bioRxiv preprint doi: https://doi.org/10.1101/536813; this version posted January 31, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

. Label-free Method for Classification of T cell Activation

. Alex J. Walsh™", Katie Mueller®?, Isabel Jones!, Christine M. Walsh'*, Nicole Piscopo®?,

s Natalie N. Niemi!®, David J. Pagliarini"®, Krishanu Saha®? and Melissa C. Skala!*"

‘ "Morgridge Institute for Research, Madison, Wisconsin

s 2Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin

6 3Department of Biomedical Engineering, University of Wisconsin-Madison, Madison,
7 Wisconsin

s “Department of Sociology, State University of New York, Albany, New York

o *Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
10 *Corresponding Authors

1 Abstract

12 T cells have a range of cytotoxic and immune-modulating functions, depending on activation state and
13 subtype. However, current methods to assess T cell function use exogenous labels that often require cell
14 permeabilization, which is limiting for time-course studies of T cell activation and non-destructive quality
15 control of immunotherapies. Label-free optical imaging is an attractive solution. Here, we use autofluores-
16 cence imaging of NAD(P)H and FAD, co-enzymes of metabolism, to quantify optical imaging endpoints
17 in quiescent and activated T cells. Machine learning classification models were developed for label-free,
18 non-destructive determination of T cell activation state. T cells were isolated from the peripheral blood of
19 human donors, and a subset were activated with a tetrameric antibody against CD2/CD3/CD28 surface
20 ligands. NAD(P)H and FAD autofluorescence intensity and lifetime of the T cells were imaged using
21 a multiphoton fluorescence lifetime microscope. Significant differences in autofluorescence imaging end-
2 points were observed between quiescent and activated T cells. Feature selection methods revealed that
23 the contribution of the short NAD(P)H lifetime (ay) is the most important feature for classification of
2 activation state, across multiple donors and T cell subsets. Logistic regression models achieved 97-99%
25 accuracy for classification of T cell activation from the autofluorescence imaging endpoints. Additionally,
2 autofluorescence imaging revealed NAD(P)H and FAD autofluorescence differences between CD3+CD8™
21 and CD37CD4" T cells, and random forest models of the autofluorescence imaging endpoints achieved
2 974+% accuracy for four-group classification of quiescent and activated CD3*CD8" and CD3*TCD4" T
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2 cells. Altogether these results indicate that autofluorescence imaging of NAD(P)H and FAD is a powerful
30 method for label-free, non-destructive determination of T cell activation and subtype, which could have
31 important applications for the treatment of cancer, autoimmune, infectious, and other diseases.

» 1 Introduction

33 T cells are an important component of the adaptive immune response and have diverse cytotoxic and immune-
s modulating, or “helper” activities, upon activation. The two main T cell subtypes are CD3*CD8™ T cells
5 that engage in cell-mediated cytotoxicity and release toxic cytokines, including interferon gamma (IFN-7)
% and tumor necrosis factor alpha (TNF-«), and CD3TCD4" T cells that can be further divided into additional
s subtypes with differing pro- and anti- inflammatory functions due to chemokine and cytokine production|[1, 2].
s T cells are a promising target for immunotherapies because of these diverse functions. Immunotherapies that
3 directly increase T cell cytotoxic activity, such as immune checkpoint blockade therapies and adoptive cell
w0 transfer therapies, are currently used clinically for cancer treatment and are in development for additional
o diseases including HIV([3, 4]. Immunotherapies that enhance regulatory T cell (Trgpg) behaviors are in
2 development to treat transplant rejection and autoimmune diseases, including diabetes and Crohn’s disease
s [6-7]. Due to the variable behaviors of T cell subsets, full evaluation of immunotherapy efficacy requires
w profiling of T cell subtypes and activation states to assess the impact of different T cell compartments on
s the patient, select for appropriate therapeutic cell populations, and evaluate the degree of response upon
s stimulation.

a7 New tools that are non-destructive and label-free are needed to fully characterize T cells for assessment of
s immunotherapies. Currently, T cell subtype and function is determined from expression of surface proteins
w (e.g. CD3, CD4, CD8, CD45RA, etc.) and cytokine production (e.g. IFN-y, TGF-3, IL-2, IL-4, IL-17, etc.)
s by antibody-based methods such as flow cytometry, immunohistochemistry, or immunofluorescence, or by
51 transgenic fluorophore expression. However, all of these methods require exogenous contrast agents, and flow
2 cytometry and immunohistochemistry require tissue dissociation and fixation, respectively. A non-destructive
53 and label-free method of determining T cell activity would enable direct observation of T cell behavior and
s immunotherapy effects in vivo in preclinical models of cancer. Additionally, such a tool could be amenable
s for single-cell quality control of adoptive T cell therapies, where T cells, expanded in vitro, are injected into
ss the patient. Autofluorescence imaging is an attractive method to probe immune cell behaviors because it is
s non-destructive, relies on endogenous contrast, and provides high spatial and temporal resolution.

