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ABSTRACT 15 

Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is a 

pivotal technique for understanding the functionality of the chromatin-bound factors and for 

mapping the functional elements of the genome. In order to evaluate cell- and disease-specific 

changes in the interacting strength of chromatin targets, ChIP-seq signal across multiple 

conditions must undergo robust normalization. However, this is not possible using the standard 20 

ChIP-seq scheme, which lacks a reference for the control of biological and experimental 

variabilities. While several studies have recently proposed different solutions to circumvent this 

problem, substantial technical and analytical differences among methodologies could hamper 

the experimental reproducibility. Here we provide a practical binary decision-making process 

to experimentally implement a normalizing method for comparative ChIP-seq across different 25 

samples. In addition, we evaluate side-by-side the current computational approaches for 

normalizing using a reference internal genome. Finally, we propose a local regression strategy 

to accurately normalize ChIP-seq data in a genome-wide manner. Overall, our proposed 

experimental and computational standard for comparative ChIP-seq (Comp-ChIP-seq) will 

increase experimental reproducibility, thereby reducing this major confounding factor in 30 

interpreting ChIP-seq results.  
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INTRODUCTION 

Chromatin is the macromolecular complex of DNA and histone proteins that packs the genome 

into its basic structural units of nucleosomes (1). Within chromatin, a plethora of interacting 

proteins organize the 3D distribution of the genome, regulate multiple gene expression 35 

programs, and coordinate the appropriate transmission of genetic and epigenetic information to 

cellular progeny (1-5). Alterations in the functionality of the proteins associated with chromatin 

are intimately linked to severe developmental diseases and cancer (6). Indeed, one recent 

comprehensive analysis of 10,437 cancer exomes has revealed that nearly 40% of all cancer 

driver genes are well-characterized chromatin associated factors, which include transcription 40 

factors, chromatin modifiers, chromatin remodelers, and guardians of genomic stability (7). Due 

to its biological and pathological relevance, research on chromatin and epigenetics has been a 

rapidly moving field over the last decade, assisted by the development of novel methods for the 

high-throughput molecular analysis of the genome.  

The development of chromatin immunoprecipitation (ChIP) coupled with the next-generation 45 

sequencing (seq) methodologies has been pivotal for characterizing the genomic distribution 

of a vast collection of chromatin-associated proteins, histone post-translational modifications 

(PTMs), and histone variants (8-11). The striking impact of the ChIP-seq technology is based 

in its relative technical simplicity (which allows it to be adopted by most experimental 

laboratories), its sensitivity and accuracy for mapping the genomic distribution of proteins, and 50 

the standardization of the experimental and computational methods to efficiently analyze such 

a volume of information. Fifteen years ago, the Encyclopedia of DNA Elements (ENCODE) 

project was launched as a collaborative initiative to catalog the complete set of functional 

elements in the human genome in selected cell lines (12, 13). More recently, the International 

Human Epigenome Consortium (IHEC) has generated a comprehensive high-resolution 55 

reference map for the epigenome of major primary human cell types (14, 15). The ChIP-seq 

method has been central for building the cartography of functional elements of the human 

genome in both of these international collaborative efforts. 

Current research efforts aim to identify the changes in the occupancy profiles of chromatin-

bound factors or histone modifications in two or more cell types, metabolic states, and/or 60 

pathological situations. However, in its traditional scheme, ChIP-seq is essentially a semi-

quantitative method that enables the researcher to determine the relative occupancy of one 

factor in a given genomic region, with respect to the rest of the genome. In other words, there 

is no direct correlation between the amount of ChIP signal in the output and the biological 

activity of the binding element in different scenarios (16). Several sources of biological and 65 

technical variability can be overlooked, thereby hampering any direct comparisons of ChIP 
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signal strength between different conditions (17). For instance, the method of preparation of 

the sequencing material by ChIP is a source of technical variability. An apparent increase in 

genomic occupancy of a chromatin factor could simply be the result of variability in the 

efficiency of immunoprecipitation or DNA elution between experiments. Moreover, while 70 

running the sequencer, a standard practice is to mix equal proportions of barcoded libraries to 

run the samples in a multiplexed manner. Therefore, even a substantial global reduction of a 

histone variant occupancy per cell would remain hidden in a ChIP-seq experiment after 

normalizing by total number of reads (17). Although the consistent replication of ChIP-seq 

experiments can reveal the biological tendency in the interacting strength of the chromatin 75 

factor, a robust normalizing strategy is required to accurately compare ChIP-seq results across 

experimental conditions. 

