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Abstract 12	

Fluid intelligence is the capacity to solve novel problems in the absence of task-specific 13	

knowledge, and is highly predictive of outcomes like educational attainment and 14	

psychopathology. Here, we modelled the neurocognitive architecture of fluid intelligence in 15	

two cohorts: CALM (N = 551, aged 5 - 17 years) and NKI-RS (N = 335, aged 6 - 17 years). We 16	

used multivariate Structural Equation Modelling to test a preregistered watershed model of 17	

fluid intelligence. This model predicts that white matter contributes to intermediate cognitive 18	

phenotypes, like working memory and processing speed, which, in turn, contribute to fluid 19	

intelligence. We found that this model performed well for both samples and explained large 20	

amounts of variance in fluid intelligence (R2
CALM = 51.2%, R2

NKI-RS = 78.3%). The relationship 21	

between cognitive abilities and white matter differed with age, showing a dip in strength 22	

around ages 7 - 12 years. This age-effect may reflect a reorganization of the neurocognitive 23	

architecture around pre- and early puberty. Overall, these findings highlight that intelligence 24	

is part of a complex hierarchical system of partially independent effects. 25	

Keywords 26	

Working memory, processing speed, fractional anisotropy, watershed model, structural 27	

equation modeling 28	
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Fluid intelligence (gf) is a core part of human cognition and refers to the capacity to solve 29	

novel problems in the absence of task-specific knowledge. It is highly predictive of a number 30	

of important life span outcomes, including educational attainment (Primi et al. 2010; Roth et 31	

al. 2015) and psychopathology (Gale et al. 2010). Despite years of investigation, however, our 32	

understanding of the neurocognitive architecture of gf remains limited. Longstanding debates 33	

have considered, for instance, how gf relates to more fundamental cognitive functions such 34	

as working memory and processing speed, and how all of these cognitive functions relate to 35	

brain structure and function (Kyllonen and Christal 1990; Fry and Hale 2000; Chuderski 2013; 36	

Ferrer et al. 2013).  37	

Working memory is the ability to hold and manipulate information in the mind short-term. It 38	

has been suggested that working memory is a key determinant of gf by limiting mental 39	

information processing capacity (Fukuda et al. 2010; Chuderski 2013). Proponents of this 40	

working memory account of gf cite high correlations between the two domains ranging from 41	

0.5 to 0.9 in meta-analyses (Ackerman et al. 2005; Oberauer et al. 2005). Such high 42	

correlations have led some to suggest that gf and working memory are, in fact, isomorphic 43	

(Kyllonen and Christal 1990). However, more recent work has highlighted that this 44	

isomorphism only arises under conditions of high time constraints for gf tasks (Chuderski 45	

2013). This suggests that gf and working memory are, in fact, separable constructs and 46	

underlines the importance of processing speed for gf. 47	

Processing speed, the speed of mental computations, is thought to be rate-limiting to gf and 48	

is therefore sometimes proposed to be a particularly good predictor of gf (Kail and Salthouse 49	

1994; Salthouse 1996; Ferrer et al. 2013; Kail et al. 2015; Schubert et al. 2017). Proponents of 50	

the processing speed account of gf cite moderate but robust correlations between gf and 51	
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processing speed of 0.2 in meta-analyses (Sheppard and Vernon 2008) as well as longitudinal 52	

evidence (Finkel et al. 2005; Coyle et al. 2011; Kail et al. 2015). Salthouse (1996) argued in the 53	

context of cognitive aging, that processing speed determines high-level cognitive 54	

performance because slow processing means that relevant sub-operations cannot be 55	

completed in a set amount of time or are not available for successful integration. A 56	

complementary explanation of individual differences in gf proposes that processing speed 57	

may be a direct reflection of fundamental neuroarchitectonic properties of the brain, such as 58	

myelination or white matter microstructure (Lu et al. 2011; Chevalier et al. 2015). 59	

White matter shows protracted development throughout childhood and adolescence, and 60	

into the third decade of life (Mills et al. 2016). White matter tracts can be characterised in 61	

vivo using diffusion-tensor imaging (DTI), which is sensitive, but not necessarily specific, to 62	

white matter microstructural properties such as myelination or axonal density (Jones et al. 63	

2013; Wandell 2016). Fractional anisotropy (FA) is the most commonly investigated DTI 64	

measure and quantifies the directionality of water diffusion in different white matter tracts 65	

(Pfefferbaum et al. 2000; Wandell 2016). Working memory, processing speed and gf have 66	

each been linked to individual differences in FA (Vestergaard et al. 2011; Kievit, Davis, 67	

Griffiths, Correia, CamCAN, et al. 2016; Bathelt et al. 2018). While some studies, using 68	

Principal Component Analysis, have posited that FA in different tracts can be summarized by 69	

sizable single components (Penke et al. 2010; Cox et al. 2016), formal investigations using 70	

confirmatory factor analysis have demonstrated that single-factor models of FA generally 71	

show poor fit and do not adequately capture individual differences in white matter 72	

microstructure (Lövdén et al. 2013; Kievit, Davis, Griffiths, Correia, Cam-CAN, et al. 2016).  In 73	

a similar vein, there is a growing body of literature showing specific associations between 74	

white matter tracts and cognitive abilities, with those connecting frontoparietal regions 75	
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usually showing largest contributions to complex cognitive functions like gf (Vestergaard et al. 76	

2011; Kievit et al. 2016; Bathelt et al. 2018).  77	

We here seek to address several critical outstanding issues in the field: First, there is limited 78	

systematic evidence on the concurrent relationships between gf, working memory, 79	

processing speed and white matter. This leaves the relative contributions of processing speed 80	

and working memory to gf unclear, which, in turn, poses challenges for the design of effective 81	

cognitive training interventions. Second, studies usually use a single task as a proxy for 82	

complex and abstract constructs such as processing speed, working memory, and gf. This 83	

raises questions about the generalizability of findings (Noack et al. 2014). Third, our 84	

understanding of how the relationships between relevant cognitive domains and between 85	

brain and cognition change with age remains limited, raising the possibility that brain-86	

behaviour relationships may change with age (Garrett 1946; Johnson 2000; Tamnes et al. 87	

2017). 88	

To address these issues, we here used structural equation modelling (SEM) to model the 89	

associations between gf, working memory, processing speed, and white matter 90	

microstructure and age in two large, independent samples: the Centre for Attention, Leaning 91	

and Memory sample (CALM, N = 551, aged 5 - 17 years), which consists of children and 92	

adolescents referred to a clinic for having problems with attention, learning and memory 93	

(Holmes et al. 2018), and the Enhanced Nathan Kline Institute – Rockland Sample (NKI-RS, N = 94	