58 Fluorescence imaging of the endogenous metabolic co-enzymes NAD(P)H and FAD provides quantitative

5o endpoints of cellular metabolism [8-10]. (NADH and NADPH fluorescence are indistinguishable; therefore,
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o NAD(P)H is used to represent the combined fluorescence signal[11].) The optical redox ratio is the fluo-
s rescence intensity of NAD(P)H divided by the sum of the fluorescence intensities of NAD(P)H and FAD,
« and provides an optical measurement of the redox state of the cell [8, 12]. The fluorescence lifetime, the
63 time the fluorophore is in the excited state before returning to ground state, provides information on the
s« protein binding of NAD(P)H and FAD [9, 13]. NAD(P)H and FAD can both exist in two conformations: a
s quenched and unquenched form, with a short and long lifetime, respectively. NAD(P)H has a short lifetime
s in the free state and a long lifetime in its protein-bound state [9]. Conversely, FAD has a short lifetime
e when bound to an enzyme and a long lifetime when free [13]. Fluorescence lifetime imaging (FLIM) allows
¢ quantification of the short (71) and long (72) lifetime values, the fraction of free and protein-bound co-enzyme
oo (a1 and ag, respectively, for NAD(P)H, and as and «q, respectively, for FAD), and the mean lifetime (the
o weighted average of the short and long lifetimes, 7,,, = a1 * 71 + @32 * 72). The fluorescence intensity and
n  lifetime of NAD(P)H and FAD are sensitive to metabolic differences between neoplasias and malignant tis-
2 sues, anti-cancer drug effects in cancer cells, and differentiating stem cells [14-19]. Autofluorescence imaging
73 has been used previously to identify macrophages in vivo and detect metabolic changes due to macrophage
7 polarization [20-22]. Altogether, fluorescence lifetime imaging of NAD(P)H and FAD provide quantitative
s and functional endpoints of cellular metabolism.

7 T cells undergo metabolic reprogramming when activated by an antigen. Upon activation, T cells have
7 increased metabolic demands to support cell growth, proliferation, and differentiation [23]. CD28 stimulation
7 induces glucose uptake and glycolysis in T cells through upregulation of GLUT1, phosphatidylinositol 3’-
7 kinase (PI3K), and Akt. This metabolic state of increased aerobic glycolysis is required for T cells to maintain
w effector function [23-25]. Therefore, this study tests the hypothesis that fluorescence lifetime imaging of
s NAD(P)H and FAD provides a label-free, non-destructive method with quantitative endpoints to identify
e activated T cells. To test this hypothesis, we isolated T cells from the blood of healthy donors, activated
3 the cells in an antigen-independent manner with a tetrameric antibody (anti-CD2/CD3/CD28) and imaged
u the NAD(P)H and FAD fluorescence intensity and lifetime of quiescent and activated T cells. This is the
s first study to (1) demonstrate autofluorescence lifetime differences between quiescent and activated T cells
s and (2) accurately classify T cell activation state from machine learning models using quantitative endpoints

ez from autofluoresence lifetime images.
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s« 2 Results

» 2.1 Autofluorescence imaging reveals metabolic differences with activation in

% T cells.

a T cell isolations for CD3™" (pan-T cell marker) and CD3+CD8™ cells were used to study all T cells, as might
« be utilized in adoptive cell transfer therapies, and the cytotoxic CD3TCD8T sub-population, respectively.
s NAD(P)H and FAD autofluorescence imaging reveals metabolic differences in quiescent and activated T
o cells (Fig. 1, S1). The high resolution multiphoton imaging allows visualization of bulk CD3" and isolated
s CD3TCD8" T cells (Fig. 1A). In the autofluorescence images, the nucleus remains dark as NAD(P)H is
o6 primarily located in the cytoplasm and mitochondria, and FAD is primarily in the mitochondria. Immunoflu-
o orescence labeling of CD4, CD8, and CD69 surface proteins verified cell type and activation (Fig. S2). There
e were significant differences in cell size, optical redox ratio, NAD(P)H 7,,, NAD(P)H a7, and FAD oy between
o quiescent and activated T cells (p<0.001, Fig. 1B-F). Significant changes (p<0.001) in FAD 7, between
o quiescent and activated T cells were found only for T cells within the bulk CD3™ T cell population (Fig. 1E).
1 Additionally, significant changes (p<<0.001) in the short and long lifetimes were observed between quiescent
w2 and activated CD3% and CD3TCD8" T cells (Fig. S1). These differences in autofluorescence endpoints
103 were consistent across the 6 donors (Fig. 1, S1), at 24 and 48 hr of exposure to the activating antibodies
e (Fig. S3), and between experiments from two different blood draws (183 days apart) from the same donor
s (Fig. S4). A slight increase in FAD 71 was found in both quiescent and activated CD3™ T cells, suggesting
s a slight change in the microenvironment of bound FAD between CD3™ T cells of the same donor from two
w7 blood draws; however, no other autofluorescence endpoints were signficantly different between the two blood
w08 draws.

109 Seahorse OCR and ECAR measurements confirm increased metabolic rates of the activated T cells
o (p<0.001, Fig. 1H-J). In a metabolic inhibitor experiment (Fig. S5), the redox ratio of activated T cells
w decreased (p<0.001) with a glycolysis inhibitor (2-deoxy-d-glucose), and the redox ratio of quiescent T cells
u2 increased (p<0.001) with oxidative phosphorylation inhibitors (antimycin A and rotenone). Additionally,
us  the glutaminolysis inhibitor BPTES significantly decreased (p<0.001) the optical redox ratio, NAD(P)H 7,,,,
ms  and FAD 7, of both quiescent and activated T cells, suggesting a significant contribution of glutaminolysis