To overcome the influence of technical variabilities in the biological interpretation of ChIP-seq, 

several groups have reported different strategies based on the use of internal reference 

controls (spike-in), which provides a feasible solution to accurately normalize comparative 80 

ChIP-seq (Table 1). Originally developed to correct gene expression measurement in 

microarrays and RNA-seq experiments (18, 19), the spike-in strategy is based on combining 

the experimental sample with an amount of exogenous material (either from another species 

or synthetically produced) that is constant between experiments. Both the experimental 

sample and the spike-in are processed and analyzed in parallel. As long as the amount of 85 

spike-in ChIP signal is constant, the observable differences in the experimental samples 

across conditions can be exclusively attributed to biological variation. Eventual differences in 

the spike-in signal can be computationally equilibrated to eliminate technical variability, and 

the same correction is then used to normalized the experimental signal.  

Current strategies for ChIP-seq normalization using spike-in diverge in: i) the type of biological 90 

material to be used as a reference sample for normalization; ii) the capturing method of the 

spike-in material; and, iii) the computational method used to analyze the sequencing data. It is 

important to mention that the use of different strategies can introduce inconsistencies to the 

final results, as each method presents its own benefits and limitations. In addition, the 

existence of several alternatives might complicate decision-making for researchers about 95 

when and how to apply a normalization method for comparative ChIP-seq. However, to our 

knowledge, a benchmarking study involving the existent spike-in alternatives is not available. 

With the aim of providing a practical, unified reference framework for comparative ChIP-seq 

analysis, we have now evaluated the benefits and limitations of the experimental 

methodologies and analytical pipelines currently available. In addition, we have proposed an 100 

experimental best practice and, we have designed a bioinformatics pipeline for analyzing 

comparative ChIP-seq data in a genome-wide manner. If widely used, we believe that this 
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pipeline can serve as a reference for increasing data reproducibility between laboratories, thus 

overcoming one of the major drawbacks of using ChIP-seq data.  
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Comparison of current experimental methodologies 105 

During the last five years, up to four alternative strategies have been proposed based on the 

spike-in concept to deal with the problem of a lack of comparability between multiple ChIP-seq 

samples. We have summarized the principal benefits and limitations of each technique in Table 

1.  

In 2014, two different laboratories independently pioneered the development of a similar 110 

strategy for comparative ChIP-seq normalization, by introducing xenogenic material from a 

species different into the experimental model (20, 21). The rationale behind both approaches 

is that the ChIP-seq signal obtained from a fixed amount of the spike-in material can be used 

as an internal reference to normalized the experimental ChIP signal across different samples. 

Thus, Guenther and collaborators mixed Drosophila melanogaster S2 cells with human cells 115 

before cell lysis (20), while Delorenzi and colleagues added a constant amount of fragmented 

chromatin from human cells into previously-fragmented mouse chromatin (21). Despite the 

conceptual similarities, the initial decision on which spike-in material should be added to the 

experimental sample raises important technical considerations that can influence the resulting 

biological interpretations. The addition of xenogenic cells of the spike-in material enables the 120 

whole procedure to be monitored from the beginning, thereby minimizing the impact of 

technical variabilities for the biological interpretation. Further, by mixing cells, it is possible to 

tackle eventual changes in genomic ploidy (e.g. due to genomic instability, or differences in 

cell cycle progression), thereby providing an estimation of average ChIP-seq signal per cell. 