335, aged 6 - 17 years), a community-ascertained sample (Nooner et al. 2012). 95	

To investigate the neurocognitive architecture of gf in a principled way, we used a watershed 96	

model of individual differences. Based on the metaphor of a watershed, the model predicts a 97	

hierarchical many-to-one mapping of partially independent effects such that upstream 98	
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tributaries (e.g. brain structure) contribute to intermediate cognitive phenomena (cognitive 99	

endophenotypes, e.g. working memory and processing speed), which then contribute to 100	

downstream, complex cognitive phenomena such as gf (Cannon and Keller 2006; Kievit, Davis, 101	

Griffiths, Correia, CamCAN, et al. 2016). See Figure 1 for a representation of the model.  102	

103	
Figure 1. The Watershed Model. Schematic representation of the watershed model 104	
developed by (Cannon and Keller 2006) and adapted for the present study. Fluid ability is 105	
hypothesized to be the downstream product of working memory and processing speed, 106	
which are, in turn, the product of white matter contributions. Figure adapted from Kievit et 107	
al. (2016). 108	

SEM, as a statistical technique, is uniquely suited to modeling the kinds of complex 109	

multivariate brain-behavior associations posited by the watershed model (Kievit et al. 2011; 110	

Kline 2015). SEM combines factor analysis and path analysis (a variant of regression analysis). 111	

It can model abstract cognitive constructs like gf, by estimating latent variables from 112	

observed task scores (i.e. manifest variables). This feature of SEM allowed us to model gf, 113	

working memory, and processing speed in two independent samples, and thereby provided a 114	

direct test of the generalizability of our findings. Second, SEM can test the simultaneous 115	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 28, 2019. ; https://doi.org/10.1101/435719doi: bioRxiv preprint 

https://doi.org/10.1101/435719
http://creativecommons.org/licenses/by/4.0/


	 7 

relations between multiple cognitive and neural variables, allowing us to address the relative 116	

contributions of different white matter tracts and different cognitive endophenotypes to gf. 117	

Finally, using SEM Trees (Brandmaier et al. 2013), a novel, decision-tree-based extension of 118	

SEM, we investigated whether the associations in the watershed model change with age. 119	

Based on the watershed model we made the following preregistered predictions 120	

(http://aspredicted.org/blind.php?x=u5pf6z): 121	

1. Working memory, gf and processing speed are separable constructs. 122	

2. Individual differences in gf are predicted by working memory and processing speed. 123	

3. White matter microstructure is a multi-dimensional construct. 124	

4. There is a hierarchical relationship between white matter microstructure, cognitive 125	

endophenotypes (working memory and processing speed) and gf, such that white 126	

matter contributes to working memory and processing speed, which, in turn 127	

contribute to gf. 128	

5. The contribution of working memory and processing speed to gf changes with age. 129	

Materials and Methods 130	

Samples 131	

We analysed data from the CALM and NKI-RS sample, as described in detail by (Holmes et al. 132	

2018) and (Nooner et al. 2012) respectively. See also Simpson-Kent et al. (2019). We had also 133	

preregistered to analyse data from the ABCD cohort (Volkow et al. 2018). The latter cohort 134	

contains only data for 9 - and 10 - year olds at present, however, which limits comparability 135	

to CALM and NKI-RS, and makes it unsuitable for investigations of developmental differences. 136	

We therefore opted to not analyse ABCD data here and instead recommend a replication of 137	
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the analyses presented here in ABCD once longitudinal data is available. The CALM sample 138	

consists of children and adolescents referred by health and educational professionals as 139	

having difficulties in attention, learning and/or memory. The NKI-RS is a community-140	

ascertained, lifespan sample, and representative of the general population of Rockland, New 141	

York, and the United States as a whole, in terms of ethnicity, socioeconomic status etc. For 142	

NKI-RS, we included data for participants under the age of 18 only to match the age range of 143	

CALM and excluded data that were completed more than half a year after enrolment. The 144	

latter criterion was implemented to ensure that age at assessment did not differ 145	

substantively between cognitive measures. The final samples included 551 participants from 146	

CALM (30.85% female, aged 5.17 - 17.92 years, NNeuroimaging = 165) and 335 participants from 147	

NKI-RS (43.48% female, aged 6.06 - 17.92 years, NNeuroimaging = 67). See Table 1 for prevalence 148	

of relevant disorders and learning difficulties in the samples. 149	

Table 1. Prevalence of Relevant Disorders and Learning Difficulties in the CALM and NKI-RS 150	
cohorts 151	

Variable Percentage 
CALM 

Percentage 
NKI-RS 

ADHD 31.94 17.01 
Dyslexia 5.81 5.67 
Autism 6.72 0.60 
Mood disorder 0.54 0.90 
Anxiety disorder 2.36 18.21 
Medicated1 10.53 17.01 
Speech/language problems 38.11 19.40 
Note. 1 unspecified medication for NKI-RS, ADHD-medication for CALM 152	

Cognitive Tasks 153	

We included cognitive tasks measuring the domains of gf, working memory or processing 154	

speed for CALM and NKI-RS. See Table 2 for the complete list of tasks used, and the 155	
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Supplementary Methods for task descriptions. Supplementary Figure 1 and 2 show raw 156	

scores on all tasks. The tasks modelled here were preregistered for CALM but not NKI-RS. 157	

Table 2. Cognitive Tasks Modelled 158	

 CALM NKI-RS 
Working memory AWMA Digit Recall (forward digit span) WISC-R Forward Digit Span 
 AWMA Backward Digit Span WISC-R Backward Digit Span 
 AWMA Dot Matrix - 
 AWMA Mr X - 
 - CNB N-back task 
gf WASI-II Matrix Reasoning WASI-II Matrix Reasoning 
 - WASI-II Block Design 
 - WASI-II Similarities 
 - CNB Verbal Reasoning 
Processing speed DKEFS Trail-Making DKEFS Trail-Making 
 PhAB Rapid Naming - 
 TEA-Ch RBBS - 
 - CNB Motor Speed 
 - CNB Sensory Motor Speed 
Note. See the Supplementary Methods for task descriptions. Abbreviations: AWMA - 159	
Automated Working Memory Assessment (Alloway 2007), CNB - Computerized 160	
Neurocognitive Battery (Gur et al. 2001), DKEF - Delis-Kaplan Executive Functioning System 161	
(Delis et al. 2004), PhAB – Phonological Assessment Battery (Gallagher and Frederickson 162	
1995), TEA-Ch RBBS - Test of Everyday Attention for Children, Red & Blues, Bags & Shoes 163	
subscale (Manly et al. 2001), WASI - Wechsler Abbreviated Scale of Intelligence - Second 164	
Edition (Wechsler 2011), WISC-R - Wechsler Intelligence Scale for Children – Revised 165	
(Kaufman 1975). 166	

