sequences. Taking T to be a fixed set of short reads, we computed the BWA baseline as follows:

- 1. Set *accuracy* = 0 and for each read $x \in T$:
 - a. Use BWA to assign a set of mappings A and primary mapping a^{\cdot} to the read x. For each alignment mapping a, let a_{ref} be the reference sequence involved in the alignment and a_{ed} be the corresponding edit distance score.
 - *b.* If *A* is non-empty:
 - *i.* Take $A^* = \{a \in A \mid a_{ed} \le a_{ed}^*\}$
 - ii. $accuracy \pm \frac{C}{|A^*|}$ where *C* is the number of times the true label for read *x* appears in the set of ground-truth labels for $\{a_{ref} \mid a \in A^*\}$
- 2. Take $\frac{accuracy}{|T|}$ as the final accuracy rate

The BLAST baseline accuracy replaces the comparison in 1b with one checking for bit scores that are at least as large as the bit score of the best mapping.

Our naive Bayes classifier was based on the RDP Classifier, and as such, we used the 8-mer representation and computed prior probabilities and genus-specific conditional probabilities as described in Wang et al. (2007) We additionally devised a method of handling IUPAC ambiguity codes in the 8-mer vector representation by assigning each possible DNA 8-mer encoded by the IUPAC code a fractional presence. For example, the 9 base pair sequence 'AAAAAAAAN' was transformed into a vector with four non-zero entries: AAAAAAA with weight 1.0, and AAAAAAAC, AAAAAAAG, and AAAAAAAT with weights 0.25. We found that incorporating these ambiguous bases improved accuracy for short or noisy reads.

For our Kraken2 baseline, we generated *names.dmp* and *nodes.dmp* files corresponding to the taxonomy of organisms in our NCBI data, and a corresponding FASTA file marked with Kraken2 *taxid* markers for the 16S reference sequences corresponding to the NCBI_L-0 training sets. We then constructed an appropriate Kraken2 database using the following commands:

```
$ kraken2-build --db kraken2_database --add-to-library kraken.fasta --no-masking
$ kraken2-build --db kraken2_database --build --kmer-len ${kmer_len}
--minimizer-len ${minimizer_len} --minimizer-spaces ${minimizer_spaces}
```

We set *kmer_len*, *minimizer_len*, and *minimizer_spaces* to their default values of (35, 31, 6) for running on 50, 100, and 200 base pair reads and to (15, 15, 3) for running on 25 base pair reads since in this setting the default values are too large.

Appendix 7: Mock Community Data

The sequencing data from study PRJEB4688 comes from a community developed by the Human Microbiome Project (Huttenhower et al., 2012) to contain equal concentrations of the following 20 bacterial species: Acinetobacter baumannii str. 5377, Actinomyces odontolyticus str. 1A.21, Bacillus cereus str. NRS 248, Bacteroides vulgatus str. NCTC 11154, Clostridium beijerinckii str. NCIMB 8052, Deinococcus radiodurans str. R1, (smooth), Enterococcus faecalis str. OG1RF, Escherichia coli str. K12 substr. MG1655, Helicobacter pylori str. 26695, Lactobacillus gasseri str. 63 AM, Listeria monocytogenes str. EGDe, Neisseria meningitidis str. MC58, Propionibacterium acnes str. KPA171202, Pseudomonas aeruginosa str. PAO1-LAC, Rhodobacter sphaeroides str. ATH 2.4.1, Staphylococcus aureus TCH1516, Staphylococcus epidermidis FDA str. PCI 1200, Streptococcus agalactiae str. 2603 V/R, Streptococcus mutans str. UA159, and Streptococcus pneumoniae str. TIGR4. There are six replicates in total: three single-ended and three paired-end replicates. The paired-end replicates, ERR619081-3, contain 481,364, 426,086, and 180,252 unpaired reads, respectively, all of length 251 base pairs. The

single-ended replicates, ERR348713-5, contain reads of variable lengths ranging from 225 to 384 base pairs distributed according to Extended Data Table 4.

ERR348713		ERR348714		ERR348715	
Read Length	Frequency	Read Length	Frequency	Read Length	Frequency
248	4	225	1	370	689
249	1	246	1	371	11,697
250	15	248	3	372	277
251	106	249	1	373	2.955
252	33.558	250	16	374	31.233
253	156.843	251	100	375	38.529
254	22.512	252	36.868	376	4.711
255	4	253	177.126	377	33
		254	26.554	384	2
		255	11		
		259	1		
all	213 043	all	240.682	all	90.126

Extended Data Table 4: Read length distribution for single-ended mock community replicates. Distribution of read lengths for each single-ended replicate from ENA study PRJEB4688.

