Supplementary information for “A deep learning approach
to pattern recognition for short DNA sequences”

Appendix 1: NCBI Data

Phylum References Species Genera Families Orders Classes
Proteobacteria 7,053 5,061 1,106 158 55 9
Actinobacteria 4,768 3,313 383 68 29 6
Firmicutes 3,814 2,531 499 56 13 7
Bacteroidetes 1,934 1,525 360 39 8 7
Euryarchaeota 834 450 100 28 13 8
Tenericutes 266 195 8 5 4 1
Spirochaetes 146 100 16 6 4 1
Deinococcus-Thermus 118 99 9 3 2 1
Crenarchaeota 113 61 27 8 5 1
Cyanobacteria 113 88 59 30 8 2
Fusobacteria 75 37 10 2 1 1
Thermotogae 70 48 13 5 4 1
Verrucomicrobia 57 53 22 7 4 3
Acidobacteria 45 41 19 5 5 4
Planctomycetes 44 31 23 5 3 2
Chloroflexi 44 35 26 15 12 8
Aquificae 43 32 14 4 2 1
Synergistetes 31 25 15 1 1 1
Chlamydiae 28 18 7 5 2 1
Chlorobi 21 16 5 1 1 1
Deferribacteres 15 11 7 1 1 1
Thermodesulfobacteria 14 12 5 1 1 1
Nitrospirae 11 10 3 1 1 1
Fibrobacteres 10 4 3 3 3 3
Balneolaeota 9 9 4 1 1 1
Chrysiogenetes 6 4 3 1 1 1
Lentisphaerae 6 5 3 3 3 2
Dictyoglomi 5 2 1 1 1 1
Rhodothermaeota 5 5 3 2 1 1
Gemmatimonadetes 5 4 3 2 2 2
Ignavibacteriae 4 2 2 2 1 1
Armatimonadetes 4 3 3 3 3 3
Caldiserica 3 1 1 1 1 1
Calditrichaeota 2 2 1 1 1 1
Thaumarchaeota 2 2 2 2 2 2
Elusimicrobia 2 1 1 1 1 1
Kiritimatiellaeota 1 1 1 1 1 1
Nitrospinae 1 1 1 1 1 1

Extended Data Table 1: NCBI dataset breakdown by phylum. The distribution of reference sequences and species, genus, family, order, and class
labels across the 38 different phyla represented in our NCBI dataset.

Our NCBI dataset is based on 19,851 16S ribosomal RNA sequences (18,902 bacterial and 949
archaeal) which have an average length of 1,454.13 base pairs, with individual sequences varying from
302 to 3,600 base pairs. During the labelling process, we excluded 129 reference sequences whose
reported taxonomic labels in the NCBI Taxonomy Browser violated the tree structure of the overall
taxonomy. The resulting dataset includes 13,838 distinct species which are distributed across 38 phyla



according to Extended Data Table 1. Subsequences from these 19,722 references comprise our
synthetic NCBI, read sets. The total number of synthetic reads contained in each of our NCBI, datasets
is determined by the length L: NCBI, contains 28,219,784, 27,726,734, 26,740,634, 25,754,534, and
24,768,434 reads for lengths 25, 50, 100, 150, and 200, respectively.

Appendix 2: Model Architecture and Implementation
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Extended Data Figure 1: Example input encoding. Input encoding for a sample 10 base pair sequence demonstrating how both canonical bases
and IUPAC ambiguity codes are encoded using four-dimensional probability distributions.

For our models, we used the input representation in Extended Data Figure 1. Each read is a short
sequence of canonical nitrogenous bases (A, C, T, G) and IUPAC ambiguity codes (K, M, R, Y, S, W, B,
V, H, D, X, N). We one-hot encoded each canonical base as a four-dimensional vector and resolved each
ambiguity code to the appropriate probability distribution over these four bases. Note that this approach
to input encoding does not make use of any quality scores; it would be straightforward to extend our
approach to include this information, for example by using an extra input channel.