White Matter Microstructure 167	

We modelled mean FA for all ten tracts of the Johns Hopkins University (JHU) white matter 168	

tractography atlas (Hua et al. 2008) averaged over the hemispheres (Figure 2). See 169	

Supplementary Methods for details of the MRI acquisition and processing and Supplementary 170	

Figure 3 and 4 for raw FA values in all tracts. 171	
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172	
Figure 2. White Matter Tracts Modelled in the Analyses. 173	

Analysis Methods and Structural  Equation Modell ing 174	

Covariance matrices and scripts replicating key analyses can be obtained from: 175	

https://github.com/df1234/gf_development. Supplementary Figure 5 and 6 show correlation 176	

matrices of all tasks and white matter tracts modelled. We modelled raw scores for gf and 177	

working memory tasks, as preregistered. Raw scores on processing speed tasks were 178	

transformed. This step was not preregistered, but found necessary to achieve model 179	

convergence to ensure interpretability of scores. First, we inverted response time scores 180	

(using the formula y = 1/x) to obtain more intuitive measures of ‘speed’ for all but the CNB 181	

Motor Speed task, for which raw scores were already a measure of speed. Afterwards, we 182	

applied a log-transformation to reaction time tasks to increase normality and aid estimation. 183	

For the CNB Motor Speed task only, we additionally removed values ± 2 SD of the mean (N = 184	

6) because the presence of these outliers had caused convergence problems. 185	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 28, 2019. ; https://doi.org/10.1101/435719doi: bioRxiv preprint 

https://doi.org/10.1101/435719
http://creativecommons.org/licenses/by/4.0/


	 11 

We modelled the associations between cognition and white matter microstructure using SEM 186	

in R (R core team 2015) using the package lavaan (Rosseel 2012). All models were fit using 187	

maximum likelihood estimation with robust Huber-White standard errors and a scaled test 188	

statistic. Missing data was addressed using full information maximum likelihood estimation.  189	

We used SEM Trees to investigate whether the associations among cognitive and neural 190	

measures differed with age. SEM Trees use decision tree methods to hierarchically split a 191	

dataset into subgroups if parameter estimates differ significantly based on a covariate of 192	

interest  - in this case age (Brandmaier et al. 2013). We first ran the watershed model in 193	

OpenMx (Boker et al. 2011) and then passed this model object to semtree to compute the 194	

SEM Trees. We ran one SEM Tree for each parameter of interest (e.g. the covariance 195	

between working memory and processing speed). All other parameters in each semtree 196	

object were set to be invariant across groups to ensure that splits were specific to the 197	

parameter of interest. We used a 10 - fold cross-validation estimation method as recommend 198	

by (Brandmaier et al. 2013). For the path from the cingulate to working memory only we 199	

used 5 - fold cross-validation because the model did not converge using 10 - fold cross-200	

validation. Minimum sample size in age group was set to N = 50 to ensure reliable estimation 201	

of standard errors. Note that this choice effectively limited search space for potential splits to 202	

ages 6.58 - 12.42 years for CALM and 8.08 - 15.49 years for NKI-RS. 203	

Results 204	

To evaluate the hypotheses generated by the watershed model, we built up the watershed 205	

model in steps and carried our comprehensive tests of model fit at each step. First, we 206	

assessed the overall fit of our models to the data using the chi-square test, root mean square 207	
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error of approximation (RMSEA), comparative fit index (CFI) and standardized root mean 208	

square residual (SRMR). Good absolute fit was defined as RMSEA < 0.05, CFI > 0.97 and SRMR 209	

< 0.05; acceptable fit as RMSEA = 0.08 - 0.05, CFI = 0. 95 - 0.97, SRMR = 0.05 - 0.10 210	

(Schermelleh-Engel et al. 2003). Second, we assessed specific predictions from our models by 211	

comparing them to alternative models. Comparative model fit for nested models was 212	

assessed using the chi-square difference test. Non-nested models were compared using the 213	

Akaike (AIC) weights, which indicates the probability of a model being the data-generating 214	

model compared to all other models tested (Wagenmakers and Farrell 2004). Lastly, we 215	

evaluated the significance and strength of relationships between specific variables in our 216	

models by inspecting the Wald test for individual parameters, noting the joint R2 where 217	

relevant and reporting standardized parameter estimates. Absolute standardized parameter 218	

estimates above 0.10 were defined as small effects, 0.20 as typical and 0.30 as large (Gignac 219	

and Szodorai 2016).  220	

The Measurement Model of Cognition 221	

To examine the neurocognitive architecture of gf, we started by modelling the cognitive 222	

components of the watershed model: gf, working memory and processing speed. Specifically, 223	

we fit a three-factor model of cognition (Figure 3) and compared it to alternative 224	

measurement models. This approach allowed us to test Hypothesis 1: namely that gf, working 225	

memory and processing speed form three separable, albeit likely correlated cognitive factors.  226	

The Three-Factor Model (Figure 3) showed excellent absolute fit for both the CALM and NKI-227	

RS sample (Table 3), indicating that overall, the data was compatible with a model of gf, 228	

working memory and processing speed as three separate factors.  229	
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230	
Figure 3. Different Measurement Models of Cognition. Abbreviations: WM: working memory, 231	
PS: processing speed 232	

The Three-Factor Model also showed very good comparative fit for NKI-RS, with a 96.60% 233	

probability of being the data-generating model compared to all alternative models tested, as 234	

indicated by its AIC weight (Figure 3). The evidence was more mixed for CALM, for which the 235	

Three-Factor Model showed a 27.15% probability of being the data-generating model, while 236	

Two-Factor Model B (Figure 3, treating working memory and gf as a unitary factor) showed a 237	

72.85% probability of being the data-generating model, highlighting a close relationship 238	

between gf and working memory for this sample. The Single-Factor Model and Two-Factor 239	

Model A (Figure 3, treating speed and gf as a unitary factor) showed a very low 240	

(approximately 0%) probability of being the data-generating model, indicating that speed and 241	

gf were clearly separable in both samples. 242	
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Table 3. Model Fit of Competing Measurement Models 243	

Single-Factor Model Two-Factor Model A Two-Factor Model B Three-Factor Model 
CALM 

χ2(20) = 70.28, p < .001 
RMSEA = .068  
[.051-.085] 
CFI = .963 
SRMR = .047 

χ2(19) = 67.99, p < .001 
RMSEA = .068  
[.052 - .086] 
CFI = .964 
SRMR = .043 

χ2(19) = 41.66, p = .002 
RMSEA = .047  
[.027 - .066] 
CFI = .983 
SRMR = .032 

χ2(18) = 41.74, p = .001 
RMSEA = .049  
[.030 - .068] 
CFI = .983 
SRMR = .032 

AIC  = 9697.18  AIC  = 9696.44 AIC  = 9668.58 AIC  = 9670.55  
BIC = 9800.66 BIC = 9804.24 BIC = 9776.37 BIC = 9782.66 
AICweight  = 0%  AICweight  = 0% AICweight  = 72.85% AICweight  = 27.15% 

