1 Identification of a Type IV CRISPR-Cas system located exclusively on IncHI1B/

2

IncFIB plasmids in Enterobacteriaceae

3 4	Enas Newire ^{1,2,#} , Alp Aydin ^{3,##} , Samina Juma ³ , Virve I Enne ³ , Adam P. Roberts ^{1,4,5,*}
5 6 7 8 9 10	¹ UCL Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X 8LD, UK. ² US. Naval Medical Research Unit-3, Cairo, Egypt. ³ Centre for Clinical Microbiology, University College London, Royal Free Hospital Campus, Rowland Hill Street, London NW3 2PF, UK. ⁴ Department of Tropical Disease Biology and ⁵ Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
11	*Corresponding Author: Tel: +44(0)151 705 3247; E-mail: <u>adam.roberts@lstmed.ac.uk</u>
12	
13	
14	Running Title: A plasmid based CRISPR-Cas system.
15	Keywords : Type IV-B, <i>IncFIIK, IncFIB(K)</i> , plasmid incompatibility, Mobile genetic element.
16 17	[#] Present address; Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, UK.
 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 	^{##} Present address; Quadram Institute, James Watson Road, Norwich, NR4 7UQ
33 34	

36 Abstract [171/250 words]

37 During an investigation of CRISPR carriage in clinical, multi-drug resistant, Klebsiella 38 pneumoniae, a novel CRISPR-Cas system (which we have designated Type IV-B) was 39 detected on plasmids from two K. pneumoniae isolates from Egypt (isolated in 2002-2003) 40 and a single K. pneumoniae isolate from the UK (isolated in 2017). Sequence analysis of other genomes available in GenBank revealed that this novel Type IV-B CRISPR-Cas system 41 42 was present on 28 other plasmids from various *Enterobacteriaceae* hosts and was never 43 found on the chromosome. Type IV-B is found exclusively on *IncHI1B/ IncFIB* plasmids and is 44 associated with multiple putative transposable elements. Type IV-B has a single repeatspacer array (CRISPR1) upstream of the cas loci with some spacers matching regions of 45 46 conjugal transfer genes of IncFIIK/ IncFIB(K) plasmids suggesting a role in plasmid incompatibility. Expression of the cas loci was confirmed in available clinical isolates by RT-47 PCR; indicating the system is active. To our knowledge, this is the first report describing a 48 49 new subtype within Type IV CRISPR-Cas systems exclusively associated with IncHI1B/ IncFIB plasmids. 50

51 Importance [121/150 words]

Here, we report the identification of a novel subtype of Type IV CRISPR-Cas that is expressed and exclusively carried by *IncHI1B/ IncFIB* plasmids in *Enterobacteriaceae*, demonstrating unique evolutionarily juxtaposed connections between CRISPR-Cas and mobile genetic elements (MGEs). Type IV-B encodes a variety of spacers showing homology to DNA from various sources, including plasmid specific spacers and is therefore thought to provide specific immunity against plasmids of other incompatible groups (*IncFIIK/ IncFIB(K)*). The relationship between Type IV-B CRISPR-Cas and MGEs that surround and interrupt the system is likely to promote rearrangement and be responsible for the observed variability of this type. Finally, the Type IV-B CRISPR-Cas is likely to co-operate with other *cas* loci within the bacterial host genome during spacer acquisition.

62 Introduction [247/250 words]

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) are widespread, 63 bacterial adaptive, RNA-mediated, immune systems that target invading foreign DNA such 64 as bacteriophages and conjugative plasmids ^{1, 2}. CRISPR functions through a three-stage 65 66 process: adaptation involving acquisition of foreign DNA molecules spacers, expression and maturation of the short CRISPR RNAs (crRNAs), and the interference with a cognate invading 67 foreign DNA molecule³. To date, CRISPR-Cas systems are classified into 2 classes, 5 Types (I-68 V) and 33 subtypes ⁴. The two classes are differentiated based on the effector module; class 69 70 1 utilises multi-protein effector Cas complexes, while class 2 utilise a single-protein effector (either Cas9 or Cpf1)^{5, 6}. All types are confirmed, or expected, to provide immunity against 71 invading DNA, while Type III CRISPR-Cas systems can target both DNA and RNA ^{7, 8}. 72

Type IV was previously called the Unknown Type, due to its rare occurrence and lack of the adaptation module, until an updated classification in 2015^{7,9}. In 2017, Type IV classification was updated to show an associated repeat-spacer array for a *cas* loci that has *csf1* (*cas8-Like*), *csf2* (*cas7*), *csf3* (*cas5*), *csf4* (*dinG*) and *csf5* (*cas6-Like*) genetic arrangement, respectively⁴. Type IV is the only type to possess *csf4* (*dinG*)⁴. Type IV CRISPR–Cas systems were shown to employ crRNA-guided effector complexes in 2019⁸. It has been hypothesised that Type IV is similar to an ancestral innate immune system that gained adaptive ability by associating with a transposon-like element containing *cas1* and *cas2*³.