The mock community sequenced in study PRJEB6244, contains 59 distinct organisms. The even version of the community contains an equal number of molecules per strain, but there is also an uneven version for which strain amounts are log-normally distributed within each phylum. Extended Data Table 5 gives the specific strains and uneven concentrations according to previous publications (D'Amore et al. 2016; Schirmer et al., 2015). Adjusting for updated taxonomic assignments for some organisms, these 59 strains are covered by the following 56 species labels in NCBI: Acidobacterium capsulatum, Akkermansia muciniphila, Bacteroides thetaiotamicron, Bacteroides vulgatus, Bordetella bronchiseptica, Caldicellulosiruptor bescii, Caldicellulosiruptor saccharolyticus, Chlorobaculum tepidum, Chlorobium limicola, Chlorobium phaeobacteroides, Chlorobium phaeovibrioides, Chloroflexus aurantiacus, Deinococcus radiodurans, Desulfovibrio desulfuricans, Desulfovibrio piger, Dickeya dadantii, Dictyoglomus turgidum, Enterococcus faecalis, Fusobacterium nucleatum, Gemmatimonas aurantiaca, Herpetosiphon aurantiacus, Hydrogenobaculum sp., Leptothrix cholodnii, Nitrosomonas europaea, Nostoc sp., Paraburkholderia xenovorans, Pelodictyon phaeoclathratiforme, Persephonella marina, Porphyromonas gingivalis, Rhodopirellula baltica, Rhodospirillum rubrum, Ruegeria pomeroyi, Ruminiclostridium thermocellum, Salinispora arenicola, Salinispora tropica, Shewanella baltica, Sulfitobacter sp., Sulfurihydrogenibium sp., Sulfurihydrogenibium yellowstonense, Thermoanaerobacter pseudethanolicus, Thermotoga neapolitana, Thermotoga petrophila, Thermotoga sp., Thermus thermophilus, Treponema denticola, Treponema vincentii, Zymomonas mobilis, Archaeoglobus fulgidus, Ignicoccus hospitalis, Methanocaldococcus jannaschii, Methanococcus maripaludis, Nanoarchaeum equitans, Pyrobaculum aerophilum, Pyrobaculum calidifontis, Pyrococcus horikoshii, and Sulfolobus tokodaii.

At the genus-level, these organisms are covered by 45 labels: Acidobacterium, Akkermansia, Bacteroides, Bordetella, Caldicellulosiruptor, Chlorobaculum, Chlorobium, Chloroflexus, Deinococcus, Desulfovibrio, Dictyoglomus, Dickeya, Enterococcus, Fusobacterium, Gemmatimonas, Herpetosiphon, Hydrogenobaculum, Leptothrix, Nitrosomonas, Nostoc, Paraburkholderia, Pelodictyon, Persephonella, Porphyromonas, Rhodopirellula, Rhodospirillum, Ruegeria, Ruminiclostridium, Salinispora, Shewanella, Sulfitobacter, Sulfurihydrogenibium, Thermoanaerobacter, Thermotoga, Thermus, Treponema, Zymomonas, Archaeoglobus, Ignicoccus, Methanocaldococcus, Methanococcus, Nanoarchaeum, Pyrobaculum, Pyrococcus, and Sulfolobus.

Name	Domain	Proportion	Name	Domain	Proportion
Acidobacterium capsulatum ATCC 51196	Bacteria	8.1%	Rhodopirellula baltica SH 1	Bacteria	1.0%
Akkermansia muciniphila ATCC BAA-835	Bacteria	0.9%	Rhodospirillum rubrum ATCC 11170	Bacteria	1.2%
Anaerocellum thermophilum Z-1320, DSM 6725	Bacteria	1.2%	Ruegeria pomeroyi DSS-3	Bacteria	0.6%
Bacteroides thetaiotaomicron VPI-5482	Bacteria	0.2%	Salinispora arenicola CNS-205	Bacteria	0.5%
Bacteroides vulgatus ATCC 8482	Bacteria	0.9%	Salinispora tropica CNB-440	Bacteria	1.6%
Bordetella bronchiseptica RB50	Bacteria	9.2%	Shewanella baltica OS185	Bacteria	3.1%
Burkholderia xenovorans LB400	Bacteria	2.6%	Shewanella baltica OS223	Bacteria	1.4%
Caldicellulosiruptor saccharolyticus DSM 8903	Bacteria	2.0%	Sulfitobacter sp. EE-36	Bacteria	2.0%
Chlorobaculum tepidum TLS	Bacteria	0.5%	Sulfitobacter sp. NAS-14.1	Bacteria	4.3%
Chlorobium limicola DSM 245	Bacteria	0.4%	Sulfurihydrogenibium sp. YO3AOP1	Bacteria	1.6%
Chlorobium phaeobacteroides DSM 266	Bacteria	1.9%	Sulfurihydrogenibium yellowstonense SS-5	Bacteria	2.6%
Chlorobium phaeovibrioides DSM 265	Bacteria	0.3%	Thermoanaerobacter pseudethanolicus ATCC 33223	Bacteria	0.8%
Chloroflexus aurantiacus J-10-fl	Bacteria	0.9%	Thermotoga neapolitana DSM 4359	Bacteria	0.7%
Clostridium thermocellum ATCC 27405	Bacteria	0.6%	Thermotoga petrophila RKU-1	Bacteria	1.0%
Deinococcus radiodurans R1	Bacteria	1.7%	Thermotoga sp. RQ2	Bacteria	3.4%
Desulfovibrio desulfuricans ATCC 27774	Bacteria	1.4%	Thermus thermophilus HB8	Bacteria	0.5%
Desulfovibrio piger ATCC 29098	Bacteria	3.1%	Treponema denticola ATCC 35405	Bacteria	0.2%
Dictyoglomus turgidum DSM 6724	Bacteria	3.5%	Treponema vincentii I	Bacteria	0.2%
Erwinia chrysanthemi	Bacteria	0.3%	Zymomonas mobilis mobilis ZM4	Bacteria	0.8%
Enterococcus faecalis V583	Bacteria	4.3%	Archaeoglobus fulgidus DSM 4304	Archaea	0.3%
Fusobacterium nucleatum ATCC 25586	Bacteria	0.3%	Ignicoccus hospitalis KIN4/I	Archaea	1.2%
Gemmatimonas aurantiaca T-27T	Bacteria	0.7%	Methanocaldococcus jannaschii DSM 2661	Archaea	0.9%
Herpetosiphon aurantiacus ATCC 23779	Bacteria	1.8%	Methanococcus maripaludis C5	Archaea	0.4%
Hydrogenobaculum sp. Y04AAS1	Bacteria	1.1%	Methanococcus maripaludis S2	Archaea	0.5%
Leptothrix cholodnii SP-6	Bacteria	1.8%	Nanoarchaeum equitans Kin4-M	Archaea	1.0%
Nitrosomonas europaea ATCC 19718	Bacteria	4.3%	Pyrobaculum aerophilum IM2	Archaea	0.5%
Nostoc sp. PCC 7120	Bacteria	2.7%	Pyrobaculum calidifontis JCM 11548	Archaea	2.6%
Pelodictyon phaeoclathratiforme BU-1	Bacteria	0.1%	Pyrococcus horikoshii OT3	Archaea	1.9%
Persephonella marina EX-H1	Bacteria	5.5%	Sulfolobus tokodaii 7(S311)	Archaea	0.7%
Porphyromonas gingivalis ATCC 33277	Bacteria	0.2%			