NKI-R 
χ2(35) = 109.96, p < .001 
RMSEA = .080  
[.064 - .097] 
CFI = .936 
SRMR = .045 

χ2(34) = 108.15, p < .001 
RMSEA = .081 
[.064 - .098] 
CFI = .936 
SRMR = .044 

χ2(34) = 64.85, p = .001 
RMSEA = .052  
[.033 - .071] 
CFI = .974 
SRMR = .035 

χ2(32) = 54.15, p = .009 
RMSEA = .045  
[.024 - .065] 
CFI = .981 
SRMR = .030 

AIC  = 7155.64 AIC  = 7155.74 AIC  = 7109.43 AIC  = 7102.74 
BIC = 7270.07 BIC = 7273.98 BIC = 7227.67 BIC = 7228.60 
AICweight  = 0% AICweight  = 0% AICweight  = 3.40% AICweight  = 96.60% 
Note. See Figure 3 for the configuration of different models. Abbreviations: Akaike Information Criterion (AIC), 244	
Bayesian Information Criterion (BIC), Akaike weight (AICweight) 245	

Overall, these result provide mixed evidence for Hypothesis 1: Even though working memory, 246	

processing speed and gf were highly correlated in both samples (Table 4), processing speed 247	

formed a clearly separable factor from working memory and gf in both samples. Working and 248	

gf, however, were clearly separable only in NKI-RS, but not CALM, suggesting greater 249	

similarity between gf and working memory in the CALM sample. To facilitate comparison 250	

across samples and in accordance with our preregistered analysis plan we nonetheless used 251	

the three-factor measurement model (Table 4, Supplementary Table 1) in all subsequent 252	

analyses. 253	
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Table 4. Covariance between Cognitive Measures in the Three-Factor Model  254	

Sample Path Standardized Estimate 
CALM gf <-> memory 0.71, z = 28.42, p < .001 
 gf <-> speed 0.55, z = 12.20, p < .001 
 memory <-> speed 0.79, z = 19.35, p < .001 
NKI-RS gf <-> memory 0.91, z = 19.51, p < .001 
 gf <-> speed 0.81, z = 24.73, p < .001 
 memory <-> speed 0.87, z = 17.43, p < .001 
Note. See Supplementary Table 1 for factor loadings. 255	

The Relationship between Working Memory, Processing Speed and g f 256	

We next examined the relationships between working memory, processing speed and gf in 257	

more detail. Specifically, we fit a SEM including regression paths between working memory 258	

and gf, as well as speed and gf, to test Hypothesis 2, that working memory and processing 259	

speed each predict individual differences in gf. We found that this model showed good 260	

absolute fit for both samples (CALM: χ2(18) = 41.74, p = .001; RMSEA = .049 [.030 - .068]; CFI 261	

= .983; SRMR = .032, NKI-RS: χ2(32) = 54.15, p = .009; RMSEA = .045 [.024 - .065]; CFI = .981; 262	

SRMR = .030), indicating that, overall, the data was compatible with our model.  263	

To further scrutinize the relationship between gf, working memory and speed, we compared 264	

our freely-estimated model to a set of alternative models with different constraints imposed 265	

upon the regression paths. First, to test whether working memory and speed each made 266	

different contributions, we tested an alternative model in which the paths from processing 267	

speed and working memory to gf were constrained to be equal. In CALM (∆χ2(1) = 15.53, p < 268	

.001), but not NKI-RS (∆χ2(1) = 3.25, p = .072), the freely-estimated model fit better than the 269	

equality-constrained model, indicating that working memory and speed each made different 270	

contributions in CALM but not NKI-RS. Next, we tested whether the freely estimated model 271	

fit better than a model in which the path between gf and working memory was constrained 272	
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to zero. We found that that the freely estimated model fit better for both samples (CALM: 273	

∆χ2(1) = 20.77, p < .001; NKI-RS: ∆χ2(1) = 12.97, p < .001). In line with our hypothesis, this 274	

result indicates that working memory makes a significant incremental contribution to gf. 275	

Finally, we tested a model in which the path between gf and processing speed was 276	

constrained to zero. This model showed no difference in fit to the freely estimated model for 277	

CALM (∆χ2(1) = 0.02, p = .875) or NKI-RS (∆χ2(1) = 0.04, p = .849). Contrary to our hypothesis, 278	

this indicates that there was no clear incremental contribution of processing speed to gf. 279	

Finally, we inspected standardized path estimates of the freely estimated model to assess the 280	

effect seizes of working memory and processing speed. Parameter estimates showed that 281	

working memory showed a greater effect on gf than processing speed, particularly in CALM 282	

(Table 5) even though raw correlations between gf and speed were high in both samples 283	

(Table 4).  284	

Table 5. Regression Path Estimates. 285	

Sample Path Standardized Estimate 
CALM speed -> gf -0.01, z = -0.16, p = .876 
 memory -> gf 0.72, z = 7.65, p < .001 
NKI-RS speed -> gf 0.06, z = 0.21, p = .208 
 memory -> gf 0.86, z = 1.81, p = .070 
 286	

Overall these results provide mixed evidence for Hypothesis 2: There was good evidence that 287	

working memory and speed made a significant joint contribution to gf, and that working 288	

memory made an incremental contribution to gf in CALM. Contrary to our hypothesis, and 289	

the watershed model, however, processing speed showed no significant incremental 290	

contribution to gf, above and beyond working memory. We explore likely explanations for this 291	

finding in the Discussion. 292	
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The Measurement Model of White Matter 293	

We next examined the measurement model of white matter to test Hypothesis 3, namely 294	

that white matter microstructure is a multi-dimensional construct. Specifically, we tested 295	

whether white matter microstructure could be adequately captured by a single factor by 296	

examining absolute model fit. As expected, the single-factor model of white matter 297	

microstructure did not fit the data well (CALM: χ2(35) = 124.63, p < .001; RMSEA = .125 [.103 298	

- .147]; CFI = .933; SRMR = .039; NKI-RS: χ2(35) = 132.33, p < .001; RMSEA = .204 [.167 - .242]; 299	

CFI = .885; SRMR = .023). This indicates that white matter microstructure could not be 300	

reduced to a single ‘global FA’ dimension in our samples, in line with (Lövdén et al. 2013; 301	