81 Results [186/150 words]

82 A novel CRISPR-cas family, which we have designated Type IV-B due to the presence of dinG, containing a repeat-spacer array, leader sequence and *cas* loci was detected on thirty-one 83 84 (three clinical isolates and twenty-eight genomes in GenBank) IncHI1B/ IncFIB(Mar) 85 plasmids from *Enterobacteriaceae* (Figure 1A, Table S1). Type IV-B *cas* loci show homology to each other, while csf5 (cas6) in Type IV-B shows 100% protein identity to Type I-E 86 87 cas6. Type IV-B CRISPR-Cas systems could be grouped according to the presence of an IS 88 element interrupting the *cas* loci and both groups are associated with multiple MGEs (Figure 1A). We also identified partial cas loci (cas6 and dinG) on other IncHI1B/ IncFIB(Mar) 89 plasmids (Table S1). A single repeat-spacer CRISPR1¹⁰ array was identified upstream of all 90 cas loci. The repeats have a predicted stem-loop secondary-structure likely involved in pre-91 92 crRNA processing (Figure 1B, 1C). Spacer-1 in CP018720.1 and spacer-20 in CP014776.1 correspond to IncFIIK conjugal transfer genes; traN and traL, respectively. The Protospacer 93 94 Adjacent Motif (PAM) alignment revealed the leader-proximal repeat signature conservation (TGCC/TTAT). Finally, RT-PCR demonstrated that Type IV-B cas loci genes (csf2, 95 *dinG* and *cas6*) are expressed. 96

97 Discussion [197/200 words]

Type IV CRISPR-Cas systems are the only ones possessing $dinG^4$, therefore we propose the CRISPR-Cas system described here be designated Type IV-B. Unlike classical Type IV, Type IV- 100 B lacks *cas8-like* and *cas5*, however, it has *dinG* and *cas7* (involved in interference), and *cas6* (involved in expression and maturation of short crRNAs)¹¹⁻¹³. Type IV-B has a variable 101 repeat-spacer array and a conserved leader sequence. Expression of Type IV-B genes 102 indicates system activity; likely providing immunity to incoming DNA matching the spacers⁸. 103 104 The spacers demonstrated conservation and polymorphism and cluster into two main 105 groups (Figure 2A, 2B) both matching DNA from a variety of sources. However, the 106 adaptation module is missing, thus adding new spacers will require *cas1* and *cas2* from other CRISPR-Cas that exist within the Enterobacteriaceae genomes. Interestingly, some of 107 108 Type IV-B spacers match conjugal transfer genes traN and traL of IncFIIK/IncFIB(K) plasmids, 109 suggesting a role in plasmid incompatibility.

110 Type IV-B demonstrates a complex evolutionary connection with MGEs in terms of 111 parasitism and immunity¹⁴. The association between Type IV-B and multiple MGEs, plus the 112 identification of partial *cas* loci on other *IncHI1B/ IncFIB(Mar)* plasmids, indicates that 113 dynamic, MGE mediated rearrangement, of CRISPR-Cas Type IV-B is ongoing.

114 **Conclusion** [56/75 words]

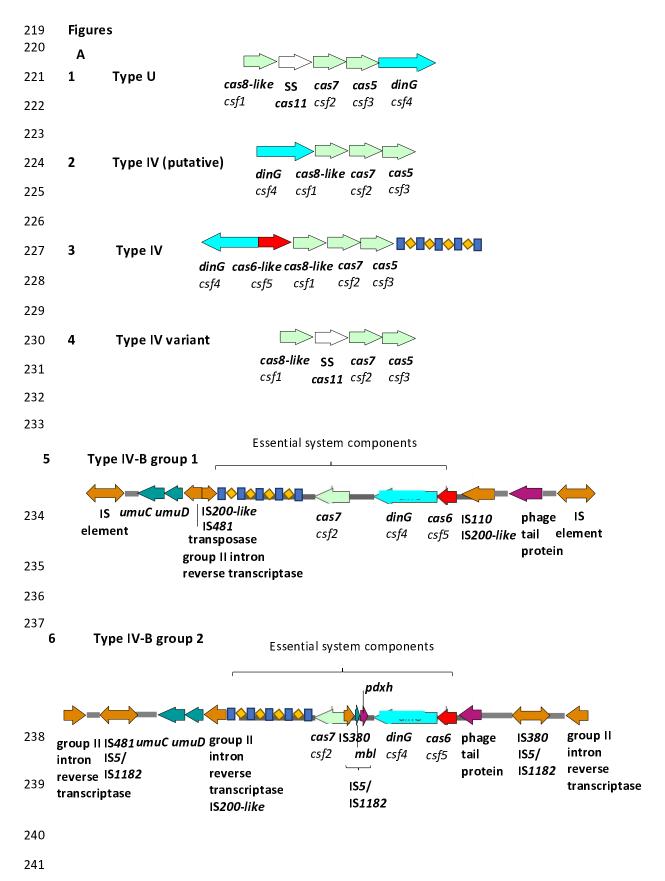
To our knowledge, this is the first identification of a CRISPR-Cas system, which we have designated Type IV-B, exclusively associated with plasmids. The system demonstrates an evolutionary association and role for MGEs in dissemination and, additionally, the spacer analysis suggests a role in plasmid incompatibility. We propose updating the CRISPR-Cas system classification to include Type IV-B.

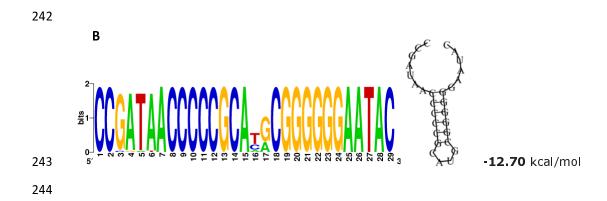
120 Materials and Methods [125/125 words]