This quantitative estimation is not possible when mixing fragmented chromatin. However, the 125 

option of mixing cells is only available when the number of cells can be evaluated accurately 

(e.g. cells growing on a dish), or when the experimental sample and spike-in material are 

fragmented with the same settings. On the contrary, when number of cells in the sample is 

uncertain (e.g. animal tissue samples), or when the experimental sample and spike-in material 

require different settings for fragmentation, the addition of the fragmented spike-in material at 130 

chromatin level is a more appropriate option.  

In the previous strategies, the spike-in material and the sample are captured using the same 

antibody, limiting both strategies to using antigens that are highly conserved between the 

sample and the spike-in material (for instance, histone modifications). To circumvent this 

problem, Trojer and colleagues introduced a smart solution by using a second antibody for a 135 

fly-specific histone variant (H2Av) to capture the spike-in material (22). This strategy aims to 

avoid the cross-reactivity constraint of the experimental antibody and to reduce any potential 

variability due to competition between the spike-in control and the experimental material, which 

usually exceeds the amount of spike-in material by far.  
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In order to overcome both epitope conservation restrictions and the use of a xenogenic spike 140 

material, a fourth normalizing strategy has been recently proposed: rather than using 

exogenous material, Guertin and co-workers recommend including a second antibody against 

an endogenous target present in the experimental chromatin, as an internal control (23). This 

second antibody is used to profile the genomic occupancy of a pervasive chromatin factor (e.g. 

CTCF) whose genomic distribution is assumed to be unchanged between different cell types 145 

and/or treatments and which is clearly distinguishable from the experimental target (23). 

Nonetheless, although this method avoids preparation of xenogenic material, we consider that 

it still makes two important assumptions, which could not always be true: i) that the reference 

endogenous factor remains stably associated in the different experimental conditions; and, ii) 

that the genomic distributions of endogenous reference target and the experimental target do 150 

not overlap. 

Towards an experimental framework for comparative ChIP-seq experiments 

Considering the benefits and limitations of the different strategies (reviewed in Table 1), we 

propose the addition of exogenous xenogenic fly cells, whenever possible, and the use of a 

second antibody against a fly-specific histone variant, as a best practice for comparative ChIP-155 

seq normalization for mammalian genomes. We recommend using fly material as the spike-in 

because: 1) the genome sequence has been extensively assembled; 2) the fly chromatin has 

been largely characterized at epigenetic levels; 3) the evolutionary distance between fly and 

mammalian genomes is sufficient to allow an unambiguous alignment of the reads (20, 22); 

and 4) fly cells are relatively easy to culture with standard tissue culture procedures and 160 

instruments. Moreover, the genomic occupancy profile of the fly-specific H2Av is already 

characterized (22), which can be extremely useful as an additional control point for assessing 

ChIP-seq performance. 

Taking into account the previous considerations, we have designed a practical guide under 

the form of a decision tree to systematically implement a consistent protocol for the addition of 165 

the spike-in material when performing ChIP-seq experiments. In our roadmap, we state some 

key questions that are relevant for deciding which type of spike-in to add (i.e. fly cells or 

fragmented chromatin, diagram of dataflow; Fig. 1). These guidelines take into consideration 

that: i) spike-in material should be present in all samples at equal amounts at the earliest step 

during the ChIP-seq procedure; and (ii) spike-in material should be present in a low-enough 170 

quantity (giving a significantly lower number of reads as that of the experimental reads) to not 

interfere with the actual ChIPseq experiment yet still give an accurate normalization in the final 

sequencing data. As previously reported, the number of spike-in reads in the final sequencing 

step should be at least one million reads, and approximately, 2%–5% of the experimental 
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genome, to minimize the changes in overall material used for ChIP-seq (20, 22). This final 175 

amount of reads can be influenced by the ratio of the mixture as well as by the quality of the 

antibody and/or the abundance of the target in the experimental condition. Taking into account 

these considerations, and the relative ratio between the size of the fly genome and the two 

most widely used mammalian experimental models (mouse and human), we recommend the 

use of different final mixtures (Fig. 1). 180 

Comparison of current computational methodologies 

Traditionally, the standard normalization method uses the total number of mapped reads per 

million (RPM) to correct for possible bias introduced by the differences in the sequencing depth 

among samples. With the recent spike-in methods (see Table 1), the mapped reads from the 

spike-in control are used to correct the experimental ChIP-seq signal strength. 185 