us  to the metabolism of quiescent and activated T cells (Fig. S5).
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Figure 1: NAD(P)H and FAD autofluorescence imaging reveals metabolic differences between
quiescent and activated T cells. Representative optical redox ratio, NAD(P)H 7,,,, and FAD 7,,, images
of quiescent (columns 1, 3) and activated (columns 2, 4) CD3" (rows 1-3) and CD3TCD8™" (row 4-6) T cells
from two different donors. Scale bar is 20 um. Cell size (B), optical redox ratio (C), NAD(P)H 7,,, (D), FAD
Tm (E), NAD(P)H oy (F), and FAD «; (G) of quiescent and activated CD3" and CD3TCD8* T cells. Black
circles represent mean of all data (6 donors), triangles (donors A [dark red], B [medium red], and F [light
red]) represent data from female donors, squares (donors C [dark blue], D [medium blue], and E [light blue])
represent data from male donors. Each color shade represents data from an individual donor. Data are mean
+/- 99% CI. *** p<0.001. n = 54-1058 cells per donor per group. (H-J) Cellular respiration increases in
activated T cells. The oxygen consumption rate (OCR; panel H) and extracellular acidification rate (ECAR,
panel I) are increased in activated bulk CD3" and isolated CD3*CD8™ T cells. The ratio of OCR to ECAR
(J) is significantly decreased in activated bulk CD3% and isolated CD3TCD8" T cells as compared with
that of quiescent T cells. *** p<0.001, Student’s t-test, n = 6 wells/group CD3TCD8™ isolation, n = 12
wells/group CD3™ isolation.
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us 2.2 Machine learning models of autofluorescence imaging endpoints allow clas-

17 sification of quiescent and activated T cells with high accuracy.

us  Uniform Manifold Approximate and Projection (UMAP) [26], a dimension reduction technique similar to
ne  tSNE, was used to visualize how cells cluster from autofluorescence measurements. Neighbors were defined
120 through a cosine distance function computed across the autofluorescence endpoints (optical redox ratio,
m NAD(P)H 7,,, NAD(P)H 71, NAD(P)H 75, NAD(P)H «3, FAD 7,,, FAD 71, FAD 75, and FAD «ay) and
122 cell size for each cell. UMAP was chosen over other techniques, notably PCA or tSNE, for its speed, ability
123 to include non-metric distance functions, and performance on preserving the global structure of the data.
124 UMAP representations of the autofluorescence imaging data reveals separation of quiescent and activated
s T cells (Fig. 2A-B). The gain ratio of autofluorescence endpoints indicates that NAD(P)H «;, cell size,
s and optical redox ratio are the most important features for classification of activation state of CD3t T
w7 cells (Fig. 2C), and NAD(P)H a4, optical redox ratio, and NAD(P)H 7, are the most important features
s for classification of activation state of CD3TCD8' T cells (Fig. 2C). The order of feature importance was
19 consistent across multiple feature selection methods including information gain, x2, and random forest (Fig.
10 S6). Correlation analysis revealed that NAD(P)H «g, cell size, and the optical redox ratio are not significantly
w correlated (Fig. S7), suggesting these features are independent and provide complementary information for
1 classification. NAD(P)H «; and 7, are significantly correlated (Fig. S7), as expected, given that 7, is
133 computed from «;. Similar feature weight and order of importance were observed from analysis without
1 NAD(P)H 7, and FAD 7,,, (Fig. S8), indicating that the multivariate models were not significantly affected
135 by the correlations between the mean lifetimes and the lifetime components.

136 Classification models were developed to predict T cell activation state from NAD(P)H and FAD autoflu-
137 orescence imaging endpoints (Fig. 2D-F). To protect against over-fitting, models were trained on data from
s 4 donors with activation state assigned from culture conditions and tested on data with same-cell CD69
130 expression immunofluorescence validation from 3 donors (completely independent and non-overlapping ob-
1w servations). Receiver operator characteristic (ROC) curves reveal high classification accuracy for predicting
i activation in bulk CD3T (AUC = 0.975) and isolated CD3TCD8T (AUC = 0.996) T cells, when the models
12 use all autofluorescence endpoints (optical redox ratio, cell size, NAD(P)H 7,,,, NAD(P)H 71, NAD(P)H 7,
w3 NAD(P)H «y, FAD 7,,,, FAD 71, FAD 75, and FAD «1). When the NAD(P)H and FAD autofluorescence
s imaging endpoints of the T cells are normalized within a donor to the mean value of the quiescent CD3™
us  population, the ROC AUC decreases to 0.857 for CD3* T cells (Fig. 2D) and increases slightly to 0.998
us  for isolated CD3TCD8' T cells. While all 10 NAD(P)H and FAD autofluorescence features achieved the

w7 highest classification accuracy (AUC = 0.975) for activation of CD3™ T cells, a model using only NAD(P)H
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s «aq achieved a slightly lower accuracy of 0.965 (Fig. 2E). Models that include cell size or cell size and the
9 optical redox ratio, endpoints that can be obtained from fluorescence intensity images, were less effective
10 at accurately predicting activation of bulk CD3™ T cells with ROC AUCs of 0.708 and 0.901, respectively
st (Fig. 2E). Similar results were obtained for the isolated CD3TCD8* T cells, with the highest ROC AUC
12 values achieved for logistic regression classification models using all 10 autofluorescence imaging endpoints
155 and NAD(P)H ayq alone, AUC = 0.996 and 0.994, respectively (Fig. 2F). Similar classification accuracy
15a was achieved with random forest and support vector machine models using all 10 autofluorescence imaging