121 Isolate information Clinical K. pneumoniae-53 and K. pneumoniae-65 were isolated from Egyptian university teaching hospitals (2002-2003), and K. pneumoniae-CR5 from University 122 123 College London Hospital in the UK (2017). **CRISPR-Cas loci expression** RT-PCR was performed using LightCycler[®] RNA Amplification Kit 124 UK). 125 SYBR Green (Roche Diagnostics Ltd., The (csf2primers were fw:AAAATGCGGTCTCAACTTCCG; csf2-rev:TGACGAAGAGTTCCCCGAATG), 126 (dinG-127 fw:GAGTCTGCCGGATTGTCGTTA; *dinG*-rev:GTACCAGATAGCCCAGCGTTT) and (cas6fw:AATGCGTTTCGGTTGCGTATC; cas6-rev:GAGTACGGCAGCTTCTCTCC). 128 129 Bioinformatics analysis DNA sequences were analysed using CRISPRFinder, CRISPRTarget and Snapgene (GSL Biotech) ^{12, 15, 16}. Multi-Locus Sequence Typing, resistance genes and 130 plasmids were identified using MLST, ResFinder and PlasmidFinder, respectively ¹⁷. Spacer 131 analysis was performed by BLAST and Geneious ¹⁸. A phylogenetic UPGMA-based tree was 132 constructed for CRISPR using MEGA7^{19, 20}. Direct repeats and PAM conservation were 133 assessed using WebLogo, RNA secondary structure was predicted using RNAfold ²¹⁻²³. 134

135 Funding

E. N. was supported by a grant from the Schlumberger Foundation's Faculty for the FutureProgramme (2012-2016).


138 Transparency declarations


139 None to declare.

140 **References**

141	1.	Marraffini, L.A. and E.J. Sontheimer, CRISPR interference: RNA-directed adaptive immunity in
142		bacteria and archaea. Nature Reviews Genetics, 2010. 11(3): p. 181-90.
143	2.	Barrangou, R., et al., CRISPR provides acquired resistance against viruses in prokaryotes.
144		Science, 2007. 315 (5819): p. 1709-1712.
145	3.	Rath, D., et al., The CRISPR-Cas immune system: biology, mechanisms and applications.
146		Biochimie, 2015. 117 (2015): p. 119-28.
147	4.	Koonin, E.V., K.S. Makarova, and F. Zhang, Diversity, classification and evolution of CRISPR-
148		<i>Cas systems</i> . Current Opinion in Microbiology, 2017. 37 (1): p. 67-78.
149	5.	Makarova, K.S., F. Zhang, and E.V. Koonin, SnapShot: Class 1 CRISPR-Cas Systems. Cell, 2017.
150		168 (5): p. 946-946.e1.
151	6.	Makarova, K.S., et al., An updated evolutionary classification of CRISPR-Cas systems. Nature
152		Reviews Microbiology, 2015. 13 (11): p. 722-36.
153	7.	Zhang, Q. and Y. Ye, Not all predicted CRISPR-Cas systems are equal: isolated cas genes and
154		classes of CRISPR like elements. BMC Bioinformatics, 2017. 18(1): p. 92.
155	8.	Ozcan, A., et al., Type IV CRISPR RNA processing and effector complex formation in
156		Aromatoleum aromaticum. Nat Microbiol, 2019. 4 (1): p. 89-96.
157	9.	Makarova, K.S., Y.I. Wolf, and E.V. Koonin, The basic building blocks and evolution of CRISPR-
158		CAS systems. Biochem Soc Trans, 2013. 41 (6): p. 1392-400.
159	10.	Touchon, M., et al., CRISPR distribution within the Escherichia coli species is not suggestive of
160		<i>immunity-associated diversifying selection</i> . Journal of Bacteriology, 2011. 193 (10): p. 2460-7.
161	11.	Koonin, E.V. and M. Krupovic, Evolution of adaptive immunity from transposable elements
162		combined with innate immune systems. Nat Rev Genet, 2015. 16(3): p. 184-92.
163	12.	Lundgren, M., E. Charpentier, and P.C. Fineran, CRISPR Methods and Protocols. Methods in
164		Molecular Biology. Vol. 1311 2015, New York Springer Science Business Media New York
165	13.	Dwarakanath, S., et al., Interference activity of a minimal Type I CRISPR–Cas system from
166		Shewanella putrefaciens. Nucleic Acids Res, 2015. 43 (18): p. 8913-23.
167	14.	Koonin, E.V. and K.S. Makarova, Mobile genetic elements and evolution of CRISPR-Cas
168		systems: all the way there and back. Genome Biology and Evolution, 2017. 9(10): p. 2812-
169		2825.
170	15.	Grissa, I., G. Vergnaud, and C. Pourcel, CRISPRFinder: a web tool to identify clustered
171		regularly interspaced short palindromic repeats. Nucleic Acids Research, 2007b. 35 (2): p.
172		W52-7
173	16.	GSL, "SnapGene software (from GSL Biotech; available at snapgene.com)", Biotech Chicago,
174		IL.
175	17.	Carattoli, A., et al., In silico detection and typing of plasmids using PlasmidFinder and plasmid
176		multilocus sequence typing. Antimicrob Agents Chemother, 2014. 58(7): p. 3895-903.
177	18.	Kearse, M., et al., Geneious Basic: an integrated and extendable desktop software platform
178		for the organization and analysis of sequence data. Bioinformatics, 2012. 28 (12): p. 1647-9.
179	19.	Kumar, S., G. Stecher, and K. Tamura, <i>MEGA7: molecular evolutionary genetics analysis</i>
180		version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016. 33 (7): p. 1870-4.
181	20.	Shen, J., et al., Comparative analysis of CRISPR-Cas systems in Klebsiella genomes. Journal of
182		Basic Microbiology, 2017. 57 (4): p. 325-336.
183	21.	Crooks, G.E., et al., WebLogo: a sequence logo generator. Genome Research, 2004. 14(6): p.
184		1188-90
185	22.	Mathews, D.H., Predicting a set of minimal free energy RNA secondary structures common to
186		<i>two sequences</i> . Bioinformatics, 2005. 21 (10): p. 2246-53.