A key feature of our proposed model architecture is its use of depthwise separable convolutions. Initially
studied by Sifre & Mallat (2013), depthwise separable convolutions separate the task of learning spatial
features from that of integrating information across channels by decomposing a typical convolution into
two sequential operations: a spatial convolution applied independently over each input channel followed
by a pointwise convolution across channels. We use of 1D depthwise separable convolutions, formalized
as follows given input x with C channels and a filter of width F:

C
PointwiseConv(W,x)y =X We x;,
c

F
DepthwiseConv(W,x), = X W ;© X,
G

SeparableConv(W ,, Wd,x)(l.) = PointwiseConv(i)(Wp,DepthwiseConv(l.)(Wd,x))
where W denotes a weight matrix and o is element-wise multiplication.

After each convolutional and fully-connected layer, we use the following version of leaky rectified-linear
activation (Maas, Hannun, & Ng, 2013; Xu, et al., 2015) after every convolutional and fully-connected
layer:

LReLU(x); = max(x;, ax;) = {x,if x; >0, ax, if x; <0
where the slope a € (0,1) for each model is as in Extended Data Table 2.



Training  Spatial Pointwise Conv Number Number IReLU Learning Decay Rate Keep Prob Weight
Name Read Conv Depths FC Layers FC Units Slope Rate Init Scale

Length  Widths P
DNN, 25 13,9,9 34, 48, 37 3 2,969 1.1619¢ 5.2225¢™ 5.0277e? 87.107%  1.6181
DNNj, 50 13, 35,13 51,151,114 2 2,919 1.1699¢ 7.4034e™ 7.8038e? 89.161%  2.2217
DNN, o0 100 5,9,13 84, 58, 180 2 2,828 1.2538¢ 4.6969¢™ 6.5505e 94.018%  1.1841
DNN, 5o 150 5,9, 21 59, 221,119 3 2,908 5.7478e° 7.5135e® 9.1889¢72 88.834%  2.4636
DNN,gq 200 9,5, 21 197,116, 119 2 2,733 1.1491e* 6.7080e™ 6.4534¢? 91.967%  0.5878

Extended Data Table 2: Selected neural network hyperparameters. The best deep neural network (DNN) model hyperparameters identified for
each read length L={25, 50, 100, 150, 200}.

During training, we initialized each layer’s parameters according to a truncated random normal
distribution with standard deviation S/\/N, where S is the weight initialization scale in Extended Data
Table 2 and N is the number of inputs to the layer. On each parameter update, we clipped the gradients
to have norm at most 20.

Appendix 3: Data Splits and Model Selection

For model selection, we split our NCBI, datasets into three smaller subsets: NCBI-0,, NCBI-1,, and
NCBI-2,. We constructed NCBI-0, by first taking a random sample of 90% of the species in each genus
(selecting at least one species per genus), then sampling 90% of the reads for each selected species.
The remaining 10% of the reads for these species form NCBI-1,, and NCBI-2, contains all the reads for
the 10% of species excluded from NCBI-0,. As an example, Extended Data Table 3 enumerates the
contents of our NCBI-0,,,, NCBI-1,4,, and NCBI-2,,, subsets.

NCBI-0,,, NCBI-1,,, NCBI-2,,,
90% of reads from Remaining 10% of reads 100% of reads from remaining 10% of species
90% of species per genus from species in NCBIO per genus
Reads 21,899,715 Reads 2,431,551 Reads 2,409,368
Superkingdoms 2 Superkingdoms 2 Superkingdoms 2
Phyla 38 Phyla 38 Phyla 23
Classes 91 Classes 91 Classes 48
Orders 202 Orders 202 Orders 110
Families 479 Families 479 Families 227
Genera 2,768 Genera 2,768 Genera 577
Species 12,609 Species 12,609 Species 1,229

Extended Data Table 3: NCBI subset contents for 100 base pair data. The contents of each subset of our NCBI,,, dataset in terms of the total
number of reads and the number of distinct labels at each taxonomic rank.

For L = {25, 50, 100, 150, 200} we selected a model DNN, by training on noiseless reads from NCBI-0,
and performing a hyperparameter search to maximize read-level accuracy on a validation set comprised
of the reads in NCBI-1, and NCBI-2, with base-flipping noise injected at a rate of 1%. Because reads in
NCBI-2, are from species held out during training, we measured read-level accuracy on this validation
set as follows:

1. If the current example arose from the reference sequence of a species represented in NCBI-0,,
the prediction by DNN, is correct if the model assigns the most probability mass to the true
species label.

