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Is Drosophila melanogaster Stress Odorant (dSO) really an alarm 

pheromone?  

 

ABSTRACT 

Social interactions are crucial for the reproduction and survival of many organisms, including 

those using visual, auditory and olfactory cues to signal the presence of danger. Drosophila 

melanogaster emits an olfactory alarm signal, termed the Drosophila stress odorant (dSO) in 

response to mechanical agitation or electric shock, and conspecifics avoid areas previously 

occupied by stressed individuals. However, the contextual, genetic and neural underpinnings 

of the emission of, and response to dSO, have received little attention. Using a binary choice 

assay, we determined that neither age and sex of emitters, nor the time of the day, affected the 

emission or avoidance of dSO. However, both sex and mating status affected the response to 

dSO. We also demonstrated that dSO was not species specific so it should not be considered a 

pheromone but a general alarm signal for Drosophila. However, the response levels to both 

intra and inter-specific cues differed between species and possible reasons for these 

differences are discussed. 

 

HIGHLIGHTS 

• Emission of dSO, a highly volatile chemical blend emitted by stressed flies, is not 

context specific 

• Response to dSO is context specific, affected by factors such as age and mating status. 

• As flies respond to volatiles for stressed heterospecifics, dSO should not be considered 

an alarm pheromone, but as an alarm cue. 
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Behaviour, Drosophila melanogaster, simulans, suzukii, avoidance, Drosophila stress odorant 

(dSO), alarm cue, social behaviour  
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INTRODUCTION 

Social interactions using visual, auditory, olfactory and/or tactile cues are crucial for the 

successful development, survival and reproduction of organisms (Dahanukar & Ray, 2011; 

Sokolowski, 2010), including those relating to danger. Reaction to dangers can elicit a range 

of different behavioural responses (Yew & Chung, 2015), involving different sensory 

modalities, which depends on the species and the ecological context (Verheggen, Haubruge, 

& Mescher, 2010). Olfactory alarm signals are typically made up of highly volatile, non-

persistent molecules (single compounds or as a blend), which rapidly inform conspecifics of 

potential danger without generating a persistent state of alert (Verheggen et al., 2010). Alarm 

pheromones, which by definition modulate interactions between conspecifics, have been 

reported in a wide range of animals, from nematodes to humans (Chao, Fleischer, & Yang, 

2018; Hunt, 2007; Mathuru et al., 2012; Mujica-Parodi et al., 2009; Vandermoten, Mescher, 

Francis, Haubruge, & Verheggen, 2012; Zhou et al., 2017), although in some cases these 

olfactory cues elicit responses in closely related sympatric species sharing common natural 

enemies (Napper & Pickett, 2008). 

In Drosophila melanogaster stressed individuals emit an olfactory alarm cue, the 

Drosophila stress odorant (dSO) and flies avoid areas previously occupied by stressed 

conspecifics (Suh et al., 2004). Carbon dioxide (CO2) is one component of dSO, and the 

sensory pathway for the perception of CO2 has been investigated (Bracker et al., 2013; 

Faucher, Forstreuter, Hilker, & de Bruyne, 2006; Krause Pham & Ray, 2015; Kwon, 

Dahanukar, Weiss, & Carlson, 2007; Siju, Bracker, & Grunwald Kadow, 2014; Suh et al., 

2007; Suh et al., 2004; Turner & Ray, 2009). However, the avoidance response is weaker to 

CO2 alone than to dSO suggesting other components are present (Suh et al., 2004). We know 

that both sexes respond to dSO, although the levels of response vary as a function of the 

genetic background (Fernandez et al., 2014) and age (Brenman-Suttner et al., 2018), as well 

as the density of emitters (Fernandez et al., 2014). In order to facilitate the identification of 

the complete blend of dSO, as well as the genes and sensory pathways involved, it is essential 

to know the conditions that result in high production of the olfactory cue. Therefore, we 

conducted experiments examining the effect of different factors on the emission and 

perception of dSO.   
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METHODS 

Experimental animals 

All D. melanogaster (Canton-S) and D. simulans and D. suzukii adults used in the different 

assays were obtained from laboratory colonies maintained at Western University. D. 

melanogaster and D. simulans were reared on Drosophila Jazz-Mix™ diet (Fisher Scientific, 

ON, Canada) at 25°C, 50% RH under a 12L:12D light cycle. D. suzukii was maintained on a 

banana-cornmeal-agar medium (Jakobs, Ahmadi, Houben, Gariepy, & Sinclair, 2017) at 

21°C, 65% RH under a 14L:10hD light cycle. Virgins were obtained by sexing flies at 

emergence and holding adults in same sex containers (approximately 40 flies/container) until 

needed. To obtain mated flies, newly emerged flies (20 male and 20 females) were held 

together until tested. 

 

dSO Avoidance Assays 

Unless otherwise stated, all experiments used mated adults between 3-7 days old, and were 

carried out at 25°C and 50% RH between 12:00 and 16:00 to reduce variation associated with 

any diel periodicity in behaviour (Dubruille & Emery, 2008). A detailed description of the 

dSO avoidance assay can be found in (Fernandez et al., 2014). In short, responder flies are 

placed in a binary-choice T-maze under uniform light conditions where they have a choice 

between a control vial and either one containing dSO produced by stressed flies that had been 

vortexed over 1 minute (15 seconds on, 5 seconds at rest, repeated 3 times) or a vial 

previously occupied by non-stressed flies. After 1 min we recorded the position of all flies 

and then calculated the performance index (PI) by subtracting the number of responder flies in 

the experimental vial from the number of flies in the air vial, divided by the total number of 

flies used in the assay and multiplied by 100. This provides a measure of the preference, 

where a positive value indicates responders avoided the experimental vial while a negative 

value indicated they were attracted to it. Thus, total avoidance of the experiment vial would 
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give a PI of 100, while if flies were equally divided between the control and experimental 

vials (no preference) the PI would be 0.  

 

When cues from undisturbed flies were required we used the counter-current apparatus first 

reported by Benzer (1967), as described in Fernandez et al. (2014). Flies were drawn from a 

shaded holder vial into a lit clean vial using a 15W white light, where they remained for 1 

min, before being removed using the same technique.  

 

Previous experiments (Fernandez et al., 2014) found that 3-7 day old mated flies avoided dSO 

produced by either sex alone or with a mixed sex population. However, it was unknown if 

mating status affected responses so we compared the responses of mated and virgin flies using 

30 mated or virgin responders (all male, all female or 15 males and 15 females) to a dSO 

source produced by 70 emitters (single or mixed sexes). These were the same densities tested 

in previous studies performance but as the index decreases with the number of emitters 

(Fernandez et al., 2014), we repeated the experiment using 20 emitters and 15 responders. 

 

To test the effect of age on dSO emission we carried out 9 replicates where 30 flies (mixed 

sex) were exposed to the cues from 70 adults, ranging in age from 2-5 days up to 7 weeks old. 

We also tested the sex of emitters by exposing 15 mixed sex responders to dSO obtained from 

either 20 males, 20 females or a mix of both, with a minimum of 9 replicates for each 

combination. We investigated the influence of responder age by exposing 15 responders to the 

dSO obtained from 20 males or females that were either 3-4 or 7-10 days old. There were 9 

replicates per treatment. 

 

To determine if there might be a diel periodicity in either the emission of or response to dSO 

we maintained two colonies under a 12L:12D photoperiodic regime, but with the lights-on 

signal at 04:00 in one and at 08:00 in the other. This allowed us to test different combinations 

for both emitters and responders, as shown in Figure 1, where ZT refers to the time of the 

lights on signal. There were 9 replicates for all combinations, with sexes being tested 

separately. 
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Figure 1. The experimental design used to determine the potential effect of time of day on 
both the emission and reception of dSO by D. melanogaster. 
 

While Fernandez et al. (2014) showed that as few as 10 flies can be used as a source of dSO, 

it is unknown if lower densities produce enough to elicit a response. Therefore, we examined 

the behaviour of 30 responders when tested with volatile cues produced by 1 (either male or 

female – data pooled as not statistically different, data not shown), 2, 5 or 10 flies of mixed 

sex individuals with at least 11 replicates for each emitter age.  

 

We tested the importance of stress intensity comparing the response of 15 mixed sex 
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of vortexing, in 1 min or that had been transferred to the vial by shaking. We also compared 
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1 min or held in a vial without agitation or food for 12h. In all cases there were at least 9 

replicates per treatment. 

 

To test the dissipation of dSO we compared the response of both males and females to sources 

immediately following, or 1 or 2 min after the emitters had been vortexed and removed. We 

also examined the time after vortexing that dSO was emitted. In this case the flies were 

vortexed, allowed to rest for 10 sec, 1 min, 1 or 2h before being transferred to a clean vial for 

1 min. The flies were introduced and removed from the test vial via the light response to 

ensure there was no additional agitation. In all assays there were 9 replicates. 

 

As there is evidence that the dSO emitted by D. melanogaster contains components other than 

CO2, (Suh et al., 2004), we conducted assays comparing the intra and interspecific responses 

of D. melanogaster, D. simulans and D. suzukii, with a minimum of 9 replicates for each 

combination. 

 

Statistical Analysis 

One-way and Two-way ANOVAs were used, followed by Tukey’s post hoc test to correct for 

multiple comparisons in GraphPad Prism (version 7.0a for Mac, GraphPad Software, La Jolla 

California USA, www.graphpad.com). In all assays with an air vials as a control, we used 

Welch’s t-tests to confirm that the response to air was not significantly different from 0, and 

as this was always the case the values were not included. A Welch’s t-test was also used to 

compare the effect of aged males on the response to dSO. 

 

.  
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RESULTS 

 

The response was not affected by either sex (F1,32=0.9248, P=0.3434) or mating status 

F1,32=4.098, P=0.0514) when 30 responders were tested to the dSO from 70 emitters (Figure 

2A, B).  

 

Figure 2. The effect of sex (A and C) and mating status (B and 
D) on the response of D. melanogaster adults to dSO at two 
different densities of emitters and responders. 
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However, the response of 15 responders to the dSO from 20 emitters for both sex 

(F1,29=7.191, P=0.0120) and mating status (F1,29=8.088, P=0.0081) were significant. Females 

showed a greater response than males (that was also marginally the case at the higher density) 

and in both sexes mated individuals were more responsive than virgins (Figure 2C, D).  

 

While all response levels differed significantly from the air control, post hoc tests showed the 

age of emitters did not affect the response of responders (Figure 3A; F8,81=42.64, P<0.0001), 

Similarly, responders responded at the same level regardless of the sex of the emitters (Figure 

3B, F1,28=0.01086, P=0.9177), and there were no differences observed in males and female 

responders (Figure 3B; F1,28=1.913, P=0.1776). However, when comparing young (3-4 days) 

versus older (7-10 old) responders there was overall effect of sex with older males showing a 

significantly lower response that younger ones (Figure 3C; t14.19=2.434, P=0.0287).  

 

 

 
Figure 3. The effect of age (A) and sex (B) of emitters, as well as the age of responders 
(C) on the response of D. melanogaster adults to dSO. 
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Figure 4. The effect of the time during the photophase 
that emitters and responders are tested on the response 
of D. melanogaster adults to dSO. 
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Figure 5. The effect of density and the form of stress emitters were subject to on the 
response of D. melanogaster adults to dSO.  
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Figure 6. The effect of time on the persistence of dSO (A) and the time 
since emitters were agitated on the response of D. melanogaster adults to 
dSO. 
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All three species exhibited some level of response to odours from conspecific and 

heterospecific sources but there were significant interspecific differences (Figure 7; 

F8,71=10.5, P<0.0001). For example, D. melanogaster showed strong responses to all three 

sources, while D. susukii exhibited lower responses to all three. In both species, the level of 

response did not differ between intra or interspecific sources (D. melanogaster F2,25=1.339, 

P=0.2803; D. suzukii F2,25=0.5949, P=0.5593). Interestingly, D. simulans was the only 

species that showed the highest response to the conspecifics odour source, which was 

marginally significant (F2,21= 3.277, P=0.0577). 

 

 
Figure 7. A heat map comparing the response of D. melanogaster, D. 
simulans and D.susukii adults to the dSO emitted by conspecific and 
heterospecific adults. The analysis compared all values with the D. 
melanogaster response to conspecifics. 

  

0 20 40 60 80 100

Emitters

Responders

melanogaster simulans suzukii

melanogaster

simulans

suzukii

Performance	Index	Avoidance	

a	 a	

a	 a	

a	a	 b	

b	

b	

60.99 ± 10.11 

15.92 ± 5.17 

39.97 ± 10.39 

81.48 ± 6.58 

74.03 ± 11.15 25.36 ± 6.83 

19.40 ± 5.21 

31.44 ± 4.45 

61.83 ± 9.86 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 30, 2019. ; https://doi.org/10.1101/534719doi: bioRxiv preprint 

https://doi.org/10.1101/534719
http://creativecommons.org/licenses/by/4.0/


 14 

DISCUSSION 

 

Our results support the idea that D. melanogaster adults emit olfactory cues that may affect 

the behaviour of conspecifics whenever they are subjected to any form of stress. In part this is 

probably the result of physiological changes, as seen in bees that had been vortexed (Bateson, 

Desire, Gartside, & Wright, 2011), that increases the production of CO2 which is a major 

component of dSO (Suh et al., 2004).  