Extended Data Table 5: True contents of 59-organism mock community. List of 10 Archaea and 59 bacterial strains present in the mock community from ENA study PRJEB6244.

Some of the labels for this 59-organism mock community are missing from our NCBI dataset, namely the genus label *Nanoarchaeum* and the eight species labels *Hydrogenobaculum sp., Leptothrix cholodnii, Nostoc sp., Sulfitobacter sp., Sulfurihydrogenibium sp., Thermotoga sp., Treponema vincentii*, and *Nanoarchaeum equitans*. For our analyses, we used all of the mock community sequencing runs included in study PRJEB6244 which amounts to the 51 runs listed in Extended Data Table 6. All of the reads contained in the data files for each of these runs are 250 base pairs, but the total number of reads per run varies from 3,290 to 3,506,882.

Run Accession	Run Accession Number of Reads Community Type Run Accessi (unpaired)		Run Accession	Number of Reads (unpaired)	Community Type	
ERR777676	413,164	Even	ERR777718	28,704	Uneven	
ERR777677	77,748	Even	ERR777719	23,526	Uneven	
ERR777678	331,464	Even	ERR777720	49,458	Uneven	
ERR777695	1,187,736	Even	ERR777721	62,430	Uneven	
ERR777696	3,506,882	Even	ERR777722	44,192	Uneven	
ERR777697	3,268,324	Even	ERR777726	711,606	Even	
ERR777698	2,185,152	Even	ERR777727	667,110	Even	
ERR777699	26,282	Even	ERR777728	612,894	Even	
ERR777700	5,730	Even	ERR777729	1,316,194	Uneven	
ERR777701	4,052	Even	ERR777730	43,378	Even	
ERR777702	736,790	Even	ERR777731	48,706	Even	
ERR777703	184,040	Even	ERR777732	3,299,128	Even	
ERR777704	584,670	Even	ERR777733	1,910,258	Even	
ERR777705	2,810,390	Even	ERR777734	13,224	Even	
ERR777706	2,263,688	Even	ERR777735	5,272	Even	
ERR777707	553,630	Uneven	ERR777736	815,732	Even	
ERR777708	2,280,446	Uneven	ERR777737	488,286	Even	
ERR777709	2,017,580	Uneven	ERR777738	403,586	Even	
ERR777710	2,162,570	Even	ERR777739	969,458	Even	
ERR777711	3,120,284	Uneven	ERR777740	62,898	Uneven	
ERR777712	3,510	Even	ERR777741	524,110	Uneven	
ERR777713	15,158	Even	ERR777742	464,972	Uneven	
ERR777714	3,290	Even	ERR777746	24,690	Even	
ERR777715	70,706	Even	ERR777747	62,594	Even	
ERR777716	91,702	Even	ERR777748	91,438	Even	
ERR777717	100,696	Even				

Extended Data Table 6: Community type by run accession. List of ENA accessions for mock community sequencing runs from study PRJEB6244 along with their corresponding community type (even or uneven) and read count.

References

Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., & Sculley, D. (2017) Google Vizier: A service for black-box optimization. In *Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, 1487-1495.