187 188	23.	Hofacker, I.L., <i>Vienna RNA secondary structure server</i> . Nucleic Acids Research, 2003. 31 (13): p. 3429-31.
189		
190		
191		
192		
193		
194		
195		
196		
197		
198		
199		
200		
201		
202		
203		
204		
205		
206		
207		
208		
209		
210		
211		
212		
213		
214		
215		
216		
217		
218		

245 Figure 1: Type IV-B CRISPR-Cas system. (A) Schematic representation of Type IV CRISPR-Cas 246 sytems and the two groups of Type IV-B described here. Panel 1 is Type U (unknown) as identified in 2013⁹. Panel 2 is Type IV (putative) as identified in *Acidithiobacillus ferroxidans* 247 248 in 2015 ⁶. Panel 3 is Type IV and Panel 4 is Type IV variant identified in *Thioalkalivibrio sp.* 249 K90mix (TK90_2699-TK90_2703) and Rhodococcus jostii RHA1 (RHA1_ro10069-RHA1 ro10072), respectively, in 2017¹⁴. Panel 5 is Type IV-B group 1 and Panel 6 is Type IV-250 251 B group 2 as detected in Enterobacteriaceae isolates and genomes in this study. Arrows in 252 different colours represent genes; red represents *cas6*; bright blue represents *dinG*; light 253 green represents cas7; white represents cas11; blue-yellow pattern represents the direct 254 repeat-spacer loci; orange represents the location of the associated MGEs occurring 255 upstream (IS5/ IS1182, IS630, IS6, IS1, IS481 or IS110) and downstream (IS5/ IS1182, IS630, 256 IS6, IS5-like, IS3000, ISKra4, IS10L or group II intron reverse transcriptase) of the system; 257 green represents resistance genes; purple represents other genes associated with the 258 system. (B) Conservation of the repeats and predicted stable stem-loop secondary structure 259 predicted to be involved in the mechanism of pre-crRNA processing. The height of the 260 letters in the sequence logo shows the relative frequency of their recurrence at that 261 position. Wobbles at position 16 and 17 are within the loop of the predicted stem-loop

- 262 structure and are therefore tolerated in the structural prediction shown in C; (C) The
- 263 predicted secondary structure of direct repeats and the associated Minimum Free Energy
- 264 (MFE) estimated in (kcal/mol) shown underneath the structure.

Isolate									C	RISP	R1											
CP011314.1	1 P	2 P	3 P	4 CO	5 CO	6 0	7 CO	8 CO	9 Ph	<u>10</u> Р	11 CO	12 Ph]									
HG918041.1	1 P	2 P	3 P	13 CO	13 CO	14 CO	5 CO	27 CO	28 CO	6 0	7 CO	29 O	25 CO	9 Ph	30 S	<mark>15</mark> 0	10 P	11 CO	12 Ph			
CP018961.1	24 CO	З Р	13	14 CO	5	27 CO	28	29	25 CO	9 Ph	30	10 P	13 CO	26 CE	11		•					
CP017986.1	1	2	CO 3	13	CO 14	5	CO 27	0 28	29	9	S 30	15	10	13	CO 26	11	16					
CP018720.1	P 24	P 1	P 2	CO 3	CO 13	CO 14	CO 5	CO 27	0 28	Ph 29	S 9	0 30	Р 15	CO 10	CE 13	CO 26	CO 11	16				
	CO 1	P 2	Р 3	Р 13	CO 14	CO 5	CO 27	CO 28	CO 29	0 9	Ph 30	S 15	0 10	P 13	CO 26	CE 11	CO 16	со				
CP018714.1	P 24	P 1	P 2	CO 3	CO 13	CO 14	CO 5	CO 27	0 28	Ph 29	S 9	0 30	P 15	CO 10	CE 13	CO 26	CO 11	16				
CP018708.1	CO	Р	Р	Р	со	со	со	со	со	0	Ph	S	0	Р	со	CE	со	CO	l I			
CP018702.1	24 CO	1 P	2 P	3 P	13 CO	14 CO	5 CO	27 CO	28 CO	29 0	9 Ph	30 S	15 0	10 P	13 CO	26 CE	11 CO	16 CO	1			
CP018696.1	24 CO	1 P	2 P	3 P	13 CO	14 CO	5 CO	27 CO	28 CO	29 0	9 Ph	30 S	15 0	<u>10</u> Р	13 CO	26 CE	11 CO	16 CO	L			
LN824134.1	1 P	2 P	3 P	14 CO	5 CO	27 CO	28 CO	6 0	7 CO	15 0	10 P	СО	26 CE	11 CO	12 Ph	12 Ph	17 S					
JN420336.1	18 S	19 P	3 P																			
MF150122.1	24	1	2	3	13	14	31	8	5	27	28	29	25	8	9	30	15	10	13	26	11	12
CP014776.1	CO 18	P 20	P 21	P 8	CO 9	CO 30	CO 22	CO 23	CO 13	CO 26	CO 11	0 19	CO 12	CO 17	Ph	S	0	Р	CO	CE	CO	Ph
	S 1	P 2	CO 3	CO 13	Ph 14	S 5	CO 27	CO 28	CO 29	CE 9	CO 30	Р 15	Ph 10	S 13	CO 26	CO 11	16					
CP020854.1	Р 1	P 2	Р 3	CO 13	CO 14	CO 5	CO 27	CO 28	0 29	Ph 9	S 30	0 15	P 10	CO 13	CE 26	CO 11	CO 16					
CP018313.1	P 18	P	Р	CO 33	CO 34	CO 9	со	CO 22	0	Ph 13	S	0	P	CO	CE	CO	CO					
CP018339.1	S	20 P	21 CO	S	со	Ph	30 S	со	23 CO	со	26 CE	S	со	l								
CP020068.1	18 S	20 P	21 CO	8 CO	9 Ph	30 S	22 CO	23 CO	13 CO	26 CE	12 Ph	17 S	 -									
CP016921.1	18 S	20 P	21 CO	8 CO	9 Ph	30 S	22 CO	23 CO	13 CO	26 CE	12 Ph	17 S										
CP006799.1	18 S	20 P	21 CO	8 CO	9 Ph	30 S	22 CO	23 CO	13 CO	26 CE	12 Ph	17 S	1									
CP015501.1	з 1 Р	2	3	14	5	27 CO	28	6	7 CO	15 0	23 CO	10 P	26	11	12	12	17					
CP008933.1	18	P 20	P 32	CO 20	CO 21	8	CO 19	0 3		0	tu	٢	CE	со	Ph	Ph	S					
CP012754.1	S 18	P 20	CO 21	P 8	CO 9	CO 30	P 22	P 23	13	26	12	17]									
	S 1	P 2	CO 3	CO 13	Ph 14	S 5	CO 27	CO 28	CO 29	CE 9	Ph 30	S 15	10	13	26	11	16					
CP018687.1	P 18	P 20	P 32	CO 20	CO 21	CO 8	CO 34	CO 9	0 30	Ph 22	S 23	0 13	P 26	CO 11	CE 35	CO 17	CO 34	33	I			
CP026398.1	S	Р	CO	Р	CO	CO	CO	Ph	S	CO	CO	CO	CE	CO	CO	S	CO	CO	l			
CP020848.1	3 P	19 P	8 CO	21 CO	20 P	32 CO	20 P	18 S														
CP024507.1	17 S	19 P	26 CE	13 CO	23 CO	22 CO	30 S	9 Ph	8 CO	21 CO	20 P	18 S	l									
CP026172.1	33 CO	34 CO	17 S	35 CO	11 CO	26 CE	13 CO	23 CO	22 CO	30 S	9 Ph	34 CO	<mark>8</mark> CO	21 CO	20 P	32 CO	20 P	18 S				
CP025462.1	8 CO	9 Ph	30 S	22 CO	23 CO	11 CO	12 Ph	17 S		-		-	-			-		•				
K. pneumoniae- 53	1	2	3	4	5	6	7	8	9	10	11	12	l									
K. pneumoniae- 65	Р 1	P 2	Р 3	CO 4	CO 5	0 6	CO 7	CO 8	Ph 9	P 10	CO 11	Ph 12]									
-	P 18	P 20	P 32	CO 18	CO 20	0 22	со	со	Ph 33	Р	CO 34	Ph 9	23		10	13						
K. pneumoniae-CR5	S	Р	со	S	Р	со	P	S	S	со	CO	Ph	CO	CE	Р	со	CO	со	Р	со	Р	Р