At the computational level, the rationale of the different spike-in methodologies is the same: 

as long as a constant amount of spike-in material is added to the experimental samples, and 

as long as the samples and the spike-in material are processed and analyzed together, the 

correction factor computed to eliminate the differences in the spike-in signal can be used to 

normalize the experimental sample signal. However, the different methodologies differ in the 190 

computational approach to correct the spike-in and, consequently, the experimental sample. 

Several authors have proposed to use the number of mapped reads of the spike-in sample 

(e.g. Drosophila melanogaster) to correct the overall ChIP-seq signal from the main organism 

studied (e.g. human) (20, 22). Although initially appealing, this fold-change correction presents 

in our opinion important shortcomings, such as: i) the spike-in reads mapped not only along 195 

the ChIP-seq peaks but also over background regions are used for computing the correction 

factor; and ii) the correction factor is uniformly applied to all experimental reads in the actual 

experiment, treating both non-specific and specific signal loci with the same correction value. 

Alternatively, the use of a normalization factor computed derived from a pre-defined list of 

known targets in the spike-in organism was also proposed (21). This option excludes any 200 

confounding background signal, but the correction is only applied to a computational pre-

defined loci list with specific ChIP-signal, thereby relying in the accuracy of the selected 

computational peak caller to define the list of positive loci. 

Recently, with the aim of overcoming the limitations of the previous approaches, Guertin et al. 

proposed to apply a linear local regression method (23). This approach computes a correction 205 

coefficient, defined by a linear regression model, for the systematic and gradual correction of 

the pre-defined ChIP-seq peaks from the reference. After this, the coefficient is also used to 

correct a pre-defined subset of peaks in the experimental sample. In addition, such a linear 

correction method implements a statistical approach to calculating the probability and strength 
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of differentially bound loci. Guertin et al. (23) also showed an increased sensitivity (of about 210 

10%) in the detection of differentially bound target loci as compared to the previous absolute 

fold-change correction. The conceptual improvements of this approach stem from the fact that 

the correction factor gradually increases along with the informative power (as number of reads) 

of the peaks. However, the addition of a computational step to pre-select the real signal loci in 

this strategy, similar to the non-linear correction method, could introduce an additional bias 215 

step, as different peak callers compute their own list of peaks. In addition, this analysis would 

impede the genome-wide evaluation of the signal-to-noise ratio, thereby limiting the 

informative power of the ChIP-seq. 

Benchmarking a novel local regression method for comparative ChIP-seq in a genome-

wide manner 220 

By experimentally implementing the spike-in concept into our routine ChIP-seq experiments, 

we faced an important limitation while trying to carry out a comparative ChIP-seq in a genome-

wide manner. When normalizing an experimental ChIP signal at a genome-wide level, using a 

constant correction factor from the total number of spike-in reads (absolute fold-change 

correction), both the positive ChIP signal regions for a target and the background regions were 225 

similarly corrected. This introduced uncertainty as to whether the changes in the target 

occupancy’s overall background were biologically meaningful. To overcome this important 

limitation, we developed a novel method that performs the genome-wide normalization of 

ChIP-seq data adapting the spike-in control correction to the class of genomic region. Our 

approach, inspired by the spike-in-based RNA-seq quantification methods described above 230 

(18, 19), shares conceptual similarities with the recent linear local correction approach  (23) 

and consists in the application of a local regression, in this case, over all the genome-wide 

bins determined along the chromosomes (see Methods). Thereby, our method is able to 

introduce a different correction to each bin in the genome, depending on its class. First, a local 

regression is computed from the bins in the spike-in genome in order to accommodate the two 235 