155 endpoints (Fig. S9).
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Figure 2: Autofluorescence imaging endpoints allow classification of quiescent and activated
T cells. (A-B) UMAP data reduction technique allows visual representation of the separation between
quiescent ("Q”) and activated ("Act”) bulk CD3" (A) and isolated CD3TCD8* (B) T cells. Each color shade
corresponds to a different donor, grays correspond to quiescent cells and green or purple to activated CD3%
or CD3TCD8™ T cells, respectively. (C) Feature weights for classification of quiescent versus activated T
cells by the gain ratio method. (D) ROC curves for logistic regression models for classification of activation
state within bulk CD3™ T cells, bulk CD3* T cells normalized within each donor (CD3" Norm), isolated
CD3+CD8" T cells, and isolated CD3*CD8" T cells normalized within each donor (CD3TCD8% Norm).
(E-F) ROC curves for logistic regression classification models computed using different features for the
classification of (E) quiescent or activated bulk CD3" or (F) isolated CD3*CD8" T cells. Models were
trained on cells that lacked same cell validation data from donors A, B, C, and D but were known to be
quiescent or activated by culture conditions (n = 4131 CD3" cells, n = 2655 CD3TCD8" cells), and cells
from donors B, E, and F with CD69 validation of activation state were used to test the models (n = 696
CD3™ cells, n = 595 CD3TCD8™ cells).
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s 2.3 Autofluorescence imaging reveals T cell heterogeneity within and across

157 donors.

s T cell heterogeneity was assessed within and across donors (Fig. 3). Heatmap representation (Fig. 3A) of
10 the z-score of autofluorescence imaging endpoint values at the donor level (each row is the mean data of a
1o single donor, cell type, and activation) reveals that the T cells cluster by activation state (i.e. quiescent and
e activated cluster separately) and isolation (bulk CD3* or isolated CD3TCD8"). Corresponding coefficient
12 of variation heatmaps highlight the high intra-donor variability of the size of activated T cells and low
163 intra-donor heterogeneity of the autofluorescence endpoints (Fig. S10).

164 A representative z score heatmap where each row is a single cell from one donor reveals distinct clusters
s of T cells by autofluorescence imaging endpoints within the quiescent and activated CD3TCD8t T cell
s populations (Fig. 3B). Multiple quiescent and activated T cell populations were observed across all six donors
17 and arises from varied distributions of autofluorescence imaging endpoints within the T cell populations (Fig.
s 3C, S11-12). For example, histograms of the NAD(P)H 7, values of quiescent and activated CD3TCD8% T
10 cells reveals a bimodal population within the quiescent CD3TCD8™ T cells, with one peak of the quiescent
wo  cells consistent with the peak of the activated cells (Fig. 3C).

171 We hypothesized that memory and naive T cells within the quiescent population contributed to the ob-
1w served heterogeneity within the quiescent CD3+TCD8™ T cell population (Fig. 3B-C, S11-13) (i.e. the multiple
s clusters of quiescent CD3TCD8™ cells within the heatmaps and bimodal distribution of the NAD(P)H 7,
1w of quiescent CD3TCD8™ T cells). To test this, we co-stained quiescent CD3TCD8" T cells with antibodies
s against CD45RA, a marker of naive T cells, and CD45RO, a marker of memory T cells. NAD(P)H 7,,, was
e significantly decreased in CD45RO™ cells as compared with NAD(P)H 7,,, of CD45RA™ cells (Fig. 3D).
77 Additionally, the optical redox ratio and NAD(P)H «a; were increased (p<0.01) in CD45RO* CD3+CDS8*
ws T cells as compared to CD45RA™ cells (Fig. S14).

w 2.4 Culture with CD3TCD4" T cells affects the autofluorescence of CD3TCDS8"
180 T cells

1 NAD(P)H and FAD autofluorescence imaging endpoints reveal metabolic differences between CD3TCD8T T
1 cells cultured as an isolated population and CD3TCD8" T cells cultured with CD3+tCD4* T cells (bulk CD3™
13 isolation). A UMAP (data dimension reduction) representation of NAD(P)H and FAD autofluorescence
1« imaging endpoints reveals that CD3TCD8" T cells cultured from the CD3*CD8™ specific T cell isolations
s cluster separately from CD3TCD8" T cells within bulk CD3™ T cell populations (Fig. 4A). The optical redox

s ratio and NAD(P)H «; are decreased in both quiescent and activated CD3TCD8" T cells of the isolated
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Figure 3: Autofluorescence imaging reveals inter- and intra-donor T cell heterogeneity. (A)
Heatmap of z-scores of NAD(P)H and FAD autofluorescence imaging endpoints where each row is the mean
data representing a single donor, subtype (CD3* or CD3TCD8"), and activation. Data clusters by activation
state and isolation (bulk CD3* or isolated CD3TCD8%). (B) Heatmap of z-scores of NAD(P)H and FAD
autofluorescence imaging endpoints of CD3TCD8T T cells from a single donor, each row is a single cell
(n=635 cells). Distinct clusters are identified within the quiescent and activated CD3TCD8*' T cells. (C)
Histogram analysis of NAD(P)H 7,,, reveals two populations in quiescent CD3+tCD8* T cells across all donors
(n=2126 quiescent cells, 1352 activated cells). (D) NAD(P)H 7, is decreased in CD45RO+ CD3TCD8* T
cells compared to NAD(P)H 7,,, of CD45RAT CD3TCD8* T cells (CD45RAT n=27 cells, CD45RO™ n=11
cells from 1 donor, ** p<0.01, - Act = quiescent cells, + Act = cells exposed to anti-CD3/CD2/CD28 for

48hr.)
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17 CD3TCDS8" population as compared to the corresponding values of quiescent and activated CD3TCD8" T
s cells, respectively, within the bulk CD3" population (Fig. 4B-C). Additional differences in NAD(P)H and
s FAD autofluorescence lifetime endpoints were observed between CD3TCD8™ T cells within the bulk CD3%
100 population and the isolated CD3*TCD8* population (Fig. S15).