Kievit, Davis, Griffiths, Correia, CamCAN, et al. 2016) and supporting Hypothesis 3. We 302	

therefore modelled each of the ten white matter tracts separately in all subsequent models. 303	

The Watershed Model:  Relationships between Cognition and White Matter 304	

Next, we fit the full watershed model including white matter, working memory, processing 305	

speed and gf. Following our general analysis procedure, we investigated overall model fit, 306	

alternative models and individual path estimates to gain a comprehensive understanding of 307	

the relationships in the watershed model and to test Hypothesis 4 - that white matter 308	

contributes to working memory capacity and processing speed, which, in turn, contribute to 309	

gf.  310	

We found largely converging results across samples. The watershed model showed good 311	

absolute fit in CALM (χ2(78) = 107.78, p = .014; RMSEA = .026 [.012 - .038]; CFI = .981; SRMR 312	

= .043) and acceptable fit in NKI-RS (χ2(112) = 219.22, p < .001; RMSEA = .053 [.043 - .064]; 313	

CFI = .928; SRMR = .088). White matter explained large amounts of variance in working 314	

memory (R2
CALM = 32.3%; R2

NKI-RS = 46.1%) and processing speed (R2
CALM = 38.2%; R2

NKI-RS = 315	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 28, 2019. ; https://doi.org/10.1101/435719doi: bioRxiv preprint 

https://doi.org/10.1101/435719
http://creativecommons.org/licenses/by/4.0/


	 18 

54.4%), which, in turn, explained even more variance in gf (R2
CALM = 51.2%; R2

NKI-RS = 78.3%). 316	

In line with Hypothesis 4, this indicates that the watershed model fit the data overall. 317	

Comparing the freely estimated watershed model to alternative, constrained, models 318	

showed that white matter contributed significantly to memory and processing speed. 319	

Specifically, a model in which paths from white matter to processing speed were constrained 320	

to zero fit worse than the freely-estimated model (CALM: ∆χ2(10) = 50.26, p < .001; NKI-RS: 321	

∆χ2(10) = 27.19, p = .002), as did a model in which paths from white matter to working 322	

memory were constrained to zero (CALM: ∆χ2(10) = 52.26, p < .001; NKI-RS: ∆χ2(10) = 25.85, 323	

p = .004). As hypothesised, white matter therefore contributed to both processing speed and 324	

working memory.  325	

We next inspected that relationship between individual white matter tracts and working 326	

memory and speed in more detail. A model in which paths from white matter to working 327	

memory and speed were constrained to be equal, fit worse than the freely-estimated 328	

watershed model for CALM (∆χ2(18) = 47.76, p < .001) and NKI-RS (∆χ2(18) = 30.42, p = .034), 329	

indicating that the role of white matter microstructure in supporting working memory and 330	

processing speed differed across tracts. This supports the notion that there is a many-to-one 331	

mapping between white matter and cognition - a core tenet of the watershed model.  332	

Investigating individual standardised parameter estimates of the different white matter tracts 333	

showed that for CALM, only the anterior thalamic radiation contributed significantly to 334	

processing speed, whereas the superior longitudinal fasciculus, forceps major and cingulum 335	

were significantly, independently and positively related to working memory (Figure 4). For 336	

NKI-RS, the superior longitudinal fasciculus was significantly and positively related to 337	

processing speed and working memory (Figure 5). Two tracts showed an unexpected, 338	
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strongly negative (< -1), relationship: the forceps minor for CALM and the inferior fronto-339	

occipital fasciculus for NKI-RS. We found that these negative estimates occurred only when 340	

all other brain to cognition pathways were also estimated: When estimated on their own, 341	

path estimates were positive (forceps minor to working memory: standardized estimate = 342	

0.36, z = 4.05, p < .001; inferior fronto-occipital fasciculus to working memory: standardized 343	

estimate = 0.14, z = 0.859, p = .390; inferior fronto-occipital fasciculus to processing speed: 344	

standardized estimate = 0.26, z = 1.41, p = .158). This sign-flip suggests that the negative 345	

pathways were potentially due to modelling several, highly-correlated paths at the same time 346	

(Jöreskog 1999). Overall, these results further support the watershed prediction that multiple 347	

white matter tracts map onto working memory and processing speed. 348	

349	
Figure 4. The Watershed Model in CALM. See Supplementary Table 2 for regression 350	
estimates. Residual covariances between white matter tracts were allowed but are not 351	
shown for simplicity. Abbreviations: uncinate fasciculus (UF), superior longitudinal fasciculus 352	
(SLF), inferior fronto-occipital fasciculus (IFOF), anterior thalamic radiations (ATR), 353	
cerebrospinal tract (CST), forceps major (FMaj), forceps minor (FMin), dorsal cingulate gyrus 354	
(CG), ventral cingulate gyrus (CH), inferior longitudinal fasciculus (ILF). 355	
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356	
Figure 5. The Watershed Model in NKI-RS. See Supplementary Table 3 for regression 357	
estimates. Residual covariances between white matter tracts were allowed but are not 358	
shown for simplicity. 359	

Finally, we probed the watershed model in more detail by testing a set of alternative 360	

expressions of the watershed model still compatible with the core tenants of the watershed 361	

model – as well as a set of alterative models incompatible with the watershed model. We 362	

compared all alternatives (see Figure 6 for graphical representations) to the original 363	

watershed model by inspecting their relative probability of being the data-generating model 364	

as indicated by their AIC weights (Wagenmakers and Farrell 2004). We found that the original 365	

watershed model showed a very high probability (98.58%) of being the data-generating 366	

model for CALM but only a 0.10% probability for NKI-RS. For NKI-RS, a different expression of 367	

the watershed model, such that gf was regressed on working memory, which was regressed 368	

on processing speed, which was then regressed on white matter (Alternative A, Figure 6) 369	

showed a 95.04% probability of being the data-generating model. This model only showed a 370	
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0.37% probability for CALM. Another expression of the watershed model, in which all tasks 371	

were modelled separately as manifest, rather than latent, variables (Alternative B, Figure 6), 372	

showed no advantage over the watershed model for CALM (0.00% probability) or NKI-RS 373	

(0.00% probability). We next tested two alternative models incompatible with the tenants of 374	

the watershed model. We found that a model in which the hierarchy between cognitive 375	

endophenotypes and gf was inverted (Alternative C, Figure 6) showed comparatively low 376	

probability of being the data-generating model for both CALM (0.00%) and NKI-RS (2.86%). 377	