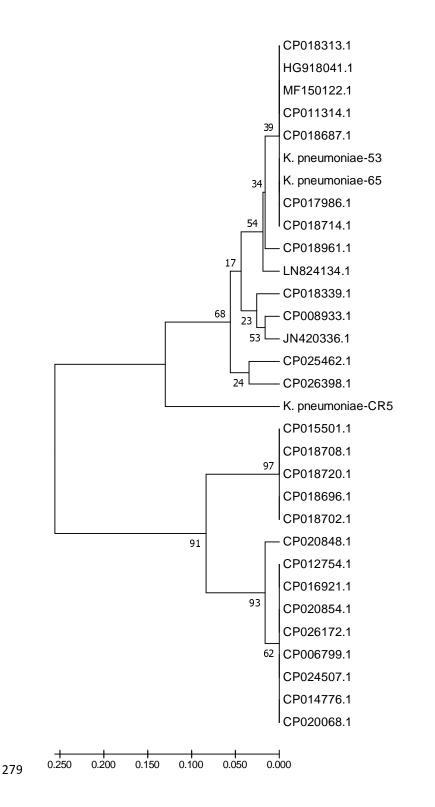


Figure 2: Type IV-B CRISPR spacer polymorphism and evolutionary relationships. (A) The spacers map. Only spacers are represented by boxes, and no repeats are included. Identical

282 spacers are represented by the same number and colour, while unique spacers are represented by white colour and no number is associated with the box. Self-targeting 283 284 spacers are indicated by letter (S) and show 100% identity to host DNA, plasmid-targeting 285 spacers are indicated by letter (P), phage targeting spacers are indicated by letters (Ph), 286 other Enterobacteriaceae targeting spacers (100% identity) are indicated by letter (O), 287 cryptic spacers with similarity to other bacterial DNA are indicated by letters (CO), and those 288 with similarity to Eukaryotic DNA are indicated by letters (CE) that are positioned 289 underneath the relevant spacer. CE spacers showed at least 57% identity to eukaryotic DNA. 290 CE spacers were confirmed by multiple sequences alignments. (B) The phylogenetic tree 291 illustrating the evolutionary relationships of the Type IV-B repeat-spacer CRISPR loci. 292 Phylogenetic UPGMA tree was constructed using the MUSCLE algorithm of MEGA7. The tree 293 is drawn to scale, with branch lengths in the same units as those of the evolutionary 294 distances used to infer the phylogenetic tree. The evolutionary distances were computed 295 using the Maximum Likelihood method, [bootstrap test (1000 replicates), and the rate 296 variation among sites was modelled with a gamma distribution (shape parameter = 1).