101 Despite these differences between CD3TCD8™ T cells of CD3TCDS8™ specific isolations and bulk CD3%
102 isolations, significant changes in NAD(P)H and FAD autofluorescence endpoints due to activation are main-
13 tained, and classification models predict activation status of CD3TCD8™ cells with high accuracy regardless
e of isolation (Fig. 4D). Random forest feature selection revealed that NAD(P)H «; is the most important

s feature for classification of quiescent from activated CD3" or CD3TCD8™ T cells (Fig. S16A).

w6 2.5 Machine learning models of autofluorescence endpoints classify CD3TCD4*

107 from CD3"CDS8" T cells within bulk CD3" populations

s Heterogeneity in NAD(P)H and FAD autofluorescence endpoints between CD3*CD4" and CD3TCD8* T
w9 cells was observed within the T cells from the bulk CD37 isolation. A UMAP representation of the NAD(P)H
20 and FAD autofluorescence data allows visualization of the clustering and separation of quiescent and activated
a1 CD3TCD4T and CD3TCD8™ T cells within the bulk CD3" isolation (Fig. 4E). These differences between
22 CD3TCD4" and CD3TCD8" T cells are due to significant differences in NAD(P)H and FAD endpoints,
203 including NAD(P)H 73, which is increased (p<0.05) in quiescent CD3TCD8™ T cells compared to quiescent
20 CD3TCD4T T cells, and NAD(P)H «;, which is decreased in activated CD3TCD8*' T cells compared to
a5 activated CD3TCD4T T cells (p<0.05, Fig. 4F-G, S17). Random forest models to classify T cell subtype
200 (CD3TCD4" or CD3TCD8") within the bulk CD3* T cell isolation have average predictions of 97.5% and
w0 99.7% for separate predictions on subsets of quiescent or activated T cells, respectively, and 99.4% for all
208 four groups, when trained on 75% of the T cell observations and tested on the remaining 25% (Fig. 4H).
20 Classification accuracy scales with number of cells in train versus test groups (Fig. 4H). Random forest
20 feature analysis revealed that NAD(P)H 75 is the highest weighted feature for the classification of activated
on CD3TCD4™ from activated CD3TCD8' T cells, and FAD 7; is the highest weighted feature for quiescent
22 CD3TCD4™ from quiescent CD3TCD8™ T cells (Fig. S16B).

a3 2.6 Autofluorescence imaging allows classification of activated T cells in cul-

214 tures of combined quiescent and activated T cells

25 NAD(P)H and FAD autofluorescence imaging allows label-free imaging and classification of T cell activation

26 in T cell cultures with combined quiescent and activated cells. A representative NAD(P)H «; image with
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Figure 4: T cell population composition affects T cell autofluorescence. (A) UMAP of NAD(P)H and
FAD autofluorescence endpoints of quiescent and activated (“Act”) CD3TCD8™ T cells identified within bulk
CD3* and specific CD3*tCD8™ isolations. (B) Optical redox ratio and (C) NAD(P)H «; of CD3TCD8" T
cells cultured as an isolated population (CD3TCDS8™ specific isolation, n=39 quiescent cells, n=174 activated
cells) and with CD3TCD4" T cells (bulk CD3™ isolation, n=83 quiescent cells, n=170 activated cells). Stars
between quiescent and activated boxplots compare quiescent and activated CD3TCD8t T cells within an
isolation (CD3% or CD3TCD8Y), stars above the quiescent box plot represent signficance between quiescent
CD3*TCD8" T cells from the bulk CD3" and CD3TCDS8™ specific isolations, stars above the activated
box plot represent signficance between activated CD3TCD8™ T cells from the bulk CD3™ and CD3TCDS8*
specific isolations, ** p<0.01, *** p<0.001. (D) Accuracy of random forest classification of quiescent versus
activated CD3TCD8" T cells from CD3+tCD8" specific isolations (n=213 cells) and bulk CD3" isolations
(n=253 cells). (E) UMAP of NAD(P)H and FAD autofluorescence imaging endpoints of quiescent and
activated CD3TCD4" and CD3TCD8* cells identified within bulk CD3* populations. (F) NAD(P)H 7
of quiescent CD3TCD4% and CD3TCD8™ cells (bulk CD3™" isolation, n=66 quiescent CD3TCD4" T cells,
n=83 quiescent CD3TCD8" T cells, * p<0.05, *** p<0.001). (G) NAD(P)H «; of activated CD3TCD4™" and
CD3"TCD8™ cells (bulk CD3* isolation, n=264 activated CD3"TCD4™" T cells, n=170 activated CD3TCD8"
T cells). (H) Accuracy of random forest classification of CD3TCD4" and CD3TCD8" T cells from quiescent
(2 group classification, “CD3™ Q”), activated (2 group classification, “CD3* Act”), or both quiescent and
activated T cells (4 group classification, “CD3" All”) within bulk CD3™ isolations, total observations include
66 quiescent CD3+TCD4" T cells, 83 quiescent CD31TCD8" T cells, 264 activated CD3TCD4*" T cells, and
170 activated CD3TCD8* T cells.
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2z CD69 immunofluorescence overlaid in pink, demonstrates the difference in NAD(P)H «; between quiescent
2s (CD697) and activated (CD69T) T cells (Fig. 5A). UMAP visualization of the autofluorescence imaging
a0 data reveals separation of quiescent and activated CD3™ T cells within this population of combined quiescent
20 and activated cells (Fig. 5B). When cultured in isolated populations, quiescent and activated T cells have
o significantly different NAD(P)H and FAD imaging endpoints, including the optical redox ratio and NAD(P)H
2 «j, than their respective counterpart from a combined (quiescent with activated T cells) population (Fig.
23 5C-D, Fig. S18). Random forest feature selection for classification of activation status of T cells within a
2¢ combined, quiescent and activated, T cell population reveals that NAD(P)H «; is the most important feature
»s  for classification, followed by NAD(P)H 7,,, (Fig. S19). Logistic regression models to predict activation status
26 of T cells in a combined, quiescent and activated, CD3% T cell culture achieves ROC AUCs of 0.95 when all
27 10 NAD(P)H and FAD imaging endpoints are included, 0.95 and 0.68 when only predicting from NAD(P)H

28« or cell size, respectively, and 0.67 for redox ratio and cell size (Fig. 5E).