ChIP-seq conditions compared into the same best-fit line. Next, the values from the real 

experiment are corrected following the previous local normalization calculated using the spike-

in bins (Fig. 2a). Under this approach, the adjustment on a region containing a true ChIP-seq 

signal will be substantially higher than the change computed for bins located in the 

background. 240 

To assess the accuracy of our proposal, we compared the performance with the fold-change 

strategy on a reference dataset (20, 22)(Fig. 2b). We took advantage of the available ChIP-

seq data published by Guenther et al. that included fly material as spike-in control (20). In this 

study, the authors artificially generated a pre-defined ChIP signal gradient for the di-
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methylation of lysine-79 histone H3 (H3K79me2). To achieve a wide range of distinct 245 

conditions, they mixed different proportions of Jurkat cells that had been untreated or treated 

with a selective inhibitor for the H3K79-methyltranferase DOT1L (EPZ5676). The mixture aims 

to reflect the global change in the average H3K79me2 level per cell. Finally, they used a 

constant amount of fly cells as an internal reference control for normalization (Fig. 2b). An 

appropriate analytical normalization using spike-in should display a quantitative difference 250 

between both experimental ChIP signals in the peaks of H3K79me2, while keeping their 

background levels equilibrated. 

We processed the H3K79me2 samples from two completely different conditions: i) the 25:75 

(DMSO:EPZ5676) proportion, which has higher levels of H3K79me2; and, ii) the 75:25 

proportion, with lower levels of H3K79me2 (Fig. 2b). First, we mapped the resulting sequencing 255 

reads to an artificial genome in which we included the human and the fruit fly chromosomes. 

After separating the mapped reads into human and fly, we segmented the genomes of the 

sample (human) and the spike-in control fly into bins of 1 Kb. Next, we assigned the maximum 

absolute ChIP-seq value of H3K79me2 in both conditions for all bins from both genome 

segmentations (see Methods). These initial values, which were not corrected by any 260 

normalization method, were considered to be the raw value (Fig. 2a).  

We then used the spike-in data to compute the normalization of each bin using the fold-change 

(FC) methodology, or our local regression approach (LOESS). For FC correction, we used the 

total number of aligned fly reads to correct the ChIP signal of both conditions, as previously 

suggested (20, 22). When running our proposal, we normalized the spike-in sample for the 265 

total number of reads, applying the LOESS correction in the fly bins to guide the corrections in 

the human bins (Fig. 2c). The same correction factors, depending on the density of reads 

within the bins, were applied to the human bins. The results of both normalization strategies in 

the experimental ChIP-seq are shown in Fig. 2d. When applying the FC correction in human 

bins in a genome-wide manner, we quantified a general increase in both in ChIP-signal regions 270 

and the background on the 25:75 sample with respect to the 75:25 sample (mean difference 

of -1.294 vs. -0.548, Fig. 2d). In contrast, when using the LOESS correction, the differences 

between the 25:75 and the 75:25 samples were still noticeable on bins with positive ChIP 

signals, while they were balanced on the bins that constitute the background level of the ChIP-

seq from the human experiments (-0.789 Vs. -0.086, Fig. 2d). To our knowledge, the distinct 275 

gradual normalization from background to positive ChIP signal regions has not previously been 

considered in any of the existing normalization techniques. We thus believe our proposal 

presents a technical advance for the genome-wide normalization and for comparison of ChIP-

seq experiments. 
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CONCLUDING REMARKS 

The ChIP technique is one of the most widely-used methods in molecular biology (24), since 

its development over 30 years ago (25-27). The power of this technique has increased 

dramatically with the advent of the massive parallel sequencing approaches (8-11) and, ChIP-

seq experiments have become the universal method to delineate the genome-wide maps of 285 

distribution of transcription factors, chromatin remodelers, and histone modifications. Since 

about a decade ago, the original scheme of ChIP-seq has been maintained substantially 

unmodified from chromatin isolation and fragmentation, immunoprecipitation using specific 

antibodies, DNA purification from protein complexes, library preparation, and parallel 

sequencing. The ChIP-seq experiments endow a large proportion of noise, which can be 290 

introduced by the crosslinking artifacts, non-specific binding of the antibody, or the high 

sensitivity of the parallel sequencing techniques. This significant amount of noise results in 

many cases in most of the reads mapped into regions of the genome that are unrelated with 

the chromatin target (i.e. background zones). A precise determination of the signal-to-noise 

ratio is, therefore, very relevant for determining the occupancy strength of the targets. 295 