297

298

299

300

301

302 Supplementary Table

303 Table S1: Type IV-B IncHI1B/ IncFIB (Mar) plasmids information. †

	Strain		location			Re	peat-sp	acer CRI	SPR loc	i*				
	(Accession	ST	(date)	plasmid	Resistance genes	Start	End	Spacer			Type IV-B Structure			
1	number) K. pneumoniae strain 234-12 plasmid pKpn23412-362 (CP011314.1)	ST-514	UK (2015)		merC, aph(6)-Id, tmrB, terY, terX, terW, terZ, terA, terB, terC, bla _{TEM-1} , bla _{CTX-M} . 15, bla _{OXA-1} , aacA4, aph(3''), aac(3)-IIa, aac(6')Ib-cr, strA, strB, catB4, catA1, sul2, tet(A), dfrA1	141865	142618	number 12	23	Tengtn	IS630 umuC umuD IS200-like cas7 dinG cas6 phage tail IS5/ IS630 transposase csf2 csf4 protein IS1182			
2	<i>K. pneumoniae</i> Kp15 plasmid pENVA (HG918041.1)	unknown	Germany (2014)	IncH	merD, merA, merP, qnrb4, aadA, terY, terX, terW, terZ, terA, terB, terC, bla _{CTX-M-15} , bla _{DHA-1} , qacE, bla _{TEM-1} , aadA1, aac(3)-II, sul1, tet(A), dfrA15	99454	100629	19	23	1175	IS481 umuC umuD IS200-like cas7 dinG cas6 IS110 phage ta transposase csf2 csf4 protein			
3	<i>E. coli</i> strain Ecol_422 plasmid pEC422_1 (CP018961.1)	ST-2	UK (2016)	IncHI1B	tetC, sul1, mer, qnrE1, terY, terX, terW, terZ, terA, terB, terC, bla _{CTX-M-2} , qacE, bla _{OXA-1} , bla _{TEM-26} , aac(6')Ib-cr, aac(3)-IIa, mph(A), catB3,arr-3, sul1	276922	277868	15	29	946	IS200 IS110 group II IS200-like cas7 dinG cas6 IS110 phage tail intron transposase csf2 csf4 protein umuC umuD transcriptase			
4	K. pneumoniae strain 825795-1 plasmid unnamed1 (CP017986.1)	ST-147	Germany (2016)	IncHI1B	terA	148524	149585	17	30	1061	IS5/ umuC umuD IS200-like cas7 dinG cas6 phage tail IS5/ IS1182 transposase csf2 csf4 protein IS1182			
5	<i>K. pneumoniae</i> strain KP_Goe_828304 plasmid	ST-147	Germany (2016)	IncHI1B	terY, terX, terW, terZ, terA, terB, terC	24563	25679	18	24	1116	IS5/ umuC umuD IS200-like cas7 dinG cas6 phage tail IS5/ IS1182 transposase csf2 csf4 protein IS118.			

	Strain		location			Re	epeat-sp	acer CRI	SPR loc	i*					
	(Accession number)	ST	(date)	plasmid	Resistance genes	Start	End	Spacer number		CRISPR length	Type IV-B Structure				
	pKp_Goe_304-1 (CP018720.1)														
6	<i>K. pneumoniae</i> strain														
	Kp_Goe_152021 plasmid	ST-147	Germany (2016)	IncHI1B	terY, terX, terW, terZ, terA, terB, terC	7687	8748	17	30	1061	IS5/ umuC umuD IS200-like cas7 dinG cas6 phage tail IS5/ IS1182 transposase csf2 csf4 protein IS1182				
	pKp_Goe_021-1 (CP018714.1)										in insposase csjz csj4 protein is1102				
7	<i>K. pneumoniae</i> strain														
	Kp_Goe_827026 plasmid	ST-147	Germany (2016)	IncHI1B	none	54661	55777	18	24	1116	IS5/ umuC umuD IS200-like cas7 dinG cas6 phage tail IS5/ IS1182 transposase csf2 csf4 protein IS1182				
	pKp_Goe_026-1 (CP018708.1)		(2010)								IS1182 transposase csf2 csf4 protein IS1182				
8	<i>K. pneumoniae</i> strain														
	Kp_Goe_827024 plasmid	ST-147	Germany (2016)	IncHI1B	terY, terX, terW, terZ, terZ, terB. terC	5006	6122	18	24	1116	IS5/ umuC umuD IS200-like cas7 dinG cas6 phage tail IS5/ IS1182 transposase csf2 csf4 protein IS1182				
	pKp_Goe_024-1 (CP018702.1)										single size size protein isitez				
9	<i>K. pneumoniae</i> strain														
	Kp_Goe_149832 plasmid	ST-147	Germany (2016)	IncHI1B	terY, terX, terW, terZ, terA, terB, terC	102143	103259	18	24	1116	IS5/ umuC umuD IS200-like cas7 dinG cas6 phage tail IS5/ IS1182 transposase csf2 csf4 protein IS1182				
	pKp_Goe_832-1 (CP018696.1)										poten 151162				

