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Figure 5.- CRISPR/Cas9 editing of the mouse Atm locus.

(A) Schematic representation of the mouse Atm locus and the two RNA
guides represented in the exon 10 sequence. SDE-mAtmsgRNA is
complementary to the splice site between exon 10 and intron 10-11. IE-
mAtmsgRNA is located in the coding sequence of exonl0. sgRNA
sequences and their respective PAM sequences are also described.
Exon-intron junction and nucleotides implicated in intron processing
(red dot line). SDE-sgRNA (red box) was chosen among several

candidates based on its score.
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Figure 5.- CRISPR/Cas9 editing of the mouse Atm locus.
(B) CRISPR/Cas9 genome editing of the Atm gene in Baf/3Baf/3 mouse
cells. Fluorescent microscopy of Baf/3Baf/3mouse cells electroporated
with empty px458 vector and carrying each RNA guides.
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Figure 5.- CRISPR/Cas9 editing of the mouse Atm locus.

(C) CRISPR/Cas9-edited Atm sequences of Baf/3Baf/3 cells through
mAtmsgRNA-IE (red box) and SDE-mAtmsgRNA (blue box). Baf/3cells
expressing empty px458 vector, used as control, had a wild type sequence,
while cells expressing IE-mAtmsgRNA (red box) and SDE-mAtmsgRNA (blue
box) showed a mixture of sequences around the expected Cas9 cleavage
point. Lower panel shows TIDE decomposition algorithm analysis of the
edited sequences of Atm exon 10, indicating highly efficient editing at the
expected point
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Figure 5.- CRISPR/Cas9 editing of the mouse Atm locus.

(D) NGS of edited Baf/3 cells. Mutations identified and their predicted
effect in edited cells as revealed by IE-mAtmsgRNA and SDE-
mAtmsgRNA. Black and gray circles correspond to null and functional
alleles, respectively, while the background indicates the type of
mutation (red: nonsynonymous/sp site; yellow: frameshift). The SDE-
mAtmsgRNA was more efficient at generating knockout Atm alleles in
Baf/3 cells compared with IE-mAtmsgRNA-IE. Graphs illustrate the
percentage of edited sequences arising from each sgRNA, and which of
them presumably give rise to null alleles. SDE-mAtmsgRNA showed that
100% of edited sequences would generate null alleles, while IE-
mAtmsgRNA-IE indicate that only 83.33% of edited sequences would
produce null alleles.


http://dx.doi.org/10.1101/532820

Figure 6

<
& &
§ &
3 &
& S
s & 8
. &N <
Ks62: & < 8
ATM ~ 350 kDa _ '
Vinculin~ 150 kDa M

Clone: 1 2 3 4 5 6

Vinculin~ 150 kDa | G_—_— A S —

IE-hATMsgRNA
Clone: 7 8 9 10 11 12

Vinculin~ 150 kDa [ sem—: G —— —

SDE-hATMsgRNA
Clone: 13 14 15 16 17 18

ATM ~ 350 kDa | qJ

Vinculin~ 150 kDa |-— — . — — |

Figure 6.- Analysis of ATM null-allele generation by CRISPR/Cas9-
induced mutations in K562 cells. (A) Western blot analysis of ATM
protein expression in K562-edited cells. A single band of 350 kDa
corresponding to ATM was observed in K562 cells electroporated
with empty px458. A lower level of ATM expression was observed
in IE-hATMsgRNA-edited cells, and an even lower level was noted
in SDE-hATMsgRNA-edited cells. Vinculin expression of the cells
was used as the loading control. (B) Western blot analysis of ATM
expression in single-edited-cell clones. All clones derived from
cells electroporated with empty vector, used as a control, showed
a single band corresponding to ATM. Three of six IE-hATMsgRNA
edited clones showed no expression of ATM and one of six had a
lower level of ATM expression compared with controls. Only one
of six SDE-hATMsgRNA-edited clones expressed ATM, while ATM
expression could not be detected in the other five clones.
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Figure 7.- Functional analysis of BCR-ABL-1 null-allele
generation by CRISPR/Cas9-induced mutations in K562 cells.
(A) Analysis of SDE and IE-hABL-1sgRNAs genomic editing in
K562 cells. Sanger sequencing of ABL-1 exon 6 showed a
mixture of sequences at the expected cleavage point in both
sgRNAs. TIDE algorithm analysis predicted more frequent
mutations for each sgRNA.
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Figure 7.- Functional analysis of BCR-ABL-1 null-allele generation by
CRISPR/Cas9-induced mutations in K562 cells. (B) Flow cytometry
analysis of annexin V expression and cell cycle of K562-edited cells. SDE-
hABL-1sgRNA-edited cells had a higher level of apoptosis than K562 cells
edited by IE-hABL-1sgRNA and control cells after electroporation with
the empty vector. The DNA content of the cells edited with SDE sgRNA
gave 10% higher levels than IE-edited cells (45.3% vs. 34.5%). Plots show
results of a representative experiment from three independent
replicates. The quantification of annexin expression in K562-edited cells
with SDE and IE hABL-1 sgRNAS showed a higher level of expression in
SDE-hABL-1sgRNA edited cells (568,2 mfi) than in IE-hABL-1sgRNA-
edited cells (475.5 mfi). Graph shows results from three independent
experiments. *** p<0.001.
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