Limitations due to potential biases introduced by the technical variabilities in the original ChIP-

seq scheme have necessitated the development of strategies to implement an internal 

reference control across samples for further comparisons. However, there are still potential 

pitfalls in the application of each approach. Thus, this important problem is still open in many 

aspects. Very recently, an additional spike-in strategy has been developed (28). In this new 300 

approach, the authors benefits from the genetic diversity of yeast strains to perform an intra-

specie spike-in using different Saccharomyces cerevisiae strains as spike-in and experimental 

specimen. Beyond its utility in lower eukaryotes, this new method exemplifies the aim to meet 

an experimental need. Considering the different strategies proposed to normalized ChIP-seq 

data using spike-in, we provide here a major guideline to plan and perform comparative ChIP-305 

seq experiments, and propose an innovative computational approach for the analysis in a 

genome-wide manner to fill the gap of the experimental need for an accurate interpretation of 

ChIP-seq data. 

Our proposed standard for the genome-wide comparative ChIP-seq signal has shown to be 

very effective for the precise comparison of ChIP signals across samples without a pre-defined 310 

selection of the loci. This approach is able to correct for possible technical bias and to compute 

a local correction factor, thereby minimizing the impact of the correction over non-occupied 

genomic regions. We strongly believe that the systematic use of spike-in references in the 

ChIP-seq experiments will provide a more precise picture of the dynamics of epigenome in 

different conditions. 315 
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The epigenetic research field is systematically searching to increase the sensitivity for 

minimizing the amount of cells required for analysis, with the aim of reaching a confident single-

cell ChIP-seq. The high variability produced by manipulating single-cell events shall benefit 

from the introduction of internal reference controls, which are at the conceptual bottom line of 

the methods reported here. We expect that single-cell Comp-ChIP-seq will bring this technique 320 

into a third revolution for tracking the genomic effects of molecules bound to single loci. 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 29, 2019. ; https://doi.org/10.1101/532622doi: bioRxiv preprint 

https://doi.org/10.1101/532622


13 
 

METHODS 

First, a genome index was generated that combined the human chromosomes (assembly: 

hg19) and the fruit fly chromosomes (assembly: dm3). The fly chromosomes were labeled 325 

using the “_FLY” tag. Additionally, the human and fruit fly gene transcripts, as annotated by 

RefSeq (29), were merged into a single catalog of genes. The raw data corresponding to the 

samples Jurkat_K79_25%_R1 (GSM1465005) and Jurkat_K79_75%_R1 (GSM1465007) 

from (20) was downloaded from the GEO record GSE60104. BOWTIE (30) was run to map 

both samples of reads over the human+fly genome index (previously generated). By using the 330 

“_FLY” tag, the mapped reads corresponding to the spike-in control were then separated from 

the human experimental values. To perform the genome-wide normalization benchmarking, 

we segmented the human and fly chromosomes into bins of 1 Kb. Next, we assigned the 

highest value of every ChIP-seq profile of read counts inside each bin. The following 

transformations were necessary to perform the regression plots: i) absolute values, in millions 335 

of reads, which were used as raw values; ii) absolute values divided by the total number of 

human+fly reads per sample, for the traditional normalization; and iii) absolute values divided 

by the total number of fly reads per sample, for the fold-change normalization. The LOESS 

function from the R library affy was applied to the traditional normalization values, to perform 

the local regression of data, inspired in a similar treatment proposed for RNA-seq normalization 340 

of the RPKMs of spike-in controls (18). We instructed the loess function to use the adjustment 

on the values in the spike-in genome as a subset to guide the normalization of the human 

values. MACS (31) was used to identify the list of ChIPseq peaks along both genomes. To 

discriminate between bins that contain ChIPseq peaks and bins that constitute the background, 

the overlap was calculated between MACS peaks and the coordinates of the segmentation 345 

bins at human and fly chromosomes. We used boxplots to represent the distribution of 

normalized values that belongs to each class of bins. 
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FIGURE LEGENDS 440 

 

TABLE 1: Table summarizing the different methodologies developed to normalized 

ChIP-seq signal with internal controls.  