	Strain	Ì	location			Re	epeat-sp	acer CRI	S PR loci	*	
	(Accession number)	ST	(date)	plasmid	Resistance genes	Start	End	Spacer number			Type IV-B Structure
10	K. pneumoniae MS6671.v1, plasmid (LN824134.1)	ST-147	Australia (2015)	IncHI1B	none	16764	17823	17	29	1059	group II umuC umuD IS200-like intron transposase cas7 IS5/ dinG cas6 IS5/ group II csf2 IS1182 csf4 IS1182 intron reverse transcriptase
11	<i>K. pneumoniae</i> plasmid pNDM- MAR (JN420336.1)	ST-15	Italy (2011)	IncH	bla _{NDM-1} , ble _{MBU} , qnrB66, merR, terY3, terY1, terW, terZ, terA, terC, terD, terE, terF, bla _{CTX-M-15} , bla _{OXA-1} , aac(6')Ib-cr, aac(6')Ib-cr, catA1, catB4	240016	240226	3	28	210	Pyridoxamine 5'-phosphate oxidase IS481 umuC umuD cas7 IS380 dinG cas6 phage tail IS380 csf2 MBL csf4 protein
12	<i>K. pneumoniae</i> A64477 plasmid pKP64477b (MF150122.1)		Brazi (2017)	IncHI1B	terZ, terA, terB, terD	84064	85428	22	29	1364	umuC umuD IS200-like cas7 dinG cas6 phage group II transposase csf2 csf4 tail intron protein reverse transcriptase
13	<i>P. gergoviae</i> FB2 plasmid pFB2.1 (CP014776.1)	unknown	Malaysia (2016)	IncFlB (Mar)	terF, terC, terB, terA, terZ, terW, terY, terF	56849	57852	16	29	1003	transposase umuC umuD cas7 dinG cas6 phage group II IS481 csf2 csf4 tail intron protein reverse transcriptase
14	<i>K. pneumoniae</i> KPN528 plasmid pKPN528-1 (CP020854.1)	ST-14	USA (2013)		bla _{NDM-1} , bla _{OXA-1} , terF, terC, terB, terA, terZ, terW, terY, terX, sul1, dfrA12, dfrA14, qnrB1, aac(6')lb-cr, aph(3')-Via, armA, aadA2, aac(6')lb-cr, mph(E), msr(E), catB4	251737	252495	12	29	758	IS6 umuC umuD cas7 dinG cas6 phage IS6 csf2 csf4 tail protein
15	<i>K. pneumoniae</i> Kp_Goe_149473 plasmid	ST-147	Germany (2016)	IncHI1B	terY, terX, terW, terZ, terA, terB, terC, terF	116666	117727	17	30	1061	IS5/ umuC umuD IS200-like cas7 dinG cas6 phage tail IS5/ IS1182 transposase csf2 csf4 protein IS1182

	Strain		location			Re	peat-sp	acer CRI	SPR loc	*	
	(Accession number)	ST	(date)	plasmid	Resistance genes	Start	End	Spacer number			Type IV-B Structure
	pKp_Goe_473-1 (CP018687.1) <i>K. pneumoniae</i> strain Kp_Goe_822579 plasmid pKp_Goe_579-1 (CP018313.1) <i>K. pneumoniae</i> Kp_Goe_154414	ST-147	Germany (2016) Germany	IncHI1B	none terY, terX, terW, terZ, terA,			17	30	1061	IS5/ umuC umuD IS200-like cas7 dinG cas6 phage tail IS5/ IS1182 transposase csf2 csf4 protein IS1182
	plasmid pKp_Goe_414-1 (CP018339.1)	ST-23	(2016)	(Mar)	terB, terC, terF	75291	76111	13	29	820	intron csf2 csf4 tail intron reverse protein reverse transcriptase transcriptase
18	<i>K. pneumoniae</i> AR_0068 plasmid unitig_1 (CP020068.1)	ST-14	USA (2017)	IncHI1B	terF, terC, terB, terA, terZ, terW, terY, terX, aac(3)-lid, sul1, dfrA12, aph(3''), aph(6)-ld, aph(3')-VI, aadA2, bla _{SHV-11} , bla _{NDM-1} , strA, strB, aac(3)-lid, armA, aadA2, mph(E), msr(E), sul2	136244	137004	12	29	760	IS6 umuC umuD cas7 dinG cas6 phage IS6 csf2 csf4 tail protein
19	K. pneumoniae 11 plasmid pIncHI1B_DHQP1 300920 (CP016921.1)	ST-14	USA (2016)		terZ, terA, terB, terC, terF, dfrA1, terY, terX, terW, aph(3'), aacA4, ant(3''), bla _{NDM-1} , bla _{OXA-1} , aac(6')lb- cr, armA, aadA2, aac(6')lb- cr, qnrB1, mph(E), msr(E), catB4, sul, dfrA14, dfrA12		230357	12	29	760	IS110 umuC umuD cas7 dinG cas6 IS200-like csf2 csf4

	Strain		location			Re	peat-sp	acer CRI	SPR loc	i*						
	(Accession number)	ST	(date)	plasmid	Resistance genes	Start	End	Spacer number	-	CRISPR	Type IV-B Structure					
20		ST-14	Korea (2015)	IncHI1B	terY, terX, terW, terZ, terA, terB, terC, terF, qnrB1, qacEDelta1, ble _{MBL} merE, aph(3')-VI, bla _{NDM-1} aadA2, armA, msr(E), mph(E), sul1, dfrA12	114404		12	29	760	umuC umuD group II cas7 dinG cas6 phage IS3000 IS481 intron csf2 csf4 tail reverse protein transcriptase					
21	K. pneumoniae PittNDM01 plasmid1 (CP006799.1)	ST-14	USA (2013)	IncHI1B	terF, terE, terC, terA, terZ, terW, terY, terX, bla _{OXA-1} , bla _{NDM-1} , merE, qnrB1, aac(6')-lb, aph(3')-VI, armA, aadA2, msr(E), mph(E), catB4, sul1, dfrA14, dfrA12	114132	114892	12	29	760	umuC umuD group II cas7 dinG cas6 phage IS3000 IS110 intron csf2 csf4 tail reverse protein transcriptase					
22	<i>K. pneumoniae</i> SKGH01 plasmid unnamed 1 (CP015501.1)	ST-147	UAE (2016)	IncHI1B	terF, terC, terA, terZ, terW, terY, nreA, chrA, terX	7545	8597	17	29	1052	IS5/ umuC umuD IS200-like cas7 IS5/ dinG cas6 IS5/ IS1182 transposase csf2 IS1182 csf4 IS1182					
23	K. pneumoniae strain PMK1 plasmid pPMK1- NDM (CP008933.1)	ST-15	UK (2014)	IncHI1B	bla _{CTX-M-15} , aadA2, armA, aac(6')lb-cr, bla _{OXA-1} , bla _{NDM-1} , qnrB66, msr(E), mph(E), catA1, catB4, sul1, dfrA12	10628	11144	8	30	516	Pyridoxamine 5'-phosphate oxidase					
24	<i>K. pneumoniae</i> strain KPNIH48 plasmid pKPN- edaa (CP026398.1)	ST-252	USA (2018)	IncHl1B / IncFlB (Mar)	none	7401	8525	18	29	1124	IS1 umuC umuD cas7 dinG cas6 phage IS5-like tail protein					
25	<i>K. pneumoniae</i> strain KPN1481 plasmid pKPN1481-1 (CP020848.1)	ST-906	USA (2017)	IncHI1B / IncFIB (Mar)	aac(6')-lb, aadA1, aac(6')lb-cr, bla _{OXA-9} , bla _{TEM-1A} , bla _{NDM-1} , bla _{OXA-1} , bla _{CTX-M-15} , aac(6')-lb-cr, qnrB1, aac(6')-lb-cr, catB4	325794	326308	8	29	514	Pyridoxamine 5'-phosphate oxidase Pyridoxamine 5'-phosphate oxidase IS481 umuC umuD group II intron csf2 MBL csf4 protein reverse transcriptase					