» 2.7 Autofluorescence imaging resolves temporal changes in T cells with activa-

230 tion

an Metabolic changes occur rapidly within T cells upon activation [27]; therefore, we hypothesized that time-
22 course imaging of T cells would resolve changes in T cell autofluorescence. NAD(P)H fluorescence lifetime
23 images were acquired from CD3™ quiescent T cells immediately after exposure to the activating tetrametic
2 antibody (anti-CD2/CD3/CD28). The NAD(P)H intensity of the nucleus increased by 10% relative to the
2 pre-activator values, within a few minutes of addition of the activator, and remained consistently higher than
26 the average pre-activation NAD(P)H intensity throughout the time-course (Fig. 5F). NAD(P)H intensity
27 within the nucleus may indicate increased transcription [28]. The NAD(P)H intensity in the cytoplasm
2 initially increased (t<1 m) and then decreased, relative to the pre-activation NAD(P)H intensity of the
20 cytoplasm. NAD(P)H «; increased significantly in the cytoplasm by 2% at t = 6 minutes post addition of
20 the activator and remained significantly increased until t=8.75 m. These autofluorescence changes observed
2n early, within minutes of activation, indicate that autofluorescence lifetime imaging is sensitive to robust

22 transcription and metabolic changes that occur with activation in T cells [27].

w3 Discussion

s T cells are an important component of the adaptive immune response with direct cytotoxic and immune-

25 modulating behaviors. Novel immunotherapies that directly modify T cell behavior show promise for treating
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Figure 5: Autofluorescence imaging allows classification of quiescent and activated T cells within
combined quiescent and activated T cell populations. (A) Representative NAD(P)H «; image of
combined quiescent (CD697) and activated (CD69T) T cells with CD69 immunofluorescence overlaid in
pink. Scale bar is 30 pm. (B) UMAP representation of NAD(P)H and FAD imaging endpoints of CD69~
and CD69T CD3™ T cells from a combined population of quiescent and activated T cells. (C) Optical redox
ratio and (D) NAD(P)H «; of isolated (“Iso.”) and combined quiescent (CD697) and activated (CD69T)
CD3™ T cells. *** p < 0.001, n=289-438 cells per group, single donor. (E) ROC curves of logistic regression
classification of quiescent and activated CD3T T cells from a combined population of CD69~ and CD69+ T
cells. (F) Percent difference of NAD(P)H «; and fluorescence intensity in CD3" T cell nuclei and cytoplasms
over time. Anti-CD2/CD3/CD28 added at t=0 m. mean +/- SD of 34 cells.
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xus & variety of conditions including cancer and autoimmune disease. Due to their varied activities, character-
27 ization of T cell function is imperative for assessment of immunotherapy efficacy for pre-clinical evaluation
s and quality control of clinical immunotherapies. In this study, we develop autofluorescence lifetime imaging-
xu9s  based methods for determination of T cell activation at the single cell level. Autofluorescence lifetime
»0 imaging is non-destructive, label-free, and has high spatial and temporal resolution that is amenable with
1 live cell assessment, longitudinal studies, and in vivo imaging. Autofluorescence imaging offers advantages
2 over antibody-labeling methods that are traditionally used to assess T cell function with high specificity
3 which are less amenable to non-invasive time-course studies within intact samples.

254 Upon activation, T cell metabolism switches from tricarboxylic acid oxidation of glucose and S-oxidation
255 of fatty acids to glycolysis and glutaminolysis [23-25, 29, 30]. T cells with high glycolytic activity in vitro show
6 poor persistence, low recall responses and low proliferation rates that lead to poor effector activity in wvivo,
7 whereas T cells with high fatty acid oxidation show increased persistence, recall responses and proliferation
s leading to better effector activity within the tumor [31]. Changes in NAD(P)H and FAD autofluorescence
9 imaging endpoints, including the increased optical redox ratio observed in activated T cells relative to the
%0 optical redox ratio of quiescent T cells, reflect a shift towards glycolysis in activated T cells (Fig. 1, S1,
s S518-19). Significant changes in the lifetimes of protein-bound NAD(P)H (72) and protein-bound FAD (7y;
%2  Fig. S1) indicate differences in the protein binding partners of NAD(P)H and FAD [32]. A significant
%3 increase in the fraction of free NAD(P)H («; Fig. 1F) in activated T cells as compared to that of quiescent
we T cells, suggests a relative increase in free NAD(P)H and a decrease in protein-bound NADH, consistent
%5 with a shift from TCA metabolism to glycolysis [33], which was verified by the Seahorse assay and metabolic
»6 inhibitor experiment (Fig. 1H-J, S5). The significant increase in the lifetime of free NAD(P)H (7, Fig. S1),
7 suggests a change in the microenvironment (e.g., pH, oxygen) of the free fraction of NAD(P)H that reduces
xs  the quenching of the fluorophore. Altogether, the significant changes observed between NAD(P)H and FAD
260 fluorescence lifetime values reflect changes in the microenvironment of the metabolic coenzymes NAD(P)H
a0 and FAD and altered metabolic pathway utilizition by quiescent and activated T cells [23-25, 29, 30].

