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Abstract	
	
Native	American	 genetic	 variation	 remains	 underrepresented	 in	most	 catalogs	 of	human	
genome	 sequencing	 data.	 Previous	 genotyping	 efforts	 have	 revealed	 that	 Mexico’s	
indigenous	population	is	highly	differentiated	and	substructured,	thus	potentially	harboring	
higher	proportions	of	private	genetic	variants	of	functional	and	biomedical	relevance.	Here	
we	have	targeted	the	coding	fraction	of	the	genome	and	characterized	its	full	site	frequency	
spectrum	by	sequencing	76	exomes	from	five	indigenous	populations	across	Mexico.	Using	
diffusion	approximations,	we	modeled	the	demographic	history	of	indigenous	populations	
from	Mexico	with	northern	and	southern	ethnic	groups	splitting	7.2	kya	and	subsequently	
diverging	 locally	 6.5	 kya	 and	 5.7	 kya,	 respectively.	 Selection	 scans	 for	 positive	 selection	
revealed	 BCL2L13	 and	 KBTBD8	 genes	 as	 potential	 candidates	 for	 adaptive	 evolution	 in	
Rarámuris	 and	Triquis,	 respectively.	BCL2L13	 is	 highly	 expressed	 in	 skeletal	muscle	 and	
could	be	 related	 to	physical	 endurance,	 a	well-known	phenotype	of	 the	northern	Mexico	
Rarámuri.	The	KBTBD8	gene	has	been	associated	with	idiopathic	short	stature	and	we	found	
it	 to	 be	 highly	 differentiated	 in	 Triqui,	 a	 southern	 indigenous	 group	 from	Oaxaca	whose	
height	is	extremely	low	compared	to	other	native	populations.	
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Introduction	
	
Comprehensive	 genome	 sequencing	 projects	 of	 human	 populations	 have	
demonstrated	 that	a	vast	majority	of	human	genetic	variation	has	arisen	 in	 the	past	
10,000	years	and	is,	therefore,	specific	to	the	continental	and	sub-continental	regions	
in	 which	 they	 arose(Consortium	 2012).	 As	 a	 result,	 the	 majority	 of	 rare	 variation	
contributing	to	disease	burden	is	expected	to	be	population	specific	and	influenced	by	
the	 local	demographic	history	and	evolutionary	processes	of	each	population(Gravel	
et	al.	2011;	Martin	et	al.	2017).	Furthermore,	it	is	recognized	that	there	is	a	strong	bias	
towards	 the	 inclusion	 of	 individuals	 of	 European	 descent	 in	 biomedical	 research,	
which	is	problematic	for	medical,	scientific,	and	ethical	reasons	and	should	be	counter	
balanced	 by	 including	 underrepresented	 populations	 in	 large	 genomic	 surveys	 of	
genetic	variation(Bustamante,	Burchard,	and	De	la	Vega	2011;	Popejoy	and	Fullerton	
2016).		
	
Despite	 recent	 large-scale	 sequencing	 projects	 like	 the	 Exome	 Aggregation	
Consortium	(ExAC)(Lek	et	al.	2016a)	and	gnomAD,	which	considerably	expanded	the	
knowledge	 on	 the	 patterns	 of	 protein-coding	 variation	 worldwide,	 little	 is	 known	
about	 the	 distribution	 of	 population-specific	 genetic	 variants	 that	 may	 underlie	
important	 evolutionary	 and	 biomedical	 traits	 of	 understudied	 groups.	 In	 particular,	
populations	in	the	Americas	of	indigenous	ancestry	are	expected	to	show	exacerbated	
genetic	 divergence	 due	 to	 extreme	 isolation	 and	 serial	 founder	 effects	 during	 the	
continental	peopling,	leading	to	an	increased	fraction	of	population-specific	variation	
(The	1000	Genomes	Project	Consortium	2015;	Martin	et	al.	2017)	that	remains	to	be	
characterized.	Present-day	Mexico	represents	one	of	 the	 largest	reservoirs	of	Native	
American	 variation	 and	 a	 few	 studies	 have	 leveraged	 genotyping	 arrays	 and	whole	
genome	sequencing	to	characterize	the	genetic	diversity	and	structure	of	the	Mexican	
population.	However,	these	studies	used	a	limited	number	of	markers	or	small	sample	
sizes	 (Silva-Zolezzi	 et	 al.	 2009;	 Moreno-Estrada	 et	 al.	 2014;	 Romero-Hidalgo	 et	 al.	
2017b),	so	there	is	a	need	to	harness	high	coverage	sequencing	with	population-level	
sampling.	This	will	shed	light	on	the	consequences	of	functional	variation	in	protein-
coding	 genes	 as	well	 as	 the	 adaptive	 and	 demographic	 processes	 that	 have	 shaped	
Native	Mexican	genomes		
	
To	 fulfill	 this	 need,	 we	 sequenced	 the	 exomes	 of	 78	 individuals	 from	 five	 different	
indigenous	 groups	 from	 Northern	 (Rarámuri	 or	 Tarahumara,	 and	 Huichol),	 Central	
(Nahua),	South	(Triqui)	and	Southeast	(Maya)	Mexico.	We	characterized	the	protein-
coding	 genetic	 variation	 from	 these	 populations	 to	 infer	 the	 broad	 demographic	
history	of	pre-Hispanic	Mexico	and	to	search	for	signatures	of	adaptive	evolution.		
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Results	
	
Genetic	variation	in	76	Native	Mexican	Exomes	
	
According	 to	 previous	 genetic	 characterizations	 of	 indigenous	 Mexican	 groups,	
Mexico’s	 Native	 American	 ancestry	 is	 substructured	 into	 three	 major	 geographical	
components:	Northern,	 Central	 and	Southern(Gorostiza	 et	 al.	 2012;	Moreno-Estrada	
et	al.	2014).	In	order	to	capture	such	substructure,	we	obtained	protein-coding	genetic	
variation	 from	 the	 sequences	 of	 78	 exomes	 from	 five	 Native	 Mexican	 (NM)	
populations	 representing	 all	 three	 major	 genetic	 regions	 of	 Mexico:	 Huichol	 (HUI,	
n=14),	 Maya	 (MYA,	 n=13),	 Nahua	 (NAH,	 n=17),	 Rarámuri	 (TAR,	 n=19)	 and	 Triqui	
(TRQ,	n=15).	Exomes	were	 sequenced	at	 an	 average	depth	of	>90X	 (Supplementary	
figure	1).	We	used	 the	Genome	Analysis	Tool	 (GATK)(McKenna	 et	 al.	 2010a)	 to	 call	
variants	 jointly	with	an	exome	dataset	 including	103	Han	Chinese	(CHB)	 individuals	
from	the	1000	genomes	project	(TGP)(The	1000	Genomes	Project	Consortium	2015).	
We	jointly	called	with	CHB	exome	data	as	we	used	the	variants	in	this	population	for	
downstream	 analysis	 involving	 tests	 for	 selection	 in	 the	 NM	 groups.	 We	 identified	
120,735	 single	 nucleotide	 variants	 (SNV)	 and	 computed	 the	 genotype	 concordance	
between	 these	 and	 previously	 generated	 data	 from	Affymetrix	 6.0	 (Moreno-Estrada	
2014)	 and	 Axiom	World	 IV	 (Galanter	 et	 al.	 2014)	 SNP	 arrays	 available	 for	 the	 NM	
individuals.	Concordance	was	above	93%	for	all	 individuals	except	 for	one	TRQ	and	
one	 HUI	 individual,	 which	 were	 excluded	 from	 all	 downstream	 analyses	
(Supplementary	Fig	2)	(Supplementary	table	S1).	A	predominance	of	Native	American	
genetic	 ancestry	 in	 the	 remaining	 76	 NM	 individuals	 was	 corroborated	 with	
ADMIXTURE(Alexander,	 Novembre,	 and	 Lange	 2009a)	 and	 principal	 components	
analysis	 (PCA)	 (Supplementary	 figure	3).	Fifty-nine	 individuals	displayed	some	non-
Native	ancestry	ranging	from	0.1%	to	13%,	and	therefore	we	masked	this	fraction	in	
the	 admixed	 exomes	 (see	 Material	 and	 Methods)	 for	 downstream	 analyses	
(Supplementary	table	S2).	
	