Similarly, a model in which gf was directly regressed on white matter, working memory and 378	

processing speed (Alternative D, Figure 6), showed no clear advantage over the watershed 379	

model for CALM (1.05% probability) or NKI-RS (0.00% probability). Overall these model 380	

comparisons highlight that while the watershed model fit the data for both samples and had 381	

large explanatory power (as indicated by R2s), the precise configuration of the watershed 382	

model may differ somewhat between cohorts.  383	

In summary, we found that the watershed model performed well overall for both cohorts. As 384	

hypothesised, white matter contributed to working memory and processing speed, which, in 385	

turn, contributed to gf, and explained large amounts of variance therein. Also as predicted by 386	

the watershed model, there was a many-to-one mapping between white matter tracts and 387	

cognition. The exact configuration of the watershed model, however, may differ slightly 388	

between cohorts. These differences may be a function of cohort differences in sample size, 389	

average levels of cognitive ability and/or the specific tasks used – a topic we will return to in 390	

the Discussion. 391	
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 392	

Figure 6. Configuration of Alternative Models. Alternatives A and B are watershed-393	
compatible, while C and D are watershed-incompatible. The best-fitting model for CALM is 394	
highlighted in blue; the best-fitting model for NKI-RS is highlighted in green. Regression paths 395	
only are shown for simplicity. Square shapes denote manifest variables and oval shapes 396	
latent variables. 397	

 398	

Testing for potential  confounds 399	

We carried out a series of supplementary and non-preregistered analyses to examine 400	

whether possible confounders influenced our models. These analyses showed that our 401	

findings were robust to the inclusion of covariates such as scanner motion or socio-economic 402	

status. They were also robust across genders and participants taking or not taking 403	

medication. There were no differences in the structure of the model between participants 404	

with and without diagnosed disorders for CALM. Potential small differences cannot be ruled 405	

out for NKI-RS, likely due to the low number of diagnosed participants of N = 106 406	

(Supplementary Material). 407	
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Age-Related Differences in the Neurocognitive Architecture of g f 408	

Finally, we tested Hypothesis 5 - that that the contribution of working memory and 409	

processing speed to gf varied with age. We first inspected cross-sectional differences in gf, 410	

working memory and processing speed, and then used SEM trees to investigate potential 411	

age-differences in the relationships between these factors. In additional, non-preregistered, 412	

analyses we also used SEM Trees to investigate potential age-differences in the relationship 413	

between white matter and cognitive endophenotypes by inspecting paths that were 414	

significant in the watershed model (Figure 4 and 5).  415	

SEM trees combine SEMs with decision tree methods, separating a dataset into subgroups (in 416	

this case age groups) if SEM parameter estimates of interest differ sufficiently (Brandmaier et 417	

al. 2013). SEM trees allowed us to investigate age as a potential moderator without imposing 418	

a-priori categorical age splits. We initially allowed for no more than two age groups. This 419	

yielded inconsistent results for CALM and NKI-RS (Supplementary Table 4). To test whether 420	

these inconsistencies were an artefact of allowing for only two groups, we repeated our 421	

analysis and allowed for up to four age groups. This analysis yielded consistent results 422	

between CALM and NKI-RS (Table 6). This pattern of results indicates that the initial 423	

parameters of our analysis caused us to miss relevant age differences.  424	

As shown in Figure 7, gf, working memory and processing speed factor scores increased with 425	

age for all three cognitive phenotypes. In line with our hypothesis, SEM trees showed that 426	

there were pronounced age-related differences in brain-behaviour in childhood and 427	

adolescence (Table 6). For both samples and all but one path, there was an initially strong 428	

relationship between components of the watershed model, then a dip around ages 7 - 9 429	

years for CALM and age 8 for NKI-RS, followed by an increase in path strength around ages 11 430	
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– 12 (see Supplementary Figure 7 for a graphical representation of these results). 431	

Speculatively, this pattern of results is consistent with an interpretation of a reorganization of 432	

neurocognitive faculties in late childhood, followed by a consolidation of neurocognitive 433	

pathways around the onset of adolescence (Johnson 2000, 2011). 434	

Table 6. SEM Tree Results for the Watershed Model.  435	

Path Est.  
Before 

Age 
Split  

1 

Est.  
Betw. 

Age 
Split  

2 

Est.  
Betw. 

Age 
Split  

3 

Est.  
After 

CALM 

memory <–> speed 0.85 8.46 0.97 9.46 0.74 -  - 
memory –> gf 0.83 9.38 0.42 10.04 1.14 10.88  0.94 
speed –> gf 0.04 6.88 -0.19 11.21 0.17 -  - 
SLF –> memory 0.67 7.21 0.18 11.21 0.76 -  - 
FMaj –> memory 0.59 7.71 0.14 9.29 0.33 11.13  0.74 
CG –> memory 1 0.64 6.96 0.09 11.04 0.70 -  - 
ATR –> speed 0.96 7.13 0.68 7.96 0.17 11.96  0.65 

NKI-RS 

memory <–> speed 0.90 9.82 0.48 14.72 1.11 -  - 
memory –> gf 1.10 8.59 0.59 12.67 1.03 -  - 
speed –> gf 0.53 8.59 -0.12 12.96 0.52 -  - 
SLF –> memory 2.15 8.30 1.47 12.15 1.93 -  - 
SLF –> speed 3.12 8.63 1.83 15.09 2.31 -  - 
Note. The table shows differences in parameter estimates for paths of interest (as shown in 436	
Figure 4 and 5) depending on participants’ age in years. Our analyses allowed for a maximum 437	
of three age splits (and thus four age groups). An absence of a third age split (denoted by ’-‘ 438	
in the table), indicates that the SEM tree split only twice, suggesting no further changes in 439	
parameter strength after the second split. See Supplementary Figure 7 for a graphical 440	
representation of these results. 441	
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442	
Figure 7. Cognitive Factor Scores by Age. 443	

Discussion 444	

We here used multivariate statistical techniques to investigate the neurocognitive 445	

architecture of gf in two large (NCALM = 551, NNKI-RS = 335) developmental cohorts and, for the 446	

first time, investigated how the neurocognitive architecture of gf changes dynamically with 447	

age. We tested a preregistered watershed model of gf, which predicts a hierarchy of partially 448	

independent effects. As might be expected from a multi-cohort study, there were some 449	

differences between the community-ascertained cohort (NKI-RS) and the cohort of children 450	
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and adolescents with learning difficulties (CALM) in specific path estimates. Overall however, 451	

we found strikingly convergent results across these two heterogeneous samples. The 452	

watershed model performed well for both CALM and NKI-RS: White matter contributed to 453	

working memory and processing speed, which, in turn, contributed to gf and explained 51% 454	

of variance therein for the CALM sample and 78% of variance for NKI-RS. Models were robust 455	

across genders, participants taking or not taking medication and when controlling for socio-456	

economic status and scanner motion. Investigations of age effects showed that the 457	

relationship between cognitive abilities and white matter dipped in strength around ages 7-458	