mn T cells are known to be highly heterogeneous, with phenotypic heterogeneity of surface proteins and
o effector function observed for CD3TCD4" and CD3TCD8™ T cells [34]. This heterogeneity can arise from
oz the strength of the activating event, the microenvironment of the T cell, and differences in gene regulation at
o the time of activation [35-37]. Heterogeneity analysis, by heatmaps and histograms, revealed heterogeneous
a5 clustering of T cells within the autofluorescence imaging dataset. One of these populations within the
o6 quiescent CD3TCD8™T population, was identified due to a difference in the mean NAD(P)H lifetime which
on was found to be due to naive (CD45RO™) and memory (CD45RA™) CD3TCD8*' T cells (Fig. 3C-D),

s which are known to have differing metabolic states: memory T cells have increased glycolytic capacity and
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2o mitochondrial mass as compared with naive T cells [27]. An additional subpopulation was identified within
20 the activated T cell subset and characterized by larger than average cells (Fig. 3B, S6-7). These large cells
s may be actively dividing cells, a condition which is also accompanied by metabolic and autofluorescence
22 differences [38, 39].

283 Machine learning approaches are powerful tools for classification of biomedical imaging data and have
2 been used on extracted morphological features of phase-contrast images to identify cancer cells from immune
s cells, on brightfield images to assess cell cycle, and on phase contrast and autofluorescence images to classify
26 macrophage exposure to LPS [22; 40, 41]. Here, high ROC AUCs (0.95+) were achieved using machine
27 learning techniques to classify T cells as activated or quiescent using the autofluorescence imaging endpoints
s (optical redox ratio, cell size, NAD(P)H 7,,, NAD(P)H ;, NAD(P)H 7o, NAD(P)H o, FAD 7,,, FAD
w71, FAD 79, and FAD a;) quantified for each cell. Classification of activation of T cells from CD3TCD8"
200 specific isoations was slightly higher than that of T cells from bulk CD3™ isolations as might be expected for
21 a homogeneous population (CD3+TCD8") rather than a heterogeneous population (bulk CD3" populations
2 contain CD41 and CD8* subsets). Although multiple classification models were found to have similar
23 performance, logistic regression was the best fitting model, suggesting that the predicted probability of
24 activation is a linear combination of all 10 of the autofluorescence imaging endpoints. Interestingly, donor
25 mnormalization (Fig. 2D) of the autofluorescence imaging endpoints did not improve classification accuracy,
26 suggesting that the autofluorescence endpoints reflect changes in T cells with activation that are consistent
207 across donors so generalized models can be used for unspecified donors or patients, which is beneficial for
26 robust implementation of autofluorescence imaging as a universal tool to evaluate T cell activation.

200 The models for classification of activation in T cells reported here have higher ROC AUC values than the
0  previously reported accuracy of 84-87% found for binary logistic regression classification of morphological
sn  and Raman spectra features of control and LPS-exposed macrophages [22]. The increased accuracy obtained
s in our study could be due to the metabolic information gained from the NAD(P)H and FAD autofluorescence
w03 signals, differences in the heterogeneity of the measured populations, and/or differing numbers of cells in the
s training and testing data sets. Although high classification accuracy was achieved with the machine learning
s approaches, deep learning methods such as neural networks may achieve improvements in classification
s accuracy, as has been demonstrated for the classification of cancer cells from immune cells in phase-contrast
sor  images [40].

308 NAD(P)H «; was consistently identified as the most important feature for differentiation of quiescent
w0 and activated T cells across different feature selection methods (including gain ratio, information gain, x2,
s0  and random forest), and different subsets of CD3%, CD3TCD8™, and CD69%/CD69~ T cells (Fig. 2C, S6,

su  S19). The classification analysis also revealed that while models trained on all 10 autofluorescence imaging
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sz endpoints yielded the highest accuracy for classification of activation state of T cells, logistic regression
a3 using only NAD(P)H oy yielded comparably high ROC AUCs and was more accurate for predicting T cell
s activation than cell size alone (Fig. 2E), or fluorescence intensity measurements (cell size 4+ redox ratio),
a5 which can be obtained by wide-field or confocal fluorescence microscopy. Additional label-free methods,
a6 including third harmonic generation imaging and Raman spectroscopy of quiescent and activated splenic-
sz derived murine T cells have revealed a significant increase in cell size and lipid content in activated T cells
as  [42]. However, we observed a high variance in cell size within and across patients, which makes it a less
a9 important predictor than NAD(P)H lifetime values that change with activation and have lower variance
2 (Fig. S10).

321 CD3%tCD4™ T cells have a variety of immune-modulating behaviors. While not necessary for activation
22 of CD3TCD8™ T cells, the presence of CD3TCD4" T cells during activation is required for the development
23 of memory CD3TCD8™ T cells [43]. Additionally, Trrgs (CD3TCD4TFoxP3™ T cells, 5-10% of peripheral
2 CD3TCD4™ population) suppress the activation and proliferation of other T cells [44, 45]. Differences in the
»s NAD(P)H and FAD autofluorescence imaging endpoints (Fig. 4, S15) between CD3TCD8' T cells cultured
26 with and without CD3TCD4T T cells were observed, suggesting autofluorescence imaging is sensitive to
s CD3TCD47T induced changes in CD3TCD8™ T cells (Fig. 4). However, despite these differences, NAD(P)H
w8« remains the highest weighted feature for classification of activation state (Fig. S16), and activation state of
20 CD3TCD8* T cells can be classified from autofluorescence imaging endpoints with high accuracy, regardless
a0 of T cell population (Fig. 4D).