After	 masking,	 a	 total	 of	 58,968	 SNV	 were	 retained	 in	 the	 76	 NM	 exomes	 with	 a	
transition/transversion	ratio	of	3.025.	A	subset	of	4,181	SNVs	was	absent	from	public	
datasets	(ExAC,	TGP,	and	dbSNP	v.142).	The	number	of	novel	variant	sites	per	exome	
ranged	 between	 29	 and	 118	 (median	 84).	 Most	 of	 these	 novel	 SNVs	 are	
nonsynonymous	 (67.5%)	 and	 found	 at	 low	 frequencies:	 approximately	 80%	 are	
singletons,	 while	 the	 rest	 are	 found	 at	 less	 than	 5%	 frequency	 in	 the	 NM	 exomes	
(Supplementary	Figs.	4-5).	The	number	of	singletons	per	population	was	5,262	for	the	
HUI	(average	per	individual	405),	6,093	for	the	MYA	(average	per	individual	469),	and	
8,108	for	the	NHA	(average	per	individual	476),	and	5,454	for	the	TAR	(average	per	
individual	287),	and	5,166	for	the	TRQ	(average	per	individual	369).	
	
Population	history	of	Native	Mexicans	
	
We	used	the	site	frequency	spectrum	to	infer	the	demographic	history	of	four	native	
Mexican	 populations:	 TAR,	 HUI,	 TRQ,	 and	MYA.	 The	 NAH	 population	 was	 excluded	
from	 this	 analysis	 due	 to	 genetic	 substructure	 found	 within	 this	 linguistic	 group,	
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which	introduces	noise	in	this	type	of	analysis	(see	Discussion).	We	utilized	a	diffusion	
approximation	approach	implemented	in	the	software	δαδι	 (Gutenkunst	et	al.	2009)	
to	 infer	 the	 best-fit	 topology	 and	 demographic	 parameters	 of	 the	 four	 populations.	
The	best	fitting	topology	joins	Northern	populations	together	(HUI	and	TAR),	as	well	
as	Southern	populations	(TRQ	and	MYA)	stemming	from	a	shared	branch	(Figure	1)	
(Supplementary	 table	 S3).	 The	 same	 topology	 is	 recovered	 when	 inferring	 split	
patterns	with	the	program	TreeMix	(Supplementary	figure	S6)	(Pickrell	and	Prichard	
2012).		
	
For	all	models,	we	fixed	a	population	bottleneck	around	70	kya,	representing	the	Out	
of	Africa	bottleneck.	Our	best-fit	model	has	an	ancestral	effective	population	(Ne)	of	
12,000	individuals	for	all	NM,	which	is	reduced	to	a	Ne	of	2,500	individuals	after	the	
bottleneck.	We	inferred	that	the	split	between	northern	(TAR	and	HUI)	and	southern	
(TRQ	 and	 MYA)	 Native	 Mexican	 populations	 occurred	 7,200	 years	 ago	 (Figure	 1,	
Supplementary	 table	 S3).	We	 find	 the	 two	 subsequent	 splits	 occurring	within	1,500	
years	of	each	other:	TAR	and	HUI	diverged	from	each	other	6,500	years	ago,	followed	
by	 the	 TRQ	 and	MYA	 split	 5,700	 years	 ago	 (Figure	 1,	 Supplementary	 table	 S3).	We	
estimated	all	four	populations	to	have	similarly	small	Ne.	The	MYA	has	the	largest	Ne	
(2,750),	 followed	 by	 the	 TAR	 (2,400),	 TRQ	 (2,400),	 and	 HUI	 (2,200)	 (Figure	 1,	
Supplementary	 table	 S3).	 95%	 confidence	 intervals	 for	 these	 parameters	 were	
determined	 with	 1000	 bootstrapped	 replicates	 (Supplementary	 table	 S4).	 We	 note	
that	 this	model	assumes	a	constant	population	size	since	 the	 last	split.	We	were	not	
able	to	estimate	population	growth	rates	due	to	the	small	sample	size.	
	
Adaptive	evolution	in	Native	Mexicans	
	
We	 used	 the	 called	 variants	 within	 the	 Native	 ancestry	 segments,	 to	 estimate	 an	
ancestry-specific	population	branch	statistic	(PBS)(Yi	et	al.	2010),	which	allowed	us	to	
control	 for	 non-indigenous	 admixture.	 This	 Fst-based	 statistic	 allows	 the	
identification	of	genes	with	strong	differentiation	between	closely	related	populations	
since	 their	 divergence;	 it	 uses	 a	 third	 more	 distantly	 related	 population	 to	 detect	
changes	affecting	a	specific	population.	We	first	estimated	PBS	by	grouping	all	NM	and	
using	available	exome	data	from	the	TGP	to	complete	the	topology	with	Han	Chinese	
(CHB)	 and	 individuals	 of	 European	 ancestry	 (CEU).	 This	 allowed	 the	 detection	 of	
genes	likely	under	selection	in	all	Native	Mexicans	since	divergence	from	the	CHB.	
	
We	defined	the	genes	in	the	99.9th	percentile	of	the	empirical	distribution	of	the	PBS	
values	as	being	candidates	of	adaptive	evolution	(Figure	2	and	Supplementary	Table	
S5).	 Interestingly,	 some	 of	 these	 genes	 had	 previously	 been	 identified	 as	 targets	 of	
selection	 in	 other	 populations.	 These	 genes	 include	 SLC24A5,	 involved	 in	 skin	
pigmentation,	 FADS3	 involved	 in	 lipid	 metabolism,	 and	 FAP,	 which	 was	 previously	
suggested	to	be	under	adaptive	archaic	introgression	in	Peruvians	(Racimo,	Marnetto,	
and	 Huerta-Sánchez	 2017)	 and	Melanesians	 (Vernot	 et	 al.	 2016).	 Of	 interest,	 three	
genes	were	involved	in	immune	response:	SYT5	and	TBC1D10C,	involved	in	innate	and	
adaptive	 immune	 response,	 respectively,	 and	 MPZL1,	 a	 surface	 receptor	 for	 a	
lymphocyte	 mitogen	 (R.	 Zhao	 and	 Zhao	 2000;	 Runxiang	 Zhao	 et	 al.	 2002).	 Several	
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genes	encode	for	cell	membrane	proteins	(GRASP,	ADRBK1	and	SMPDL3A)	and	cell-cell	
interactions	 (MDGA2).	 The	 remaining	 genes	 were	 involved	 in	 spermatogenesis	
(GMCL)	and	angiogenesis	(NCKIPSD).		
	
Population-specific	adaptive	evolution	within	Mexico		
	
To	 investigate	genes	under	selection	specific	 to	each	of	 the	 four	NM	populations	 for	
which	we	 had	 a	 demographic	model	 (HUI,	MYA,	 TAR,	 and	 TRQ),	we	 calculated	 PBS	
using	the	Han	Chinese	(CHB)	as	the	third	population	in	the	form	of	NM1,	NM2,	CHB	for	
all	12	combinations.	To	evaluate	the	significance	of	these	PBS	values	we	compared	the	
observed	 data	 to	 PBS	 values	 obtained	 from	 simulations	 under	 the	 inferred	
demographic	model	(see	methods).	We	were	thus	able	to	assign	p-values	to	each	gene	
and	rank	them	by	significance.		
	
Genes	with	PBS	values	passing	our	significance	threshold	(p<10-5,	Figure	3a-c)	were	
identified	only	in	HUI	and	TAR.	In	HUI,	the	genes	with	significant	PBS	were	involved	in	
innate	 immune	 response	 (DUSP3),	 cellular	 proliferation	 and	 differentiation	 (KNC2)	
and	transcriptional	repression	of	herpesvirus	promoters	(ZNF426).	The	genes	in	TAR	
(Figure	3c)	included	an	open	reading	frame	of	unknown	function	(C7orf25)	with	high	
expression	 in	 testis,	 transformed	 fibroblasts	 and	 tibial	 nerve	 (GTex	 Version	 7,	
Supplementary	 figure	 S7),	 and	 FBX04,	 involved	 in	 phosphorylation-dependent	
ubiquitination.	
	
Furthermore,	 for	 each	 population	 we	 identified	 genes	 in	 the	 top	 1%	 of	 the	 PBS	
distribution	and	in	the	lowest	1%	of	p	values	that	were	shared	by	at	least	two	of	the	
three	 possible	 pairwise	 comparisons	 between	 populations.	 This	 yielded	 nine	
additional	candidate	genes	for	adaptive	evolution	specific	to	different	NM	populations	
(Supplementary	table	S6).	Of	notice,	two	apoptosis-related	genes	were	identified	this	
way	 in	 TAR,	BCL2L13	 (BCL2	 like	 13),	 and	ATRAID	 (All-Trans	Retinoic	 Acid-Induced	
Differentiation	Factor).	The	former	encodes	for	a	pro-apoptotic	protein	that	localizes	
in	the	mitochondria	and	is	highly	expressed	in	skeletal	muscle	(GTEx	release	V7)	and	
is	 found	 in	 a	 locus	 previously	 associated	 to	 osteoarthritis	 (OA)	 risk	 in	 Mexican	
Americans	 (Coan	 et	 al.	 2013).	 ATRAID	 (alternative	 name	 APR-3,	 apoptosis-related	
protein	 3),	 is	 thought	 to	 be	 involved	 in	 apoptosis	 hematopoietic	 development	 and	
differentiation,	 and	 in	 positive	 regulation	 of	 bone	 mineralization	 and	 osteoblast	
differentiation	(Zou	et	al.	2011).		
	
Another	noteworthy	gene	 is	KBTBD8	(Kelch	Repeat	 and	BTB	Domain	Containing	8),	
which	showed	an	extreme	PBS	in	TRQ	(Figure	3d).	The	encoded	protein	is	involved	in	
ubiquitination	and	is	found	in	a	locus	previously	associated	to	idiopathic	short	stature	
in	 Koreans	 (Kim	 et	 al.	 2010).	 This	 is	 relevant	 because	 the	 TRQ	 (from	 the	 southern	
state	of	Oaxaca)	display	a	particularly	short	stature	and	the	SNV	driving	the	selection	
signal	 (rs13096789)	 causes	 a	 nonsynonymous	 change	 classified	 as	 “possibly	
damaging”	 by	 PolyPhen.	 Lastly,	 we	 found	 gene	HSD17B11	 (Hydroxysteroid	 17-beta	
dehydrogenase	 11)	 as	 an	 additional	 candidate	 of	 adaptive	 evolution	 in	 HUI.	
HSD17B11is	a	short-chain	alcohol	dehydrogenase	that	metabolizes	secondary	alcohols	
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and	ketones,	and	it	has	been	suggested	to	participate	in	androgen	metabolism	during	
steroidogenesis.		
	
To	 evaluate	 if	 genes	 showing	 extreme	 PBS	 values	 were	 enriched	 in	 any	 functional	
category	or	metabolic	pathway	we	took	the	intersection	of	the	genes	with	a	p-value	<	
0.05	 in	 all	 three	 pairwise	 comparisons	 for	 each	NM	population	 (see	Methods).	 This	
way	we	compiled	a	 list	of	214	genes	for	HUI,	215	for	MYA,	182	for	TAR	and	179	for	
TRQ	 (Supplementary	 tables	 S7-S10).	 We	 evaluated	 functional	 enrichment	 for	 the	
three	 Gene	 Ontology	 (GO)	 project	 categories:	 biological	 processes,	 cellular	
components,	 and	 molecular	 function	 (Ashburner	 et	 al.	 2000;	
The	Gene	Ontology	Consortium	2017),	 as	well	 as	pathway	over-representation	using	
the	IMPaLa	tool	(Kamburov	et	al.	2011).	We	observed	a	functional	enrichment	with	a	
significance	 of	 p	 <	 0.05	 in	 HUI	 involving	 lipid	 intestinal	 absorption	 (GO:	 1904729,	
GO:0030300,	 GO:	 1904478)	 (Supplementary	 table	 S11).	 Consistently,	 the	 IMPaLa	
pathway	 over-representation	 analysis	 revealed	 an	 enrichment	 of	 genes	 involved	 in	
lipid	 metabolism	 and	 transport,	 specifically	 the	 Statin	 pathway,	 for	 the	 same	
population	(Pathway	source:	Wikipathways,	p	value	(1.2e-05),	Q	value	0.0518).	
	
Discussion	
	
We	 carried	 out	 the	 most	 comprehensive	 characterization	 of	 potentially	 adaptive	
functional	variation	in	Indigenous	peoples	from	the	Americas	to	date.	We	identified	in	
these	 populations	 over	 four	 thousand	 new	 variants,	 most	 of	 them	 singletons,	 with	
neutral,	 regulatory,	 as	 well	 as	 protein-truncating	 and	 missense	 annotations.	 The	
average	 number	 of	 singletons	 per	 individual	was	 higher	 in	Nahua	 (NHA)	 and	Maya	
(MYA),	which	is	expected	given	these	two	Indigenous	groups	embody	the	descendants	
of	the	largest	civilizations	in	Mesoamerica,	and	that	today	Nahua	and	Maya	languages	
are	the	most	spoken	Indigenous	languages	in	Mexico	(INEGI,	2015).	Furthermore,	the	
generated	 data	 also	 allowed	 us	 to	 propose	 a	 demographic	 model	 inferred	 from	
genomic	data	in	Native	Mexicans	and	to	identify	possible	events	of	adaptive	evolution	
in	pre-Columbian	Mexico.		
	
Demography	
	
We	propose,	to	our	knowledge,	the	first	demographic	model	that	uses	genetic	data	to	
estimate	 split	 times	between	 ancestral	 populations	within	Mexico.	By	using	 the	 site	
frequency	 spectrum	 of	 neutral	 SNVs	 using	 a	 diffusion	 approximation	 approach,	 we	
inferred	a	split	between	northern	and	southern	NM	at	approximately	6.7	to	8.2	KYA,	
followed	by	regional	differentiation	in	the	north	at	5.9	to	7.5	KYA	and	5.0	to	6.8	KYA	in	
the	 south	 of	 Mexico	 (95%	 bootstrap	 CI,	 Supplementary	 table	 S4).	 This	
northern/southern	 split	 and	 a	 northwest	 to	 southeast	 cline	 is	 consistent	 with	
previous	 reports	 based	 on	 whole-genome	 and	 microarray	 genotype	 data	 from	 NM	
(Moreno-Estrada	et	al.	2014a;	Romero-Hidalgo	et	al.	2017b).	Furthermore,	these	split	
times	 are	 also	 coherent	 with	 previous	 estimates	 of	 ancestral	 Native	 Americans	
diverging	 ~17.5-14.6	 KYA	 into	 Southern	 Native	 Americans	 or	 “Ancestral	 A”	
(comprising	Central	and	Southern	Native	Americans)	and	Northern	Native	Americans	
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or	 “Ancestral	 B”	 (Raghavan	 et	 al.	 2015;	 Rasmussen	 et	 al.	 2014;	 Reich	 et	 al.	 2012;	
Moreno-Mayar	et	al.	2018),	and	with	an	initial	settlement	of	Mexico	occurring	at	least	
12,000	years	ago,	as	suggested	by	the	earliest	skeletal	remains	dated	to	approximately	
this	 age	 found	 in	 Central	 Mexico	 (Gonzalez	 et	 al.	 2003)	 and	 the	 Yucatán	 peninsula	
(Chatters	 et	 al.	 2014).	 Studies	 on	 genome-wide	 data	 from	 ancient	 remains	 from	
Central	 and	 South	 America	 reveal	 genetic	 continuity	 between	 ancient	 and	 modern	
populations	in	some	parts	of	the	Americas	over	the	last	8,500	years	(Raghavan	et	al.	
2015;	Posth	et	al.	2018),	though	two	ancient	genomes	from	Belize	(dated	to	7,7400	BP	
and	 9,300	 BP,	 respectively)	 do	 not	 show	 specific	 allele	 sharing	 with	 present-day	
populations	 from	 that	 geographic	 area,	 instead	 they	 display	 similar	 affinities	 to	
different	 present-day	 populations	 from	 Central	 and	 South	 American	 populations,	
respectively	 (Posth	 et	 al.	 2018).	 This	 suggests	 that	 by	 that	 time,	 the	 ancestral	
population	of	MYA	was	not	yet	genetically	differentiated	from	others,	so	our	estimates	
of	northern/southern	 split	 at	7.2	KYA	and	MYA/TRQ	divergence	at	5.7	KYA	 fit	with	
this	 scenario.	 Altogether	 these	 observations	 based	 on	 archaeological	 and	
paleogenomic	data	are	consistent	with	our	time	estimates	of	population	splits	within	
Mexico,	which	 involve	 a	 divergence	 of	 the	 Northern	 and	 Southern	NM	 occurring	 at	
least	two	thousands	years	after	the	settlement	and	a	divergence	within	these	branches	
taking	approximately	between	six	hundred	to	two	thousand	years,	respectively.		
	
Regarding	effective	population	sizes	(Ne),	we	inferred	an	ancestral	Ne	of	2,500	for	all	
NM,	which	is	in	line	with	a	recent	Ne	estimate	of	2,000	based	on	Markovian	coalescent	
analyses	 of	 whole-genome	 data	 from	 twelve	 NM	 (Romero-Hidalgo	 et	 al.	 2017b)	 as	
well	 as	 from	 Native	 ancestry	 segments	 in	 admixed	 Mexicans	 (Schiffels	 and	 Durbin	
2014).	 Both	 studies	 show	 a	 low	Ne	 around	 2,000	 sustained	 for	 the	 last	 20	 KY,	 in	
agreement	 with	 genomic	 and	 archaeological	 evidence	 pointing	 to	 a	 population	
bottleneck	ca.	20	thousands	years	ago	experienced	by	the	Native	American	ancestors	
when	 crossing	 the	 Bering	 Strait	 into	 the	 Americas	 (Raghavan	 et	 al.	 2015;	 Moreno-
Estrada	et	al.	2014a;	Goebel,	Waters,	and	O’Rourke	2008).	
	
In	 addition,	our	model	 inferred	 low	Ne	for	present-day	NMs	 ranging	between	3,000	
and	3,800.	The	NM	with	the	largest	Ne	was	the	MYA	(95%	CI:	2,400-3,400)	followed	
by	TAR	(95%	CI:	2,200-2,800),	HUI	(95%	CI:	1,900-2,600),	and	TRQ	(95%	CI:	2,100-
2,900)	 (Supplementary	 table	S4).	Using	 runs	of	homozygosity	Moreno-Estrada	et	 al.	
(2014)	inferred	slightly	higher	variation	in	Ne	among	different	indigenous	groups,	but	
with	overlapping	confidence	 intervals.	On	 the	other	hand,	using	whole-genome	data	
Raghavan	et	al.	(2015)	inferred	a	HUI	Ne	to	a	similar	2,500.	Of	notice,	the	census	size	
of	 these	 populations	 is	 also	 the	 largest	 for	 the	MYA,	 and	 TAR	 (INEGI	 2015).	 These	
observations	 are	 noteworthy	 since	 low	 Ne	 combined	 with	 founder	 effects	 can	
exacerbate	 the	 disproportionate	 accumulation	 of	 deleterious	 and	 clinically	 relevant	
variants	in	the	population(Belbin	et	al.	2018),	and	indeed	these	two	populations	also	
displayed	the	largest	numbers	of	singleton	and	nonsynonymous	SNVs.	
	
One	caveat	of	our	demographic	 inference	 is	 that	we	failed	to	 include	the	NHA	in	the	
model.	 Initial	 tests	 including	 this	 population	 resulted	 in	 extremely	 high	 Ne	 and	
ambiguous	location	in	the	tree.	Furthermore,	ADMIXTURE	analyses	showed	NHA	are	
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constituted	 by	 components	 from	 multiple	 populations	 within	 each	 individual	
(Supplementary	figure	S3a),	an	observation	made	also	 in	a	recent	study	by	Romero-
Hidalgo	 et	 al.	 (2017).	 This	 likely	 reflects	 NHA	 being	 genetically	 heterogeneous	 as	 a	
consequence	 of	 their	 past	 history	 involving	 continuous	 colonization	 and	 extended	
domination	 of	 multiple	 distinct	 groups	 by	 the	 Nahua-speaking	 Aztec	 empire	 right	
before	European	colonization	(Brumfiel	1983;	Romero-Hidalgo	et	al.	2017b).	
	
Overall,	 our	 inferences	 describe,	 to	 our	 knowledge,	 the	most	 detailed	 demographic	
history	model	based	on	genetic	data	for	NM	to	date.	We	caution,	however,	that	as	with	
any	 inferred	 demographic	 model,	 the	 assumptions	 have	 certain	 caveats	 that	 could	
lead	 to	 errors.	 Specifically,	 our	 model	 assumes	 constant	 population	 sizes	 since	 the	
most	recent	split.	Certainly	the	availability	of	genome-wide	data	from	present	day,	as	
well	as	from	ancient	populations	from	throughout	Mexico	spanning	these	time	frames,	
will	contribute	to	draw	a	more	refined	picture	of	past	population	history	and	genetic	
structure.	
	
Targets	of	adaptive	evolution	in	NM	
	
We	 implemented	 an	 ancestry-specific	 approach	 of	 the	 widely	 used	 FST-based	
Population	Branch	Statistic	 (PBS)	 to	 identify	 genes	with	 strong	differentiation	 in	 all	
NM	since	 their	divergence	 from	CHB,	as	well	as	genes	differentiated	 in	each	studied	
population.	The	 first	 approach	 revealed	 selection	 signals	previously	 found	 in	Native	
Americans	 and	 other	 populations,	 as	 well	 as	 genes	 not	 previously	 identified	 to	 be	
under	selection.		
	
One	remarkable	instance	is	FADS3,	a	gene	in	the	FADS	(fatty	acid	desaturases)	genes	
cluster	 in	 chromosome	 11,	which	 also	 includes	FADS1	 and	FADS2.	 These	 genes	 are	
involved	 in	 the	metabolism	 of	 omega-3	 polyunsaturated	 fatty	 acids,	 and	 have	 been	
found	to	harbor	strong	signals	of	positive	selection	in	Arctic	populations	(Fumagalli	et	
al.	 2015)	 and	 throughout	 the	Americas	 (Amorim	 et	 al.	 2017).	 It	 has	 been	 proposed	
that	this	signal	derives	from	a	strong	selective	pressure	on	the	ancestors	present-day	
Native	Americans	(Amorim	et	al.	2017)	who	had	to	adapt	to	extreme	cold	weather	and	
food	availability	during	the	Beringia	standstill	(Tamm	et	al.	2007).	
	
We	also	identified	a	strong	differentiation	on	FAP	(Fibroblast	Activator	Protein	
Alpha).	The	locus	harboring	this	gene,	together	with	IFIH1(interferon	induced	with	
helicase	C	domain	1)	is	suggested	to	be	under	adaptive	archaic	introgression	in	
Peruvians	from	the	TGP	(PEL),	a	population	with	a	high	proportion	of	Native	
American	genetic	ancestry,	(Racimo,	Marnetto,	and	Huerta-Sánchez	2017),	and	
Melanesians	(Vernot	et	al.	2016).	This	locus	has	been	associated	with	type	1	diabetes	
(Liu	et	al.	2009)	and	susceptibility	to	diverse	viral	infections(Fumagalli	et	al.	2015)	.	
The	fact	that	this	locus	also	has	an	adaptive	signal	in	NM	is	consistent	with	a	previous	
study	that	suggested	that	the	loci	harboring	IFIH1	suffered	recent	positive	selection	in	
South	Americans	(Fumagalli	et	al.	2010).	We	confirmed	that	this	haplotype	is	present	
in	NM	by	comparing	the	Neandertal	haplotype	with	whole	genome	sequence	data	
(Marnetto	and	Huerta-Sánchez	2017)	available	for	other	Native	Americans	from	an	
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independent	study	(Romero-Hidalgo	et	al.	2017b).	The	archaic	haplotype	was	found	
in	7	out	of	24	chromosomes	in	TAR	and	MYA	individuals	as	well	as	in	other	NM	
(Tepehuano,	Totonaco	and	Zapotec)	(Supplementary	Figure	S8).	
	
SLC24A5	(solute	Carrier	 family	24	Member	5)	has	also	been	previously	 identified	as	
target	of	selection.	This	gene	is	involved	in	melanogenesis	and	has	been	vastly	studied	
in	European	populations,	where	it	displays	one	of	the	strongest	signals	of	selection	in	
humans.	Specifically,	the	derived	allele	of	SNP	rs1426654	within	this	gene	leads	to	a	
decrease	 in	 skin	 pigmentation.	 However,	 the	 ancestral	 allele	 is	 nearly	 fixed	 in	 NM	
populations,	 driving	 the	 extreme	 PBS	 signal	 and	 suggesting	 either	 a	 relaxation	 of	
selection	or	an	adaptive	event	favoring	the	ancestral	state	(the	derived	allele	is	fixed	
in	CEU,	and	found	at	0.03	and	0.007	frequencies	in	CHB	and	NM,	respectively).		
	
In	 addition,	we	 found	 several	 genes	with	 extreme	PBS	 values	 involved	 in	 immunity	
and	 defense	 against	 pathogens	 (SYT5,	 TBC1D10C	 and	 MPZL1).	 Selection	 on	 these	
genes	could	be	explained	by	the	strong	selective	pressure	posed	by	pathogens	brought	
by	Europeans	on	the	Native	population	during	colonization;	it	is	estimated	that	up	to	
90%	of	the	Native	population	died	as	a	consequence	of	 infections	during	this	period	
(Acuna-Soto	 et	 al.	 2002).	 Lastly,	 three	 genes	 in	 this	 set	were	 cell-surface	 and	 signal	
transduction	genes	(GRASP,	ADRBK1	and	SMPDL3A,	MDGA2).		
	
Regarding	population-specific	 signals	of	 adaptive	evolution,	we	 identified	 few	genes	
with	 significant	 (p<10-5)	 PBS	 values	 in	 TAR	 and	 HUI	 only.	 These	 genes	 were	 also	
involved	 in	 innate	 immune	 response	 (DUSP3)	 and	 repression	 of	 herpesvirus	
transcription	 (ZNF426),	 cellular	 proliferation	 and	 differentiation	 (KNC2),	 and	
ubiquitination	 (FBX04).	When	we	expanded	our	 search	 to	 consider	 genes	 above	 the	
significance	 threshold,	 but	 with	 consistent	 extreme	 PBS	 (top	 1%)	 in	 two	 or	 more	
population	 comparisons,	 we	 identified	 some	 interesting	 instances	 in	 TRQ,	 HIU	 and	
TAR,	 which	 we	 speculate	 could	 be	 related	 to	 some	 characteristic	 traits	 in	 these	
populations.		
	
Anthropometric	studies	have	revealed	that	the	TRQ	(together	with	other	Indigenous	
groups	in	Oaxaca,	and	neighboring	states	of	Veracruz	and	Chiapas)	exhibit	the	lowest	
average	 stature	 values	 in	 Mexico	 (females	 mean	 142.5cm,	 males	 mean	
155.1)(Faulhaber	 1970).	 This	 observation	 becomes	 relevant	 as	 one	 of	 the	 genes	
(KBTBD8)	 identified	as	 likely	being	under	adaptive	evolution	 in	 this	population,	 lies	
within	a	locus	previously	associated	to	idiopathic	short	stature	in	Koreans	(Kim	et	al.	
2010).	 Regarding	HUI,	we	 found	 a	 gene	 (HSD17B11)	 involved	 in	 the	metabolism	 of	
steroids	 and	 retinoids,	 with	 high	 expression	 in	 tissues	 related	 to	 steroidogenesis	
(adrenal	 gland	 and	 testis)	 and	 detoxification	 (liver,	 lung,	 kidney	 and	 small	
intestine)(Lundová	et	al.	2016).	Interestingly,	 in	the	region	of	Mexico	where	HUI	are	
from,	 the	 ceremonial	 intake	 of	 peyote	 cactus	 (Lophophora	 williamsii)	 is	 a	 cultural	
tradition	 that	 traces	 back	 to	 centuries.	 The	 psychoactive	 compound	 in	 peyote,	 the	
alkaloid	mescaline,	is	metabolized	by	the	liver	enzymes	and	can	cause	severe	toxicity	
when	consumed	 in	high	amounts.	Furthermore,	 the	pathway	enrichment	analysis	 in	
this	 population	 returned	 genes	 APOA1,	 APOA2,	 APOA4,	 APOA5,	 ABCG5	
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(Supplementary	 Table	 S12),	 involved	 in	 regulation	 of	 intestinal	 cholesterol	
absorption.	Variants	in	some	of	these	genes	have	been	associated	to	high	levels	of	LDL	
and	 total	 cholesterol	 (Bandarian	 et	 al.	 2013;	 the	 ENGAGE	 Consortium	 et	 al.	
2009)(Bandarian	et	al.,	2013;	 the	ENGAGE	Consortium	et	al.,	2009)(Bandarian	et	al.	
2013;	 the	 ENGAGE	 Consortium	 et	 al.	 2009)(Bandarian	 et	 al.	 2013;	 the	 ENGAGE	
Consortium	et	al.	2009)	as	well	as	high	triglyceride	levels	(Pennacchio	et	al.	2002;	Zhu	
et	 al.	 2014;	Ouatou	 et	 al.	 2014),	 both	 factors	 leading	 to	 cardiovascular	 disease.	 The	
derived	allele	of	rs3135506	in	APOA-5	has	the	highest	frequency	in	HUI	compared	to	
the	other	populations	 from	 the	 study	and	 the	TGP1000	 (Supplementary	Table	S12).	
This	missense	mutation	(S19W)	has	been	associated	with	increased	triglyceride	levels	
and	 elevated	 risk	 of	 developing	 coronary	 artery	 disease	 in	 several	 populations	
including	one	labeled	as	“Hispanic”	(Pennacchio	et	al.	2002;	Zhu	et	al.	2014;	Ouatou	et	
al.	 2014).	 Moreover,	 HUI	 has	 the	 highest	 frequency	 of	 the	 missense	 mutation	
rs6756629	 in	ABCG5,	 which	 has	 been	 associated	 to	 increased	 total	 cholesterol	 and	
LDL	 (the	ENGAGE	Consortium	et	 al.	 2009),	 a	 risk	 factor	 for	 coronary	 heart	 disease.	
Together,	these	observations	point	some	possible	adaptation	to	a	low	cholesterol-lipid	
diet	(such	as	a	reduced	meat	consumption)	or	a	manner	to	regulate	the	intake	of	lipids	
from	animal	source	foods.		
	
Lastly,	two	genes	(BCL2L13	and	ATRAID),	in	TAR	have	annotations	related	to	joint	and	
bone	 physiology,	 namely	 osteoarthritis,	 bone	 mineralization	 and	 osteoblast	
differentiation,	which	 could	be	 related	 to	 the	outstanding	physical	 endurance	 in	 the	
Rarámuri.	 Interestingly,	 a	 recent	 study	 detected	 an	 enrichment	 of	 genes	 harboring	
novel	 promoter	 and	 missense	 variants	 with	 pathway	 and	 gene	 ontology	 (GO)	
annotations	related	to	musculoskeletal	function	(Romero-Hidalgo	et	al.	2017b)	in	the	
same	population.	In	agreement	with	this,	we	recapitulated	similar	observations	when	
looking	 for	GO	enrichment	 in	novel	nonsynonymous	variants	 in	our	19	TAR	exomes	
(Supplementary	 table	 S13).	 These	 two	 approaches	 represent	 independent	 evidence	
from	 both	 highly	 diverged	 and	 novel	 functional	 variation	 that	 converge	 in	
musculoskeletal	 traits	 as	 the	 potential	 underlying	 mechanism	 for	 Raramuri’s	
endurance.	Taken	together,	these	observations	could	imply	that	this	cultural	trait	has	
imposed	a	selective	pressure	on	this	population.	However,	additional	in-depth	studies	
in	 the	 Raramuri	 incorporating	 genomic	 and	 detailed	 phenotype	 data	 are	 needed	 to	
disentangle	the	genetic	architecture	and	the	molecular	pathways	behind	this	complex	
trait.		
	
In	 conclusion,	 we	 generated	 a	 rich	 catalogue	 of	 Native	 American	 genetic	 variation	
from	 Mexican	 populations,	 the	 analysis	 of	 which	 has	 yielded	 novel	 estimates	 for	
ancestral	population	splits	as	well	as	candidate	genes	likely	under	adaptive	evolution	
in	 both	 the	 general	 NM	 population	 and	 in	 specific	 NM	 groups.	 Our	 demographic	
inference	 is	 consistent	 with	 previous	 archaeological	 and	 genetic	 knowledge	 on	 the	
peopling	 of	 the	 Americas,	 while	 adding	 temporal	 resolution	 to	 the	 population	
dynamics	 occurring	 thousands	 of	 years	 ago	 in	 the	 Mexican	 mainland.	 This	
demographic	model	 also	 allowed	 us	 to	 compare	 the	 estimated	 PBS	 values	 of	 genes	
against	a	simulated	null	distribution	under	such	model,	and	to	identify	the	instances	
with	 significant	 extreme	 values.	 Genes	 with	 extreme	 values	 in	 specific	 populations	
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have	 annotations	 that	 hint	 a	 likely	 role	 in	 characteristic	 phenotype	 or	 cultural	
practices	 in	the	NM	included	in	this	study.	However,	 it	remains	to	be	tested,	 if	 these	
high	 values	 indeed	 derive	 from	 adaptive	 events	 and	 if	 these	 adaptations	 are	 in	 fact	
involved	with	the	observed	traits	in	these	NM	populations.	
	
Materials	and	methods	
	
Samples		
	
Most	of	the	samples	sequenced	in	this	study	were	previously	collected	and	sampling	
procedures	 are	 described	 in	 (Moreno-Estrada	 et	 al.	 2014a).	 Specifically,	 a	 subset	 of	
samples	 from	 4	 of	 the	 studied	 populations	 were	 selected	 for	 having	 the	 highest	
proportions	of	Native	American	ancestry	according	to	Affymetrix	6.0	SNP	array	data	
generated	 therein.	 After	 filtering	 for	 DNA	 quality	 control	 a	 total	 of	 19	 Tarahumara	
(Chihuahua),	 13	Huichol	 (Jalisco),	 15	 Triqui	 (Oaxaca),	 and	 12	Maya	 (Quintana	Roo)	
individuals	were	 included	 in	 this	 study.	 Additionally,	 18	Nahua	 samples	 from	 three	
sampling	 locations	 in	 Central	 Mexico	 previously	 genotyped	 with	 Affymetrix	 Axiom	
World	Array	 IV	 (Galanter	 et	 al.	 2014)were	 selected	 for	 exome	 sequencing	based	on	
their	 proportions	 of	 Native	 American	 ancestry	 and	 passing	 DNA	 quality	 control.	 In	
both	sampling	schemes,	 Institution	Review	Board	(IRB)	approval	was	obtained	from	
Stanford	 University,	 and	 individuals	 were	 consented	 according	 to	 the	 approved	
protocol.	 All	 individuals	 gave	 written	 consent.	 DNA	 was	 extracted	 from	 blood	 and	
ethnographic	information	including	family,	ancestry,	and	place	of	birth	were	collected	
for	all	individuals.		
	
Exome	sequencing		
	
Exome	 regions	 were	 captured	 using	 the	 Agilent	 SureSelect	 44Mb	 human	 all-exon	
array	v2	for	the	76	individuals.	Genotype	data	from	previous	studies	(Moreno-Estrada	
et	al.	2014b;	Galanter	et	al.	2014a)	was	available	for	these	individuals	(Affymetrix	6.0	
SNP	array	data	for	Huichol,	Maya,	Tarahumara,	and	Triqui,	and	Axiom	World	Array	IV	
data	for	the	Nahua).	
	
Each	 individual	 was	 sequenced	 in	 a	 5-plex	 library	 on	 an	 Illumina	 HiSeq	 2000	
producing	 101-bp	paired	 end	 reads.	 Reads	were	 processed	 according	 to	 a	 standard	
pipeline	 informed	 by	 the	 best-practices	 described	 by	 the	 1000	 Genomes	 Project.	
Briefly,	 reads	 were	 mapped	 to	 the	 human	 reference	 genome	 (hg19)	 using	 bwa	
(version	 0.6.2).	 Duplicate	 read	 pairs	 were	 identified	 using	 Picard	
(http://picard.sourceforge.net).	Base	qualities	were	empirically	recalibrated	and	indel	
realignment	was	performed	jointly	across	all	samples	using	the	Genome	Analysis	Tool	
Kit	 (GATK,	version	1.6)	(McKenna	et	al.	2010b).	Variants	were	 filtered	to	 the	exome	
capture	region.	
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Masking	of	non-Native	genomic	segments	
	
To	corroborate	the	Native	American	ancestry	of	the	individuals	we	combined	the	data	
with	 variants	 from	 the	 1000	 Genomes	 Project	 (1000G)	 to	 perform	 principal	
components	analysis.		
	
Additionally,	 we	 estimate	 individual	 ancestries	 from	 the	 genotype	 data	 with	 the	
maximum-likelihood–based	 clustering	algorithm	ADMIXTURE(Alexander,	Novembre,	
and	Lange	2009b)	to	identify	those	samples	with	detectable	contribution	of	European	
or	African	genetic	ancestry.	This	 fraction	was	masked	to	avoid	 their	 inclusion	 in	 the	
downstream	 analysis.	 To	mask	 non-native	 regions	 in	 the	 exome	 data,	 the	 available	
genotype	data	for	the	individuals	in	the	study	was	merged	with	a	reference	panel	and	
processed	as	follows.	We	used	the	genotype	data	available	for	HUI,	MYA,	TAR	and	TRQ	
(Moreno-Estrada	2014)	merged	 it	with	genotype	data	 from	 the	 same	array	 from	30	
individuals	with	a	100%	indigenous	ancestry,	as	well	as	with	30	CEU,	and	30	YRI	from	
the	HapMap	Project	to	serve	as	reference	panel.	For	NHA	we	combined	the	genotype	
data	available	for	the	admixed	individuals(Galanter	et	al.	2014c)	with	genotype	data	
of	20	Native	American	individuals	genotyped	with	the	same	array,	namely	Affymetrix	
Axiom	World	 Array	 IV	 (also	 known	 as	 LAT	 array	 for	 its	 informativeness	 in	 Latino	
populations),	as	well	as	with	20	CEU	and	20	YRI,	to	serve	as	a	reference	panel..		
	
Genotype	data	for	each	set	was	then	phased	using	SHAPEIT	(Version	2)	(O’Connell	et	
al.	 2014)	 with	 default	 parameters.	 Local	 ancestry	 was	 estimated	 for	 the	 resulting	
haplotypes	 using	 the	 ‘PopPhased’	 routine	 of	 RFMix(Maples	 et	 al.	 2013)	 with	
parameters	 –correct-phase	 (for	 phase	 correction)	 and	 –G15	 (to	 assume	 15	
generations	 since	 admixture).	 Local	 ancestry	 calls	 were	 then	 used	 to	 mask	 (make	
missing)	 the	 sites	 in	 the	 exome	 vcf	 files	 that	 were	 not	 part	 of	 homozygous	 Native	
American-ancestry	blocks.		
	
Variant	analysis	and	annotation		
	
The	VCF	file	was	annotated	using	the	tool	ANNOVAR	(version	2015Jun17)(K.	Wang,	Li,	
and	 Hakonarson	 2010)	 with	 the	 following	 reference	 datasets:	 refGene,	
esp6500siv2_all,	 1000g2015aug_all,	 exac03,	 avsnp142	 and	 ljb26_all	 (see	
supplementary	table	XX	for	description	of	each	dataset).		
	
The	script	table_annovar.pl	was	used	with	the	following	parameters:		
	
table_annovar.pl –vcfinput $pop.vcf annovar_humandb/ --buildver hg19 --
out $pop --remove --protocol 
refGene,esp6500siv2_all,1000g2015aug_all,exac03,snp142,clinvar_20160302,d
bscsnv11,dbnsfp30a --operation g,f,f,f,f,f,f,f --nastring .  
	
New	 variants	were	 defined	 as	 those	 not	 present	 in	 ExAC	 (Lek	 et	 al.	 2016b),	NHLBI	
Exome	 Sequencing	 Project	 (ESP)	 (https://esp.gs.washington.edu),	 1000g	 (The	 1000	
Genomes	Project	Consortium	2015b),	and	dbSNP142	datasets.	These	were	discovered	
in	 the	entire	dataset	of	76	exomes	and	also	per	population.	The	annotation	of	 these	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 30, 2019. ; https://doi.org/10.1101/534818doi: bioRxiv preprint 

https://doi.org/10.1101/534818
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 13	

new	 variants	 was	 retrieved	 and	 classified	 according	 to	 their	 potential	 effect	 on	
transcripts.		
	
Demographic	inference		
	
For	 demographic	 inference	 we	 used	 the	 exome	 sequencing	 data	 from	 the	 four	 NM	
populaitons	HUI,	MYA,	TAR	and	TRQ,	 as	well	 as	data	 from	Han	Chinese	 (CHB)	 from	
TGP(The	1000	Genomes	Project	Consortium	2015b).	Non-native	ancestry	was	masked	
in	each	native	Mexican	sample.	To	include	only	neutral	sites	in	the	analysis,	we	limited	
to	 4-fold	 and	 intronic	 sites	 determined	 via	 SNPEff(Cingolani	 et	 al.	 2012).	 Inference	
was	 made	 on	 the	 unfolded	 site	 frequency	 spectrum	 (SFS).	 We	 used	 the	 panTro4	
reference	sequence	as	an	outgroup	and	implemented	a	context-dependent	correction	
for	 ancestral	 misidentification(Hernandez,	 Williamson,	 and	 Bustamante	 2007).	 We	
estimate	 the	 chimpanzee	 reference	 genome	 to	 have	 a	 0.012	 divergence	 from	 the	
human	reference	(hg19)	in	our	target	regions.	After	removing	triallelic	sites	and	sites	
with	 a	 missing	 outgroup	 allele,	 we	 produced	 a	 callable	 sequence	 length	 of	
8,889,201bp.	
	
Dadi	
The	demographic	model	was	 inferred	via	an	approximation	to	 the	 forward	diffusion	
equation	implemented	in	δαδι(Gutenkunst	et	al.	2009).	This	approach	infers	the	best-
fitting	 parameters	 given	 a	 specific	 demographic	 model	 and	 calculates	 the	 log-
likelihood	 of	 the	model	 fit	 based	 on	 a	 comparison	 of	 the	 expected	 to	 observed	 site	
frequency	 spectrum.	 δαδι	 can	 handle	 a	 maximum	 of	 three	 populations	 and	 has	
difficulty	optimizing	with	more	than	two	populations.	Due	to	this,	we	optimized	over	
the	 pairwise	 population	 demographies	 (extending	 the	 approach	 from(Moreno-
Estrada	 et	 al.	 2013)).	 We	 projected	 population	 allele	 frequencies	 to	 the	 following	
numbers	of	chromosomes:	TAR	26;	MYA	14;	TRQ	16;	HUI,	16.	
	
We	fixed	a	population	bottleneck	in	the	ancestral	population	70	kya	(δαδι	parameter:	
t=0.09).	This	parameter	was	fixed	as	it	has	been	estimated	in	previous	studies(Li	and	
Durbin	2011)	and	because	δαδι often	has	difficulties	 inferring	the	time	and	size	of	a	
bottleneck.	As	 the	expected	SFS	of	multiple	bottlenecks	 looks	nearly	 identical	 to	 the	
SFS	 of	 one	 bottleneck	 (with	 a	 different	 magnitude),	 we	 expect	 this	 bottleneck	 to	
encompass	the	loss	of	diversity	in	the	out-of-Africa	expansion	and	the	crossing	of	the	
Bering	strait	(similar	 to	Raghavan	et	al.	2015).	We	utilized	the	topology	 inferred	via	
Treemix	(Supplementary	Figure	S6	a,	Pickrell	and	Prichard	2012),	and	confirmed	this	
as	 the	 best-fitting	 topology	 in	 δαδι	 (Supplementary	 table	 S4).	 To	 convert	 best-fit	
parameters	to	interpretable	values,	we	assumed	a	generation	time	of	29	years	and	a	
mutation	 rate	 of	 1.25e-8	 mutations	 per	 base	 pair	 per	 generation.	 Then	 we	 set	 a	
topology	and	optimized	over	the	best-fit	for	all	pairwise	population	split	models.	
	
Confidence	 intervals	 were	 determined	 via	 1000	 bootstrapped	 replicates.	 To	 make	
these	replicates,	we	divided	the	genome	into	500	kb	blocks	and	removed	the	blocks	
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that	contained	no	target	regions.	Then	we	randomly	sampled	blocks	with	replacement	
and	inferred	δαδι parameters.	
	
Positive	Branch	Statistic		
	
We	 calculated	 the	 Positive	 Branch	 Statistic	 (PBS)	 as	 in	 (Yi	 et	 al.	 2010)allele	
frequencies	 of	 the	 derived	 alleles	 per	 population	 and	 then	 calculated	 pairwise	 FST	
values	 for	 each	 gene	 using	 Reynold’s	 FST	 formula	 (Reynolds,	Weir,	 and	 Cockerham	
1983).	Only	sites	with	at	 least	10	chromosomes	per	population	were	included	in	the	
calculation.	 Also,	 only	 sites	 that	 were	 polymorphic	 in	 at	 least	 one	 of	 the	 three	
populations	were	considered.	PBS	values	were	then	computed	for	each	gene	using	the	
formula:	
	
PBSNM	=(TNM-CHB	+TNM-CEU	–TCHB-CEU)/2	
	
when	considering	all	NM	as	a	single	population,	and:	
	
PBSNM1	=(TNM1-	NM2	+T	NM1-CHB	–T	NM2-CHB)/2		
	
for	each	NM	population	(yielding	twelve	possible	comparisons)	
	
Where:	
	
T	=	-	log(1	–	FST)	
	
To	 evaluate	 the	 significance	 of	 the	 PBS	 values,	 we	 compared	 them	 to	 a	 null	
distribution	 of	 simulated	 neutral	 sequences	 and	 followed	 the	 method	 of	 Yi	 et	 al.	
(2010).	We	simulated	sequences	in	ms(Hudson	2002)	with	our	inferred	4-population	
NM	 demography	 and	 used	 Han	 Chinese	 (1000	 Genomes,	 CHB)	 as	 an	 outgroup.	We	
estimated	 the	 Chinese-Mexican	 split	 time	 by	 averaging	 the	 inferred	 split	 time	 and	
bottleneck	Ne	between	the	CHB	and	each	native	Mexican	population.	
	
Simulated	allele	 frequencies	where	generated	 for	700k	genes	with	1	 to	80	SNPs	per	
gene.	PBS	values	on	the	simulated	data	were	then	calculated	using	the	same	filters	and	
formula	 as	 for	 the	 observed	 data.	 Because	 of	 filters	 (at	 least	 10	 chromosomes	 per	
population	and	only	polymorphic	sites),	some	of	the	simulated	sites	were	disregarded	
causing	a	change	in	the	number	of	simulations	for	each	SNPs/gene	bin.	Because	of	this	
we	randomly	subsampled	500k	simulations	 for	each	SNPs/gene	bin	category,	which	
covered	all	bins	between	1	to	71	SNPs/gene.	
	
Observed	 PBS	 values	 were	 then	 compared	 to	 the	 simulated	 values.	 A	 p-value	 was	
calculated	by	observing	the	fraction	of	simulated	PBS	values	larger	than	the	observed	
PBS.	For	example,	if	there	was	only	one	simulated	PBS	value	larger	than	the	observed	
one,	the	p-value	corresponded	to	a	p-value	of	0.000002	(1/500,000).	For	genes	with	1	
to	71	SNPs/gene	observed	values	were	compared	to	their	respective	simulated	bins.	
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Observed	PBS	values	for	genes	with	>71	SNPs,	were	compared	to	the	simulated	PBS	
distribution	of	71	SNPs/gene.		
	
Functional	enrichment	analysis	
	
To	perform	the	enrichment	analysis	we	 first	defined	an	 intersecting	subset	of	genes	
for	 each	 population	 considering	 only	 the	 genes	 in	 all	 pairwise	 comparison	 showing	
extreme	 PBS	 values	 (p-value	 <	 0.05)	 (e.g.	 the	 intersection	 of	 the	 subsets	 TAR-HUI,	
TAR-MYA	and	TAR-TRQ	generates	list	of	intersecting	genes	for	the	Tarahumara.	
	
For	 GO	 enrichment	 we	 used	 the	 online	 tool	 in	
http://www.geneontology.org/page/go-enrichment-analysis.	We	analyzed	each	of	the	
four	gene	lists	with	the	three	GO	categories	(biological	processes,	cellular	components	
and	molecular	function)	using	Bonferroni	correction.	(ran	on	28/06/17)	
	
To	 test	 for	 enrichment	 in	 GO	 categories	 among	 genes	with	 novel	missense	 SNV	we	
used	WebGestalt	online	tool(J.	Wang	et	al.	2013)	as	reported	in	(Romero-Hidalgo	et	al.	
2017a).		
	
We	 ran	 a	 pathway	 over-representation	 analysis	 on	 the	 same	 gene	 sets	 using	 the	
IMPaLA	online	tool(Kamburov	et	al.	2011)	available	at:	http://impala.molgen.mpg.de	
(ran	on	Sept/2017)	and	considered	only	pathways	with	a	Q	value	less	than	1.	A	score	
of	1	implies	100%	of	the	results	with	that	corresponding	p-value	are	false	positives,	in	
this	manner	we	took	into	account	lower	values.	
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Figure	1.		
Sampling	 locations	 and	 inferred	 demographic	 model	 for	 NM	 populations.	 Inferred	
split	times	are	shown	on	the	demographic	model	and	effective	population	sizes	(Ne)	
are	 shown	 on	 the	map.	 Each	 branch	 represents	 one	 of	 the	 populations	 used	 in	 the	
demographic	 inference;	colors	correspond	to	those	shown	in	the	map	displaying	the	
sampling	 locations	 of	 the	 participant	 NM.	 The	 Nahua	 were	 not	 included	 in	 the	
demographic	inference	(see	discussion).	
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Figure	2.		
Distribution	of	gene-based	population	branch	statistic	(PBS)	in	NM.	The	x-axis	shows	
the	value	of	the	PBS	and	the	y-axis	represents	the	frequency	at	which	that	value	was	
observed	among	all	NM.	Genes	displaying	extreme	(99.9th	percentile)	PBS	values	are	
highlighted.		
	
	
	 	

PBS distribution

PBS

Fr
eq
ue
nc
y

0.0 0.1 0.2 0.3 0.4 0.5

0
50
0

10
00

15
00

20
00

25
00

30
00

GRASP
SLC24A5

IL17A
GMCL1

SNORD114−14
SYT5

UBXN2B
TBC1D10C

MPZL1
IL13
FADS3
FAP

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 30, 2019. ; https://doi.org/10.1101/534818doi: bioRxiv preprint 

https://doi.org/10.1101/534818
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 24	

	
	
Figure	3.		
Population	branch	statistic	(PBS)	according	to	the	number	of	SNPs	in	each	gene	for	a)	
Huichol	(HUI),	b)	Maya	(MYA),	c)	Rarámuri	(TAR),	and	d)	Triqui	(TRQ).	Genes	under	
likely	 adaptive	 evolution	 are	 shown	 with	 their	 corresponding	 p-value	 and.	 Colors	
represent	 the	 population	 used	 as	 the	 second	 population	 for	 the	 computation	 of	 the	
PBS	(Han	Chinese	were	always	used	as	the	third,	distant	population).		
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