	Strain		location			Re	epeat-sp	acer CR	SPR loc	i *	
	(Accession	ST	(date)	plasmid	Resistance genes	Start	End	Spacer	Length	CRISPR	Type IV-B Structure
	number)		(uate)			Start	Enu	number	of DR	length	
26	<i>K. pneumoniae</i> strain KSB2_1B plasmid unnamed1 (CP024507.1)	ST-323	Australia (2017)	IncFlB (Mar)	none	41987	42747	12	29	760	IS5/ umuC umuD group II cas7 dinG cas6 phage IS5/ group II IS1182 intron csf2 csf4 tail IS1182 intron reverse transcriptase transcripta
27	<i>K. pneumoniae</i> strain KPNIH50 plasmid pKPN- bbef (CP026172.1)	ST-252	USA (2018)	IncHI1B / IncFIB (Mar)	none	227283	228407	18	29	1124	ISS-like umuC umuD cas7 dinG cas6 IS110 phage IS5, csf2 csf4 tail IS1. protein
28	<i>K. pneumoniae</i> strain F44 plasmid p44-1 (CP025462.1)	ST-11	USA (2017)	IncHI1B / IncFIB (Mar)	aac(3)-IId, bla _{TEM-1B} , bla _{SHV} . ₁₂ , mph(A)	42604	43120	8	29	516	IS481 umuC umuD group II cas7 dinG cas6 phage IS5/ group II intron csf2 csf4 tail IS1182 intron reverse transcriptase transcripta
29	<i>K. pneumoniae-</i> 53 plasmid1	ST-502	Egypt (2002)	IncHI1B / IncFIB (Mar)	dfrA1	19059	19812	12	23	753	umuC umuD IS200-like cas7 dinG cas6 phage tail IS63 transposase csf2 csf4 protein
30	<i>K. pneumoniae-</i> 65 plasmid 1	ST-15	Egypt (2003)	lncFlB (Mar)	none	6012	6765	12	23	753	umuC umuD IS200-like cas7 dinG cas6 phage tail IS1 transposase csf2 csf4 protein
31	<i>K. pneumoniae- CR5</i> plasmid 1	ST-392	UK (2017)	IncFIB	aac(6')Ib-cr, aac(3)-Ila, strA, aac(3)-Ild, strB, armA, bla _{TEM-1B} , bla _{CTX-M-15} , bla _{DHA-1} , bla _{SHV-11} , bla _{NDM-1} , bla _{OXA-1} , aac(6')Ib-cr, oqxB, oqxA, qnrB66, fosA, msr(E), mph(E), catB4, sul2, sul1, dfrA14	5467	6833	22	29	1366	IS481 umuC umuD cas7 dinG cas6 phage ISKr csf2 csf4 tail protein
A	<i>K. pneumoniae</i> strain K66-45 plasmid pK66-45- 1	ST-11	Norway (2017)	IncFIB(Mar)/ IncHI1B	aph(3')-VI, armA, aadA2, bla _{NDM-1} , bla _{CTX-M-15} , qnrS1, mph(E), msr(E), sul1, dfrA12						IS380 mbl pdxh dinG cas6 csf4 csf3

	Strain		location			Re	peat-sp	acer CRI	SPR loc	i*	
	(Accession number)	ST	(date)	plasmid	Resistance genes	Start	End	Spacer number			Type IV-B Structure
В	(CP020902.1) <i>K. pneumoniae</i> strain AR_0158 plasmid tig00000727 (CP021699.1)	ST-163	USA (2017)	IncFIB(Mar)/ IncHI1B	aac(6')Ib-cr, aac(3)-IId, bla _{0XA-1} , bla _{SHV-2} , bla _{NDM-1} , aac(6')-Ib-cr, qnrB1, catB4, tet(B), dfrA30						transposase IS4 dinG cas6 csf4 csf3
С	<i>K. pneumoniae</i> strain LS356 plasmid pKP8-2 (CP025638.1)	ST-485	China (2018)	IncHI1B	none						IS1 dinG cas6 csf4 csf3

304

[†] Items 1-31 are the plasmids that carried complete Type IV-B CRISPR-Cas system. Items A-C represent examples of partial Type IV-B components that were found
 carried on the same plasmids.

307 * All detected repeat-spacer CRISPR were CRISPR1.