2. Otherwise, if the example arose from the reference sequence of a held-out species, the model’s
prediction is correct if the true genus label receives the most probability mass when the model’s
output is marginalized to the genus-level distribution.

We used Google Vizier (Golovin, et al., 2017) with the default search algorithm to explore the
hyperparameter space and optimize the objective computed in this manner. The hyperparameters in
Extended Data Table 2 are the best ones discovered by this search.



Appendix 4: Pooling Studies

In the current work, we explored one straightforward approach for handling the variable read lengths
produced by next-generation sequencing technologies: we enabled running a given model on any query
at least as long as the fixed input dimension of the fully-connected layers by tiling the fully-connected
layers and adding a pooling layer between the last fully-connected layer and the softmax output layer.
We determined which type of pooling works best on our species classification problem by training
several models on our NCBI-0,,, data with the effective width of the fully-connected layers set to 80
base pairs to trigger modeling tiling and pooling. For both average and max pooling, we fixed the
number of depthwise separable convolutional layers to 1 and performed random search over the
remaining hyperparameters. We trained each model for 200,000-400,000 training iterations and then
evaluated on a validation set as described in Appendix 3.
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Extended Data Figure 2: Differences in accuracy and cross entropy loss for average and max pooling. Performance comparison for average
and max pooling trials for both (a) read-level accuracy and (b) cross entropy loss on validation data, where trial IDs (x-axis) are assigned according to
descending validation accuracy.

In total, we trained 40 models with max pooling and 27 with average pooling. Despite the skew in
number of attempted trials, we found models with average pooling to perform significantly better than
those with max pooling; the models with average pooling attained higher accuracies and lower loses at
both train and evaluation time (Extended Data Figure 2). 27 of the models with max pooling layers either
failed to converge or never outperformed random guessing, compared to only 9 such models with
average pooling. The head-to-head comparison of the highest achieved read-level accuracies on the
validation set further reveals the extent of this performance differential: the best average pooling model
outperforms the best max pooling model by more than 34.6%. This pooling exploration established a
sound method of constructing relatively flexible models for read-level species classification of 16S
sequencing data. Based on these results, all models presented in the current study use average pooling.

Appendix 5: Hypervariable Regions

While read-level classification rates are a key measure of the deep learning models’ performance on our
taxonomic classification benchmarking problem, they obscure the probabilistic nature of their
predictions. To investigate whether these probability assignments themselves have any interesting
properties, we compared the probability weights assigned by DNN,, across the length of a fixed
reference sequence. Extended Data Figure 3a shows that DNN,,, made no within-genus mistakes on
synthetic reads from the Salmonella enterica reference sequence, whereas in Figure 3b within-genus
mistakes were common in regions of the reference sequence where DNN,,, assigned low probability
weights to the true Salmonella bongori label. In both of these cases we found that the neural network
made its most confident predictions on 100 base pair synthetic reads containing portions of the
hypervariable regions (as identified using analysis by Chakravorty et al. (2007) and E. coli coordinates
from Brosius et al. (1978)). Thus, although the model did not learn to perfectly recapitulate every



hypervariable region (for example, it made mistaken species assignments on reads containing portions
of the V5 region in Extended Data Figure 3b), it nonetheless appears to have learned to make its most
accurate, confident predictions within the hypervariable regions. Indeed, the lack of overly confident
predictions on reads from purely conserved regions of the reference sequences further suggests the
model has learned from reasonable signal in the data rather than overfitting to artifacts present in our
particular set of training reference sequences.

However, when we repeated this analysis on a reference sequence for Streptomyces libani, one of the
681 distinct species from the most prevalent genus in the training set, we found that the model’s
predicted probabilities followed an entirely different trend (Extended Data Figure 3c and d). Unlike in the
Salmonella cases, probabilities assigned to the correct species label are low across the entire reference
and within-genus mistakes dominated. Figure 3d, on the other hand, shows that the model’s genus-level
predictions were both confident and accurate on the same synthetic reads, with DNN,,, making no
genus mistakes and assigning at least 0.8 probability to the true Streptomyces label everywhere except
for a small region between V2 and V3. This suggests that predicted probability mass is divided amongst
multiple closely-related species which cannot be disambiguated due to an insufficient proportion of
distinctive 100 base pair segments within their reference sequences, so that the particular region a given
synthetic read was pulled from does not appear to matter. This issue is likely caused or exacerbated by
the fact that no adjustments were made for differential dataset coverage.