12 years. Speculatively, this age-effect may reflect a reorganization of the neurocognitive 459	

architecture during pre-puberty and early puberty (Byrne et al. 2017). These findings have 460	

implications for understanding and targeting cognitive impairments in populations with 461	

learning difficulties. 462	

The watershed model tested here consists of three levels: gf forms the most down-stream 463	

point, with working memory and processing speed as intermediate tributaries, and white 464	

matter microstructural tracts as upstream sources. Previous studies suggested that matter 465	

microstructure is best characterised by a single, ‘global FA’ factor (Penke et al. 2010) while 466	

others have contended that association patterns among different white matter tracts are 467	

more complex (Lövdén et al. 2013; Kievit, Davis, Griffiths, Correia, CamCAN, et al. 2016). Here 468	

we found strong evidence for a multifactorial view of white matter tracts – for both samples, 469	

a unidimensional model of white matter fit poorly, and for CALM, multiple tracts also showed 470	

partially independent contributions to distal cognitive outcomes. This is in line with the 471	

watershed model. There were some differences between cohorts as to which tracts 472	

contributed most to working memory and processing speed: In line with previous research 473	
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(Kievit, Davis, Griffiths, Correia, CamCAN, et al. 2016; MacPherson et al. 2017; Bathelt et al. 474	

2018), we found that the anterior thalamic radiation was related to processing speed, as 475	

were the forceps major, forceps minor and the cingulum to working memory for CALM. 476	

However, these tracts were not significant for NKI-RS. These differences between samples 477	

may reflect differences in brain-behaviour mapping between more atypical and typical 478	

cohorts (Bathelt et al. 2018), or simply sampling variance across two independent cohorts 479	

where one cohort (NKI-RS) has a more modest number of participants with imaging data. Of 480	

note, however, the superior longitudinal fasciculus was consistently associated with working 481	

memory in both samples. For NKI-RS, the superior longitudinal fasciculus was also associated 482	

with processing speed. The superior longitudinal fasciculus is a large, bilateral association 483	

fibre connecting temporal, occipital, parietal and frontal regions (Kamali et al. 2014). It is 484	

therefore well-situated for supporting cognitive processes such as gf, which rely on 485	

integrative multiple-demand systems (Jung and Haier 2007; Fedorenko et al. 2013; Parlatini 486	

et al. 2017).  487	

The cognitive levels of the watershed model highlighted a close relationship between 488	

working memory and gf. Previous studies had variably suggested that gf and working memory 489	

(Kyllonen and Christal 1990; Fukuda et al. 2010), or gf and processing speed (Kail and 490	

Salthouse 1994; Salthouse 1996; Coyle et al. 2011; Ferrer et al. 2013) may be most closely 491	

related. We found that all three cognitive factors were highly correlated for both samples. 492	

Nonetheless, processing speed formed a cognitive factor clearly separable from working 493	

memory and gf. Working memory and gf, in turn, were separable in the community-494	

ascertained NKI-RS but not in CALM, the cohort of children and adolescents with learning 495	

difficulties. This close relationship between gf and working memory was also evident in other 496	
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models of CALM where processing speed and working memory were used as joint predictors 497	

of gf: Contrary to our hypotheses, processing speed became non-significant after controlling 498	

for working memory here. There are several possible, and not mutually exclusive, 499	

explanations for this finding. First, and in line with previous work showing that time-500	

constraints increase isomorphism of gf and working memory (Chuderski 2013), even standard 501	

implementations of gf tasks may place considerable time-pressure on struggling learners, 502	

whereby increasing gf - working memory covariance. Second, a broader set of speed tasks 503	

(which might be captured by several latent variables for clerical speed tasks, choice reaction 504	

time tasks and variability indices) might show higher predictive power than the single latent 505	

variable for speed, which could be modelled here. Third, the watershed model might be 506	

configured somewhat differently for some populations, such that speed forms an 507	

intermittent level in the hierarchy between white matter and working memory (Alternative A, 508	

Figure 6). There was some evidence for this in NKI-RS, indicating that the hierarchy of the 509	

watershed model might be differentiated more in cohorts of older ages and/or higher ability 510	

levels. We note that all of these explanations would still be compatible with the notions of 511	

the watershed model, and remain to be teased apart by future research. For now, we suggest 512	

that our findings support the notion that mental information processing capacity, as 513	

measured by working memory, is a key determinant of gf (Kyllonen and Christal 1990; Fukuda 514	

et al. 2010). 515	

The associations in the watershed model differed between ages in a complex, non-monotonic 516	

fashion. Previous research had suggested either a decrease in covariance among cognitive 517	

domains with age (age differentiation) (Garrett 1946), an increase in covariance with age (age 518	

de-differentiation) (Blum and Holling 2017), or no changes with age (Tucker-Drob 2009; de 519	
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Mooij et al. 2018). These investigations have traditionally focussed on relations between 520	

cognitive domains, however, not on relationships between brain and cognition  - although 521	

see de Mooij et al. (2018). Possible linear and non-linear changes in brain-behaviour mapping 522	

with age have remained mostly unexplored (Tamnes et al. 2017). Using structural equation 523	

modelling trees, a novel decision-tree-based technique, we here found evidence of complex 524	

developmental differences that were consistent across samples and relationships in the 525	

watershed model: Initially strong path estimates showed a pronounced decrease in strength 526	

around ages 7 - 9 years, followed by a renewed increase in the strength, even surpassing 527	

initial levels, around ages 10 - 15.  528	

There are at least two possible explanations for this developmental dip in brain-cognition 529	

relationships. First, there may be a true decrease in relationship strength during this time of 530	

life. Possibly, other cognitive skills such as verbal reasoning temporarily support gf, resulting 531	

in weaker relationships between gf and working memory, for instance. Alternatively, the 532	

configuration of the watershed model may change temporarily during this time, which could 533	

also manifest in an apparently weaker covariance structure. In this case, the true relationship 534	

between gf, memory, speed and white matter may still be strong, just configured differently 535	

from the watershed model. Both explanations are compatible with the interactive 536	

specialization theory (Johnson 2000, 2011), which predicts as remapping of the relationships 537	

between brain substrates and cognitive abilities during development. 538	

On a physiological level, this age effect may be driven by neuroendocrine changes during pre- 539	

and early puberty. Puberty is driven by a complex and only partially understood set of 540	

hormonal events including gonadarche and andrenarche (Sisk and Zehr 2005). Gonadarche 541	

begins with the secretion of gonadotropin-releasing hormone from the hypothalamus around 542	
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ages 10-11 years and closely tracks the overt bodily changes of puberty (Dorn 2006). 543	