For each spike-in method we initially provide the following basic information: bibliographical 

reference, type of material used to normalize and the method used to capture the reference 445 

control. Next, we assess the strengths and weaknesses of each method according to several 

parameters: cell counting requirements, the constrain in epitope conservation, the capacity to 

estimate the average ChIP signal per cell, the possibility to monitor the fragmentation efficiency 

in the reference material and the stability of the ChIP-seq signal in the reference control. 

Finally, we indicate the computational method undertaken for each analysis. 450 

Figure 1: Flow chart to select the most appropriated strategy for a Comp-ChIP-seq 

experiment. 

 

Figure 2: Novel computational approach for normalizing ChIP-seq data using spike-in 

ChIP-signal in a genome-wide manner. a A diagram summarizing the computational 455 

analysis protocol (see Methods section for details). b Scheme representing the experimental 

approach undertaken in (20) to generate a gradual ChIP-seq signal for H3K79me2. c 

Scatterplots showing the distribution of fly bins in both conditions accordingly to the maximum 

value of H3K79me2 on each bin. From top to bottom, we show the raw values, the values 

adjusted by the sequencing depth and the final values corrected by the resulting local 460 

regression by LOESS to the best-fit line. d Box plots representing the distribution of H3K79me2 

ChIP-seq signal after absolute fold-change normalization (FC), or LOESS normalization, using 

the spike-in material. The number below each pair of distributions corresponds to the 

differential of the mean between conditions resulting from each normalization. We show the 

values of each experiment distinguishing between bins overlapping H3K79me2 peaks and bins 465 

over the background regions. 
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Table 1
Name ChIP-Rx Single-antibody ChIP Two-antibodies ChIP Parallel-factor ChIP

Reference Orlando, D.A. et al, 2014 Bonhoure, N et al. 2014 Egan, B. et al, 2016 Guertin, M.J. et al, 2018

Normalizing sample Xenogenic cells Xenogenic chromatin Xenogenic chromatin Parallel ChIP with 
sample material

Capturing method of 
spike-in material

Antigen conservation 
between sample and 

spike-in material

Antigen conservation 
between sample and 

spike-in material

Specific antibody for 
spike-in material (H2Av)

Second antibody for 
endogenous protein

Cell counting Required Not required Not required Not required

Epitope conservation Required Required Not required Not required

Estimation average 
ChIP signal per cells Possible Not possible Not possible Not possible

Not possible Possible Possible Possible

ChIP -seq profiling of 
spikein material Constant Constant Constant

Assumed to be
 constant

Computational 
analysis

Absolute fold-change 
correction

Signal fold-change 
correction

Absolute fold-change 
correction Linear local correction

Monitoring fragmentation
on spike-in material
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Can you count the
number of cells?

Chromatin fragmentation 
settings are equivalent

between the different samples?

Chromatin fragmentation 
settings are equivalent

between the samples and spike-in cells?

Mix sample cells with 
spike-in cells

Mix sample chromatin 
with spike-in chromatin

Yes

Ratio 2:1,
mammalian:fly cells

Is a ChIP using a robust antibody against
an abundant histone modification?

Mix with 2.5%
spike-in chromatin

Mix with 0.1-0.05%
spike-in chromatin

Guideline for spike-in addition
Figure 1

No

Yes

Yes

No

No

NoYes

Is a ChIP using a robust antibody against
an abundant histone modification?

NoYes

Ratio 40:1,
mammalian:fly cells
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