 

However, the response to alarm signals is contextual, probably because of trade-offs between 

the associated costs and benefits related to reproductive success, as clearly shown in the 

responses of different stages of the green peach aphid to (E)-β-farnesene (Montgomery & 

Nault, 1978). This is also the case for D. melanogaster responding to dSO. For example, the 

lower responses by virgin flies compared to mated individuals may relate to mating 

opportunities, given that the estimated mean longevity of Drosophila adults under field 

conditions is about 3-7 days (Rosewell & Shorrocks, 1987). Thus, while both virgin and 

mated individuals leaving a site would benefit from avoiding potential danger, virgins leaving 

a site where there are conspecifics decrease their chances of acquiring a mate.  

 

The data from several of our experiments show that mated males exhibit lower response 

levels than mated females of the same age, which again could relate to aspects of reproductive 

success. The more mates a male acquires the higher his potential lifetime reproductive output 

(e.g. Royer & McNeil, 1993), thus a lower response to dSO may increase his chances of 

encountering a receptive female. Similarly, being in a dangerous site may reduce short term 

oviposition opportunities for a mated female, given that one mating provides her enough 

sperm to fertilize her full egg compliment, leaving would increase her chances of surviving 

and increasing opportunities for future oviposition. Similarly, the absence of an age-related 

response to dSO in females is not surprising for although the highest daily egg output occurs 

during the first week (Tatar, Promislow, Khazaeli, & Curtsinger, 1996), moving away from 

potential danger could extend her future opportunities to oviposit. In contrast, as mating 
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opportunities for males decline with age (see Ruhmann, Koppik, Wolfner, & Fricke, 2018) 

older males would have less to lose than younger ones with respect to future reproduction. 

 

The responses by D. melanogaster and D. simulans to both conspecific and heterospecific 

cues were always high, while D. suzukii has low responses to all sources. Krause Pham and 

Ray (2015) noted that younger fruits emit higher levels of CO2 and postulated the low 

responsiveness of D. suzukii adults would facilitate foraging for suitable sites. In addition, the 

high abundance and the distribution of available feeding/oviposition sites under natural 

ecological conditions would normally result in low spatial densities of D. suzukii, so the 

relative benefit gained by responding to a rapidly dissipating conspecific alarm cue would be 

of limited value. In contrast, the relative densities of D. melanogaster and D. simulans would 

be higher on fermenting fruits so there would be a higher probability of detecting dSO from 

conspecifics in proximity and responding to a danger source that is close by would be 

advantageous.  

 

The only species that showed a higher response to conspecific rather than heterospecific ones, 

was D. simulans, something one would expect if, in addition to CO2, there are species specific 

components in dSO (Enjin & Suh, 2013; Suh et al., 2004). Even if there is species specificity, 

the high responses of D. melanogaster and D. simulans to heterospecifics suggests that there 

is enough CO2 alone emitted by stressed flies to elicit responses and/or that the two species 

share other dSO common components. Clearly, additional research is required to identify if 

there are other components in the dSO from each species, and to determine to what extent 

they alter avoidance behaviours. Furthermore, once all components have been identified, it 

will be possible to determine to what extent profiles change with age, mating status or the 

type of stress that the files are subjected to. This information will be important when 

investigating the potential use of dSO in pest management programmes against species such 

as D. melanogaster, although our results suggest such an approach would not be as effective 

against D. suzukii. 
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D. melanogaster are a great model for neuro-genetic studies due to the availability of 

insertion and deletions that cover most of the fully identified genome, RNAi libraries, and 

transgenic lines to repress or enhance the expression of certain genes (Hales, Korey, 

Larracuente, & Roberts, 2015). Our results provide a better understanding of the parameters 

that should be considered in future work looking at the dSO detection, research that could 

lead to a better general understanding of neurophysiological aspects of insect olfaction.  

 

The findings also show that the regular techniques used to transfer flies will result in the 

release of dSO and that while the olfactory cue dissipates quickly, stressed flies may continue 

to emit for at least an hour. These effects of manipulation could be important confounding 

factor when studying certain aspects of behaviour, as seen in studies examining aggression 

(Trannoy, Chowdhury, & Kravitz, 2015). Consequently, we would suggest that anyone 

conducting research on Drosophila behaviour use the light response approach when 

transferring flies. 
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