Andrenarche, beginning with the maturation of the andrenal gland, starts as early as six years 544	

of age, and is increasingly recognized as a complimentary driver of puberty and brain 545	

development (Byrne et al. 2017). It is possible that the hormonal changes of andrenarche and 546	

early gonadarche may lead to a level of neural reorganization, which may initially appear as 547	

weaker relationships in the watershed model. The sweeping bodily, social and cognitive 548	

changes happening in early adolescence may then drive a consolidation of the neurocognitive 549	

architecture of gf.  550	

On a more general level, this age effect suggests the existence of potential non-linear 551	

changes in brain-behaviour mapping during childhood and adolescence and underlines the 552	

value of modern statistical approaches, such as SEM Trees, for the study of age-related 553	

differences. Nonetheless, it is worth noting that these findings, based on an inherently 554	

exploratory technique, will need to be replicated in future confirmatory studies with fine-555	

grained data on puberty and larger sample sizes. The latter will also allow for detailed 556	

investigations of potential gender differences.  557	

Testing our model in two different samples allowed us to address several critical questions: 558	

First, participants from both samples completed a small set of common and a larger set of 559	

different cognitive tasks. Therefore, the results obtained here are likely not task-specific, but 560	

rather can be expected to generalize to the domains of working memory, processing speed 561	

and gf (Noack et al. 2014). For instance, we show that even though one cohort (NKI-RS) 562	

performed mainly clerical speed tasks and the other (CALM) mainly choice reaction time 563	

tasks, our finding that processing speed did not significantly contribute to gf after controlling 564	

for working memory, was robust across these samples and tasks. Second, by comparing a 565	
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community-ascertained sample (NKI-RS) and a sample of children and adolescents with 566	

learning difficulties (CALM), we demonstrated that the watershed model performed well for 567	

very different populations. We are not able to make general claims about potential 568	

differences between more typical and atypical populations, however. CALM and NKI-RS were 569	

collected in countries with somewhat different socio-economic conditions (United Kingdom 570	

and United States of America), the samples were of different sample sizes, and participants’ 571	

ages were distributed more evenly in one cohort (NKI-RS) than the other (CALM). While DTI 572	

images were processed with the same pipeline across sites, the scanner and MRI acquisition 573	

protocol were different. Although previous work suggests that FA is relatively robust measure 574	

in multi-site comparisons (Vollmar et al. 2010), we cannot rule out site differences as a 575	

potential confound. It will therefore be necessary to replicate these findings in large typical 576	

and atypical cohorts collected in the same setting.  577	

Our study illustrates some of the advantages and challenges of preregistered secondary data 578	

analyses. We agree with others in the field that secondary data analysis need not be and 579	

should not be confounded with purely exploratory research (Mills and Tamnes 2014; Orben 580	

and Przybylski 2019; Scott and Kline 2019). Preregistrations, as well as dedicated multivariate 581	

methods such as SEM, can help to reduce the scope for analytic flexibility and increase 582	

scientific rigour when using secondary datasets, which are often rich and multivariate in 583	

nature. Preregistrations also do not preclude the use of exploratory methods (such as SEM 584	

trees used here) or the ability to ask exploratory questions (such as looking at age differences 585	

in the relationships between brain and cognition reported here) - they merely facilitate the 586	

distinction between exploratory and confirmatory research (Wagenmakers et al. 2012). There 587	

are, however, some unique challenges to preregistering secondary data analyses worth 588	
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noting. First, information on the precise measures collected is not always easily available 589	

prior to data access, which can limit the level of detail in which an analysis can be 590	

preregistered. Second, data quality and the level of data-processing (the latter is particularly 591	

relevant for MRI data) is not always clear a priori (e.g. see Kievit et al. 2018), which can 592	

necessitate changes to analyses plans after data inspection. Third, convergence issues are 593	

fairly common when using complex multivariate methods such as SEM. We found it 594	

necessary to transform some of our speed variables, for instance, to achieve model 595	

convergence. Such post-hoc modifications, not guided by the palatability of the results, but 596	

rather by unforeseen, and sometimes unforeseeable, practical considerations, mean that 597	

preregistration can sometimes fall short of full compliance. Nevertheless, we believe that 598	

even imperfect preregistrations, alongside shared code, data and the transparent 599	

presentation of results, can help the reader distinguish between confirmatory and 600	

exploratory results, and adjust their level of confidence in conclusions accordingly. For 601	

guidance on maximizing transparency in preregistration of secondary data, see Weston et al. 602	

(2018). 603	

A key limitation of our study is that our samples were cross-sectional, and not longitudinal. 604	

Although the relatively narrow age range makes large cohort effects unlikely, it may still be 605	

that there were differences in recruitment and selection that varied across the age range. 606	

Moreover, while we were able to investigate individual differences in gf, we could not assess 607	

intra-individual changes during childhood and adolescence. As such, the cross-sectional 608	

nature of our samples limits our ability to make inferences about developmental dynamics. 609	

Longitudinal data will also be necessary to scrutinize the causal flow of effects in the 610	

watershed model.  611	
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The findings from our study have implications understanding and targeting cognitive 612	

impairments in populations with learning difficulties. First, the close relationship between 613	

working memory and gf found here and in other studies (Fukuda et al. 2010; Chuderski 2013), 614	

indicates that children and adolescents struggling with working memory are likely to also 615	

struggle in terms of complex reasoning tasks. Either reducing working memory load, 616	

decreasing time constraints, or training working memory and fluid ability capacity in such 617	

populations may therefore be promising lines of inquiry for intervention studies. It is worth 618	

highlighting, however, that cognitive training studies have so far shown little evidence of (far) 619	

transfer: Training abstract reasoning, a common measure of gf, has not resulted in robust 620	

increases in working memory (Knoll et al. 2016) and working memory training has not been 621	

shown to transfer to reasoning skills or school performance (Dunning et al. 2013; 622	

Schwaighofer et al. 2015). Similarly, transfer from processing speed to reasoning seems to be 623	

limited (Mackey et al. 2011). The results obtained here suggest that interventions may 624	

increase their chance of success by implementing programs of sufficient complexity to affect 625	

the entire neurocognitive architecture of effects (see also Kievit et al. 2016). The level of 626	

intensity required to produce sustained benefits may need to be as demanding and 627	

consistent as education itself, which shows robust effects in increasing general cognitive 628	

abilities over time (Ritchie and Tucker-Drob 2018). This work and work by others (Noack et al. 629	

2014) also highlights the value of assessing, modeling, and potentially intervening on, 630	

multiple tasks, rather than relying on a single task to capture complex cognitive domains such 631	

as gf. Finally, the age-related differences in the relationships of the watershed model 632	

observed using SEM-trees suggest that some interventions may work best at particular 633	

developmental phases.  634	
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