Examining the DNN’s confidence in its read-mapping assignments along the length of 16S references
provides some initial evidence that these models achieve their good performance by learning salient
read-level information. Extended Data Figure 3 shows that, in general, the vast majority of queries which
yield confident, correct species-level predictions tend to cover parts of the hypervariable regions.
However, it also exposes the impact that differential coverage in the training set may have on individual
predictions: the model made many within-genus mistakes for the less prevalent Salmonella bongori (2
references) but none for Salmonella enterica (11 references), a trend which was even more apparent for
Streptomyces libani, one of the species from the most prevalent genus in our dataset. A more robust
training or inference scheme which properly adjusts for skewed coverage might improve the quality of
these individual predictions and allow the model’s predicted probability estimates to be leveraged to
give calibrated confidence estimates for label assignments.
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Extended Data Figure 3: Variations in confidence of deep learning approach along fixed 16S reference sequences. Probability weight assigned
to the correct species label by DNN;,, for every 100 base pair subsequence of (a) Salmonella enterica (RefSeq ID NR_116126.1), (b) Salmonella
bongori (NR_116124.1), and (c) Streptomyces libani (NR_042301.1) reference sequences. Offset from the beginning of the reference to the start of the
subsequence is specified on the x-axis, and color represents whether DNN,,,’s most confident prediction is the correct label (yellow), another species
label in the correct genus (cyan), or a species outside the genus (blue). (d) The genus-level probability weights assigned by DNN,, to the
Streptomyces label for the same reference sequence as (c).



Appendix 6: Baseline Methods
We computed alignment baselines based on BLAST and BWA mappings against the original reference
sequences. Taking T to be a fixed set of short reads, we computed the BWA baseline as follows:
1. Set accuracy =0and foreachread x € T:
a. Use BWA to assign a set of mappings A and primary mapping a’ to the read x. For each
alignment mapping a, let a,.; be the reference sequence involved in the alignment and a_,
be the corresponding edit distance score.
b. If Ais non-empty:
.  Take A"={a € A|a,, <a’,}

ii. accuracy + % where C is the number of times the true label for read x appears

in the set of ground-truth labels for {a,,1a € A"}
2. Take == as the final accuracy rate

The BLAST baseline accuracy replaces the comparison in 1b with one checking for bit scores that are at
least as large as the bit score of the best mapping.

Our naive Bayes classifier was based on the RDP Classifier, and as such, we used the 8-mer
representation and computed prior probabilities and genus-specific conditional probabilities as
described in Wang et al. (2007) We additionally devised a method of handling IUPAC ambiguity codes in
the 8-mer vector representation by assigning each possible DNA 8-mer encoded by the IUPAC code a
fractional presence. For example, the 9 base pair sequence ‘AAAAAAAAN’ was transformed into a
vector with four non-zero entries: AAAAAAAA with weight 1.0, and AAAAAAAC, AAAAAAAG, and
AAAAAAAT with weights 0.25. We found that incorporating these ambiguous bases improved accuracy
for short or noisy reads.

For our Kraken2 baseline, we generated names.dmp and nodes.dmp files corresponding to the
taxonomy of organisms in our NCBI data, and a corresponding FASTA file marked with Kraken2 taxid
markers for the 16S reference sequences corresponding to the NCBI, -0 training sets. We then
constructed an appropriate Kraken2 database using the following commands:

$ kraken2-build --db kraken2_database --add-to-library kraken.fasta --no-masking
$ kraken2-build --db kraken2 database --build --kmer-len ${kmer_len}
--minimizer-len ${minimizer len} --minimizer-spaces ${minimizer_spaces}

We set kmer_len, minimizer_len, and minimizer_spaces to their default values of (35, 31, 6) for running on
50, 100, and 200 base pair reads and to (15, 15, 3) for running on 25 base pair reads since in this setting
the default values are too large.

Appendix 7: Mock Community Data

The sequencing data from study PRJEB4688 comes from a community developed by the Human
Microbiome Project (Huttenhower et al., 2012) to contain equal concentrations of the following 20
bacterial species: Acinetobacter baumannii str. 5377, Actinomyces odontolyticus str. 1A.21, Bacillus
cereus str. NRS 248, Bacteroides vulgatus str. NCTC 11154, Clostridium beijerinckii str. NCIMB 8052,
Deinococcus radiodurans str. R1, (smooth), Enterococcus faecalis str. OG1RF, Escherichia coli str. K12
substr. MG1655, Helicobacter pylori str. 26695, Lactobacillus gasseri str. 63 AM, Listeria monocytogenes
str. EGDe, Neisseria meningitidis str. MC58, Propionibacterium acnes str. KPA171202, Pseudomonas
aeruginosa str. PAO1-LAC, Rhodobacter sphaeroides str. ATH 2.4.1, Staphylococcus aureus TCH1516,
Staphylococcus epidermidis FDA str. PCI 1200, Streptococcus agalactiae str. 2603 V/R, Streptococcus
mutans str. UA159, and Streptococcus pneumoniae str. TIGR4. There are six replicates in total: three
single-ended and three paired-end replicates. The paired-end replicates, ERR619081-3, contain
481,364, 426,086, and 180,252 unpaired reads, respectively, all of length 251 base pairs. The



single-ended replicates, ERR348713-5, contain reads of variable lengths ranging from 225 to 384 base
pairs distributed according to Extended Data Table 4.

ERR348713 ERR348714 ERR348715
Read Length Frequency Read Length Frequency Read Length Frequency
248 4 225 1 370 689
249 1 246 1 371 11,697
250 15 248 3 372 277
251 106 249 1 373 2,955
252 33,558 250 16 374 31,233
253 156,843 251 100 375 38,529
254 22,512 252 36,868 376 4,711
255 4 253 177,126 377 33

254 26,554 384 2

255 11

259 1
all 213,043 all 240,682 all 90,126

Extended Data Table 4: Read length distribution for single-ended mock community replicates. Distribution of read lengths for each
single-ended replicate from ENA study PRJEB4688.

The mock community sequenced in study PRJEB6244, contains 59 distinct organisms. The even version
of the community contains an equal number of molecules per strain, but there is also an uneven version
for which strain amounts are log-normally distributed within each phylum. Extended Data Table 5 gives
the specific strains and uneven concentrations according to previous publications (D’Amore et al. 2016;
Schirmer et al., 2015). Adjusting for updated taxonomic assignments for some organisms, these 59
strains are covered by the following 56 species labels in NCBI: Acidobacterium capsulatum,
Akkermansia muciniphila, Bacteroides thetaiotamicron, Bacteroides vulgatus, Bordetella bronchiseptica,
Caldicellulosiruptor bescii, Caldicellulosiruptor saccharolyticus, Chlorobaculum tepidum, Chlorobium
limicola, Chlorobium phaeobacteroides, Chlorobium phaeovibrioides, Chloroflexus aurantiacus,
Deinococcus radiodurans, Desulfovibrio desulfuricans, Desulfovibrio piger, Dickeya dadantii,
Dictyoglomus turgidum, Enterococcus faecalis, Fusobacterium nucleatum, Gemmatimonas aurantiaca,
Herpetosiphon aurantiacus, Hydrogenobaculum sp., Leptothrix cholodnii, Nitrosomonas europaea,
Nostoc sp., Paraburkholderia xenovorans, Pelodictyon phaeoclathratiforme, Persephonella marina,
Porphyromonas gingivalis, Rhodopirellula baltica, Rhodospirillum rubrum, Ruegeria pomeroyi,
Ruminiclostridium thermocellum, Salinispora arenicola, Salinispora tropica, Shewanella baltica,
Sulfitobacter sp., Sulfurihydrogenibium sp., Sulfurihydrogenibium yellowstonense, Thermoanaerobacter
pseudethanolicus, Thermotoga neapolitana, Thermotoga petrophila, Thermotoga sp., Thermus
thermophilus, Treponema denticola, Treponema vincentii, Zymomonas mobilis, Archaeoglobus fulgidus,
Ignicoccus hospitalis, Methanocaldococcus jannaschii, Methanococcus maripaludis, Nanoarchaeum
equitans, Pyrobaculum aerophilum, Pyrobaculum calidifontis, Pyrococcus horikoshii, and Sulfolobus
tokodaii.

At the genus-level, these organisms are covered by 45 labels: Acidobacterium, Akkermansia,
Bacteroides, Bordetella, Caldicellulosiruptor, Chlorobaculum, Chlorobium, Chloroflexus, Deinococcus,
Desulfovibrio, Dictyoglomus, Dickeya, Enterococcus, Fusobacterium, Gemmatimonas, Herpetosiphon,
Hydrogenobaculum, Leptothrix, Nitrosomonas, Nostoc, Paraburkholderia, Pelodictyon, Persephonella,
Porphyromonas, Rhodopirellula, Rhodospirillum, Ruegeria, Ruminiclostridium, Salinispora, Shewanella,
Sulfitobacter, Sulfurihydrogenibium, Thermoanaerobacter, Thermotoga, Thermus, Treponema,
Zymomonas, Archaeoglobus, Ignicoccus, Methanocaldococcus, Methanococcus, Nanoarchaeum,
Pyrobaculum, Pyrococcus, and Sulfolobus.



Name Domain Proportion [Name Domain Proportion
Acidobacterium capsulatum ATCC 51196 Bacteria 8.1% Rhodopirellula baltica SH 1 Bacteria 1.0%
Akkermansia muciniphila ATCC BAA-835 Bacteria 0.9% Rhodospirillum rubrum ATCC 11170 Bacteria 1.2%
Anaerocellum thermophilum Z-1320, DSM 6725 Bacteria 1.2% Ruegeria pomeroyi DSS-3 Bacteria 0.6%
Bacteroides thetaiotaomicron VPI-5482 Bacteria 0.2% Salinispora arenicola CNS-205 Bacteria 0.5%
Bacteroides vulgatus ATCC 8482 Bacteria 0.9% Salinispora tropica CNB-440 Bacteria 1.6%
Bordetella bronchiseptica RB50 Bacteria 9.2% Shewanella baltica OS185 Bacteria 3.1%
Burkholderia xenovorans LB400 Bacteria 2.6% Shewanella baltica 0S223 Bacteria 1.4%
Caldicellulosiruptor saccharolyticus DSM 8903 Bacteria 2.0% Sulfitobacter sp. EE-36 Bacteria 2.0%
Chlorobaculum tepidum TLS Bacteria 0.5% Sulfitobacter sp. NAS-14.1 Bacteria 4.3%
Chlorobium limicola DSM 245 Bacteria 0.4% Sulfurihydrogenibium sp. YO3AOP1 Bacteria 1.6%
Chlorobium phaeobacteroides DSM 266 Bacteria 1.9% Sulfurihydrogenibium yellowstonense SS-5 Bacteria 2.6%
Chlorobium phaeovibrioides DSM 265 Bacteria 0.3% Thermoanaerobacter pseudethanolicus ATCC 33223 Bacteria 0.8%
Chloroflexus aurantiacus J-10-fl Bacteria 0.9% Thermotoga neapolitana DSM 4359 Bacteria 0.7%
Clostridium thermocellum ATCC 27405 Bacteria 0.6% Thermotoga petrophila RKU-1 Bacteria 1.0%
Deinococcus radiodurans R1 Bacteria 1.7% Thermotoga sp. RQ2 Bacteria 3.4%
Desulfovibrio desulfuricans ATCC 27774 Bacteria 1.4% Thermus thermophilus HB8 Bacteria 0.5%
Desulfovibrio piger ATCC 29098 Bacteria 3.1% Treponema denticola ATCC 35405 Bacteria 0.2%
Dictyoglomus turgidum DSM 6724 Bacteria 3.5% Treponema vincentii | Bacteria 0.2%
Erwinia chrysanthemi Bacteria 0.3% [Zymomonas mobilis mobilis ZM4 Bacteria 0.8%
Enterococcus faecalis /583 Bacteria 4.3% |Archaeoglobus fulgidus DSM 4304 Archaea 0.3%
Fusobacterium nucleatum ATCC 25586 Bacteria 0.3% Ignicoccus hospitalis KIN4/I Archaea 1.2%
Gemmatimonas aurantiaca T-27T Bacteria 0.7% Methanocaldococcus jannaschii DSM 2661 Archaea 0.9%
Herpetosiphon aurantiacus ATCC 23779 Bacteria 1.8% Methanococcus maripaludis C5 Archaea 0.4%
Hydrogenobaculum sp. YO4AAS1 Bacteria 1.1% Methanococcus maripaludis S2 Archaea 0.5%
Leptothrix cholodnii SP-6 Bacteria 1.8% Nanoarchaeum equitans Kin4-M Archaea 1.0%
Nitrosomonas europaea ATCC 19718 Bacteria 4.3% Pyrobaculum aerophilum IM2 Archaea 0.5%
Nostoc sp. PCC 7120 Bacteria 2.7% Pyrobaculum calidifontis JCM 11548 Archaea 2.6%
Pelodictyon phaeoclathratiforme BU-1 Bacteria 0.1% Pyrococcus horikoshii OT3 Archaea 1.9%
Persephonella marina EX-H1 Bacteria 5.5% Sulfolobus tokodaii 7(S311) Archaea 0.7%
Porphyromonas gingivalis ATCC 33277 Bacteria 0.2%

Extended Data Table 5: True contents of 59-organism mock community. List of 10 Archaea and 59 bacterial strains present in the mock
community from ENA study PRJEB6244.

Some of the labels for this 59-organism mock community are missing from our NCBI dataset, namely the
genus label Nanoarchaeum and the eight species labels Hydrogenobaculum sp., Leptothrix cholodnii,
Nostoc sp., Sulfitobacter sp., Sulfurihydrogenibium sp., Thermotoga sp., Treponema vincentii, and
Nanoarchaeum equitans. For our analyses, we used all of the mock community sequencing runs
included in study PRJEB6244 which amounts to the 51 runs listed in Extended Data Table 6. All of the
reads contained in the data files for each of these runs are 250 base pairs, but the total number of reads
per run varies from 3,290 to 3,506,882.



Run Accession Number of Reads Community Type [Run Accession Number of Reads = Community Type
(unpaired) (unpaired)
ERR777676 413,164 Even ERR777718 28,704 Uneven
ERR777677 77,748 Even ERR777719 23,526 Uneven
ERR777678 331,464 Even ERR777720 49,458 Uneven
ERR777695 1,187,736 Even ERR777721 62,430 Uneven
ERR777696 3,506,882 Even ERR777722 44,192 Uneven
ERR777697 3,268,324 Even ERR777726 711,606 Even
ERR777698 2,185,152 Even ERR777727 667,110 Even
ERR777699 26,282 Even ERR777728 612,894 Even
ERR777700 5,730 Even ERR777729 1,316,194 Uneven
ERR777701 4,052 Even ERR777730 43,378 Even
ERR777702 736,790 Even ERR777731 48,706 Even
ERR777703 184,040 Even ERR777732 3,299,128 Even
ERR777704 584,670 Even ERR777733 1,910,258 Even
ERR777705 2,810,390 Even ERR777734 13,224 Even
ERR777706 2,263,688 Even ERR777735 5,272 Even
ERR777707 553,630 Uneven ERR777736 815,732 Even
ERR777708 2,280,446 Uneven ERR777737 488,286 Even
ERR777709 2,017,580 Uneven ERR777738 403,586 Even
ERR777710 2,162,570 Even ERR777739 969,458 Even
ERR777711 3,120,284 Uneven ERR777740 62,898 Uneven
ERR777712 3,510 Even ERR777741 524,110 Uneven
ERR777713 15,158 Even ERR777742 464,972 Uneven
ERR777714 3,290 Even ERR777746 24,690 Even
ERR777715 70,706 Even ERR777747 62,594 Even
ERR777716 91,702 Even ERR777748 91,438 Even
ERR777717 100,696 Even

Extended Data Table 6: Community type by run accession. List of ENA accessions for mock community sequencing runs from study PRJEB6244
along with their corresponding community type (even or uneven) and read count.
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