a1 Due to the differing physiological functions of CD3+tCD4" and CD3TCD8" T cells [1, 46], it is impor-
sz tant to detect CD3TCD4T and CD3+TCDS8T subtypes of T cells in addition to the activation state of T
a3 cells. Therefore, we explored whether machine learning methods could use autofluorescence imaging data
s to distinguish between CD3tCD8* and CD31tCD4T T cells within bulk CD3% populations. Significant
s differences in NAD(P)H fluorescence lifetime values between CD3TCD41 and CD3TCD8" T cells suggests
s variations in metabolic activity upon activation of CD3TCD4" and CD3TCD8t T cells, which is consis-
s tent with previously observed differences in CD3TCD4" and CD3TCD8" T cell activation: CD31TCD4+
s activation occurs through Myc, ERRa, and mTOR, while CD3tCD8" T cells activate through Akt and
s.5 mTOR, [47]. These subtle differences in metabolic pathway utilization by CD3tCD4*" and CD3*CD8* T
s cells enabled high classification accuracy of not only quiescent CD3*TCD4™" from quiescent CD3TCDS8™ cells
sa  and activated CD3TCD4 ™ from activated CD3TCDS8™ cells, but also all four groups, activated and quiescent
sie CD3TCD4™ from activated and quiescent CD3TCD8" accurately (Fig. 4H). Although successful classifi-
w3 cation was achieved for CD3TCD4" versus CD3TCD8™ T cells, these changes are much subtler than the

u  metabolic changes with activation, as evidenced by the increased number of cells needed to train the models
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us  to achieve high classification accuracy (Fig. 4D,H).

36 Autofluorescence lifetime imaging has spatial and temporal resolution advantages over traditional assays
wr to survey T cell activation and function. Autofluorescence imaging can be high resolution to allow mea-
us  surements at the single cell level, allowing insights into metabolic heterogeneity within T cell populations.
ue  Additionally, the high spatial resolution and non-destructive nature of autofluorescence imaging maintains
0 the spatial integrity of immune cells, allowing high fidelity measurements on neighboring cells as demon-
s strated in the combined population of quiescent and activated T cells (Fig. 5A). Finally, autofluorescence
32 imaging also has high temporal resolution (Fig. 5F) allowing time-course study of T cell activation. Alto-
13 gether, autofluorescence lifetime imaging of NAD(P)H and FAD of T cells, combined with machine learning
3¢ for classification, is a powerful tool for non-destructive, label-free assessment of activation status of T cells.
35 NAD(P)H and FAD autofluorescence lifetime imaging is label-free and provides high spatial, temporal, and
356 functional information of cell metabolism, which makes it an attractive tool to evaluate T cells in vivo or

37 characterize expanded T cells.

s 4 Methods

s 4.1 T cell Isolation and Culture

w0 This study was approved by the Institutional Review Board of the University of Wisconsin-Madison (#2018-
s 0103), and informed consent was obtained from all donors. Peripheral blood was drawn from 6 healthy
2 donors into sterile syringes containing heparin. Two blood draws, 183 days apart, were performed on one
s donor to evaluate the consistency of the experimental protocol and imaging endpoints. Bulk CD3™ T cells
s« or an isolated CD3TCD8T T cell subset were extracted from whole blood using negative selection methods
35 (RosetteSep, StemCell Technologies) and cultured in ImmunoCult-XF T cell Expansion Medium (StemCell
36 Lechnologies). Approximately 24 hours post-isolation, the T cells were divided into two groups, a “quiescent”
7 population that was grown in medium without activating antibodies, and an “activated” population that was
sss  cultured in medium supplemented with 25 nl/ml tetrameric antibody against CD2/CD3/CD28 (StemCell
w0 Technologies). Quiescent and activated T cell populations were cultured separately for 48 hours at 37°C,
s 5% COq, and 99% humidity before imaging and subsequent experiments, unless otherwise noted. Prior to
sn imaging, T cells were plated at approximately 200,000 cells/200 ul media on 35 mm poly-d-lysine coated
s glass bottom dishes (MatTek). To ensure that autofluorescence imaging and the classification models extend
si3 for mixed populations of quiescent and activated T cells, a subset of quiescent and activated T cells (48hr of

s culture with activating antibody) were combined and plated together in a dish 1 hour before imaging.

17


https://doi.org/10.1101/536813
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/536813; this version posted January 31, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

4.2  Autofluorescence Imaging of NAD(P)H and FAD

s Fluorescence images were acquired using an Ultima (Bruker Fluorescence Microscopy ) two-photon microscope
s coupled to an inverted microscope body (TiE, Nikon) with an Insight DS+ (Spectra Physics) as the excitation
s source. A 100X objective (Nikon Plan Apo Lambda, NA 1.3), lending an approximate field of view of 110 pm,
sv  was used in all experiments with the laser tuned to 750 nm for NAD(P)H two-photon excitation and 890 nm
0 for FAD two-photon excitation. NAD(P)H and FAD images were acquired sequentially through 440/80 nm
s and 500/100 nm bandpass filters (Chroma), respectively, by GaAsP photomultiplier tubes (PMTs; H7422,
sz Hamamatsu). The laser power at the sample was 3.0-3.2 mW for NAD(P)H and 4.1-4.3 mW for FAD. Lifetime
;3 imaging was performed within Prairie View (Bruker Fluorescence Microscopy) using time-correlated single
s« photon counting electronics (SPC-150, Becker & Hickl, Berlin, