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Figure S2 | Comparison of linear and segmented fits for reference RTs in experiments
(a) The reference RT of PSMs compared with their observed RTs, and the model plotted in green
line (linear fit), or green and red lines (segmented fit, representing the two segments). For the
segmented fit, the inflection point is marked with the dotted blue line. Both fits were specified
separately and run separately with the same input data. (b) Empirical cumulative density function
(ECDF) of the residual RTs for both fits. The residual RT is defined as the Observed RT −
Inferred RT, where the inferred RT is the reference RT aligned to that particular experiment via.

the model function – linear or segmented. (c) Model-fitted standard deviations, σik, for each PSM
as estimated by both linear and segmented fits. Points below the 45� line indicate a lower modeled
RT standard deviation for the segmented fit, and vice versa. Clusters of points correspond to PSMs
belonging to a particular experiment, as the PSM-specific variance of σik is mostly reliant on the
experiment in which the PSM is observed.
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Figure S3 | Accuracy of RT inferences varies with time and between experiments.
(a) Residual RT (observed RT - aligned RT) binned by RT for 60 min LC-MS runs. The gradient
run is 5 – 35%B from 0 – 48 min, with a wash step of 35 – 100%B from 48 – 60 min. (b) Residual
RT varying between different experiments, all 60 min LC-MS/MS runs.
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Figure S4 | Distribution choice for inferred RT distribution and null RT distribution
(a) Empirical distribution of all residual RTs, i.e., Observed RT − Predicted RT, and (b) all RTs.
Red lines denote the distributions parametrized from the data.
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Figure S5 | Bayesian updates of PSM confidence using RTs estimated by different methods
(a) 2D density distributions of posterior error probabilities (PEP) derived from spectra alone (Spec-
tral PEP) compared to the PEP after incorporating RT evidence. The RT estimates are the same as
the ones shown in Fig. 2. (b) Comparison of updated PEP derived from DART-ID and MaxQuant
RT estimates. (c) Increase in confident PSMs at set confidence threshold using updated PEPs.
(d) Validation of upgraded PSMs with quantification variance within proteins.
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Figure S6 | Error rate of DART-ID PSMs
An approximation of the false discovery rate (FDR) using the fraction of decoys, i.e. the number
of decoy hits divided by the total number of PSMs at a given FDR threshold. “Spectra” are PSMs
from a separate MaxQuant search with 1% FDR specified in the search engine.
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Figure S7 | Consistency of quantification between Spectra and DART-ID PSM sets
The fold change in normalized RI intensity (T-cell/monocyte), from common proteins between the
Spectra and DART-ID PSM sets. We included all proteins – not just those that are significantly
(< 1% FDR) differentially abundant.
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Experiment Peptide α RT (min) Aligned RT (min) Std (min) PEP
A EQSAAER 35.12 30.11 0.10 0.05
C EQSAAER 26.25 30.02 0.02 0.48
F EQSAAER 27.82 30.21 0.22 0.42
M EQSAAER 32.99 29.94 0.15 0.07
Y EQSAAER 33.14 29.97 0.05 0.13
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Figure S8 | Deriving conditional probability of RT given a correct match
(a) The conditional probability distribution of RT given a correct peptide sequence assignment
incorporates evidence about that peptide sequence across many different experiments. “Aligned
RT” is the RT after applying the alignment function, and “Std” is inferred RT standard deviation for
the peptide in the given experiment. (b) For each RT observation for a sequence in an experiment,
we infer two distributions: one corresponding to RT density given a correct PSM and the other to
an incorrect PSM match. These densities are weighted by the 1-PEP and the PEP respectively and
summed to produce the marginal RT distribution. (c) The marginal RT distribution is then used
to sample B bootstrap replicates of of the observed RTs. Each bootstrapped RT is then used to
construct a bootstrapped reference RT for a given sequence. The reference RT is the median of
the resampled RTs (in the aligned space). (d) The B bootstrap samples of µi are used to build
distributions where the variance is determined by the model-derived variance of the peptide in
an experiment. (e) The combination of the distributions in panel (d) forms a posterior predictive
distribution for the observed RT, given that the peptide sequence assignment is correct.
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Figure S9 | Distribution of peptides quantified per protein
(a) Quantified PSMs per protein, including peptide sequences quantified across multiple experi-
ments, and (b) peptide sequences quantified per protein. “Spectra” indicates proteins from PSMs
identified below 1% FDR. “DART-ID new proteins” indicates PSMs boosted to below 1% FDR,
that have different protein assignments from “Spectra”, i.e., this set of proteins and the “Spectra”
set of proteins is disjoint. “DART-ID all proteins” contains all PSMs with updated DART-ID FDR
< 1% FDR regardless of protein assignment. All PSMs are filtered at < 1% FDR at the protein
level.

48

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/399121doi: bioRxiv preprint first posted online Aug. 23, 2018; 

http://dx.doi.org/10.1101/399121
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

1. Budnik, B., Levy, E., Harmange, G. & Slavov, N. SCoPE-MS: mass-spectrometry of sin-

gle mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome

Biology 19, 161 (2018).

2. Levy, E. & Slavov, N. Single cell protein analysis for systems biology. Essays In Biochem-

istry 62. doi:10.1042/EBC20180014 (2018).

3. Specht, H. & Slavov, N. Transformative opportunities for single-cell proteomics. Journal of

Proteome Research 17, 2563–2916 (8 June 2018).

4. MacLean, B. et al. Skyline: an open source document editor for creating and analyzing tar-

geted proteomics experiments. Bioinformatics 26, 966–968 (2010).

5. Argentini, A. et al. moFF: a robust and automated approach to extract peptide ion intensities.

en. Nature Methods 13, 964–966. ISSN: 1548-7091, 1548-7105 (Dec. 2016).

6. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized

p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnol-

ogy 26, 1367–1372 (2008).

7. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-

based shotgun proteomics. Nature Protocols 11, 2301–2319 (2016).

8. Zhang, B., Käll, L. & Zubarev, R. A. DeMix-Q: Quantification-Centered Data Processing

Workflow. en. Molecular & Cellular Proteomics 15, 1467–1478. ISSN: 1535-9476, 1535-

9484 (Apr. 2016).

9. Weisser, H. & Choudhary, J. S. Targeted Feature Detection for Data-Dependent Shotgun

Proteomics. en. Journal of Proteome Research 16, 2964–2974. ISSN: 1535-3893, 1535-3907

(Aug. 2017).

10. Cox, J. et al. Accurate Proteome-wide Label-free Quantification by Delayed Normalization

and Maximal Peptide Ratio Extraction, Termed MaxLFQ. en. Molecular & Cellular Pro-

teomics 13, 2513–2526. ISSN: 1535-9484 (June 2014).

49

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/399121doi: bioRxiv preprint first posted online Aug. 23, 2018; 

http://dx.doi.org/10.1042/EBC20180014
http://dx.doi.org/10.1101/399121
http://creativecommons.org/licenses/by-nc-nd/4.0/


11. Ong, S.-E. & Mann, M. A practical recipe for stable isotope labeling by amino acids in cell

culture (SILAC). en. Nature Protocols 1, 2650–2660. ISSN: 1754-2189 (Jan. 2007).

12. Käll, L., Canterbury, J. D., Weston, J., Noble, W. S. & MacCoss, M. J. Semi-supervised

learning for peptide identification from shotgun proteomics datasets. Nature Methods 4, 923–

925 (2007).

13. Strittmatter, E. F. et al. Application of Peptide LC Retention Time Information in a Discrimi-

nant Function for Peptide Identification by Tandem Mass Spectrometry. Journal of Proteome

Research 3, 760–769 (4 2004).

14. Klammer, A. A., Yi, X., MacCoss, M. J. & Noble, W. S. Improving Tandem Mass Spectrum

Identification Using Peptide Retention Time Prediction across Diverse Chromatography Con-

ditions. Analytical Chemistry 79. PMID: 17622186, 6111–6118 (2007).

15. Pfeifer, N., Leinenbach, A., Huber, C. G. & Kohlbacher, O. Statistical learning of peptide

retention behavior in chromatographic separations: a new kernel-based approach for compu-

tational proteomics. en. BMC Bioinformatics 8, 468. ISSN: 1471-2105 (2007).

16. Pfeifer, N., Leinenbach, A., Huber, C. G. & Kohlbacher, O. Improving Peptide Identification

in Proteome Analysis by a Two-Dimensional Retention Time Filtering Approach. en. Journal

of Proteome Research 8, 4109–4115. ISSN: 1535-3893, 1535-3907 (Aug. 2009).

17. Li, G.-Z. et al. Database searching and accounting of multiplexed precursor and product

ion spectra from the data independent analysis of simple and complex peptide mixtures. en.

Proteomics 9, 1696–1719. ISSN: 16159853, 16159861 (Mar. 2009).

18. Dorfer, V., Maltsev, S., Winkler, S. & Mechtler, K. CharmeRT: Boosting peptide identifica-

tions by chimeric spectra identification and retention time prediction. Journal of Proteome

Research 0. PMID: 29863353, null (2018).

19. Keller, A., Nesvizhskii, A. I., Kolker, E. & Aebersold, R. Empirical Statistical Model To

Estimate the Accuracy of Peptide Identifications Made by MS/MS and Database Search.

Analytical Chemistry 74, 5383–5392 (2002).

50

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/399121doi: bioRxiv preprint first posted online Aug. 23, 2018; 

http://dx.doi.org/10.1101/399121
http://creativecommons.org/licenses/by-nc-nd/4.0/


20. Cox, J. et al. Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environ-

ment. en. Journal of Proteome Research 10, 1794–1805. ISSN: 1535-3893, 1535-3907 (Apr.

2011).

21. Moruz, L. & Käll, L. Peptide retention time prediction. en. Mass Spectrometry Reviews 36,

615–623. ISSN: 02777037 (Sept. 2017).

22. Krokhin, O. V. et al. Use of Peptide Retention Time Prediction for Protein Identification by

off-line Reversed-Phase HPLC-MALDI MS/MS. en. Analytical Chemistry 78, 6265–6269.

ISSN: 0003-2700, 1520-6882 (Sept. 2006).

23. McQueen, P. et al. Information-dependent LC-MS/MS acquisition with exclusion lists poten-

tially generated on-the-fly: Case study using a whole cell digest of Clostridium thermocellum.

en. PROTEOMICS 12, 1160–1169. ISSN: 16159853 (Apr. 2012).

24. Meek, J. L. Prediction of peptide retention times in high-pressure liquid chromatography on

the basis of amino acid composition. en. Proceedings of the National Academy of Sciences

77, 1632–1636. ISSN: 0027-8424, 1091-6490 (Mar. 1980).

25. Guo, D., Mant, C. T., Taneja, A. K., Parker, J. & Rodges, R. S. Prediction of peptide reten-

tion times in reversed-phase high-performance liquid chromatography I. Determination of

retention coefficients of amino acid residues of model synthetic peptides. Journal of Chro-

matography A 359, 499–518. ISSN: 0021-9673 (1986).

26. Sakamoto, Y., Kawakami, N. & Sasagawa, T. Prediction of peptide retention times. en. Jour-

nal of Chromatography A 442, 69–79. ISSN: 00219673 (Jan. 1988).

27. Krokhin, O. et al. An Improved Model for Prediction of Retention Times of Tryptic Peptides

in Ion Pair Reversed-phase HPLC: Its Application to Protein Peptide Mapping by Off-Line

HPLC-MALDI MS. en. Molecular & Cellular Proteomics 3, 908–919. ISSN: 1535-9476,

1535-9484 (Sept. 2004).

28. Baczek, T., Wiczling, P., Marszall, M., Heyden, Y. V. & Kaliszan, R. Prediction of Peptide

Retention at Different HPLC Conditions from Multiple Linear Regression Models. en. Jour-

nal of Proteome Research 4, 555–563. ISSN: 1535-3893, 1535-3907 (Apr. 2005).

51

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/399121doi: bioRxiv preprint first posted online Aug. 23, 2018; 

http://dx.doi.org/10.1101/399121
http://creativecommons.org/licenses/by-nc-nd/4.0/


29. Krokhin, O. V. Sequence-Specific Retention Calculator. Algorithm for Peptide Retention

Prediction in Ion-Pair RP-HPLC: Application to 300- and 100-Å Pore Size C18 Sorbents.
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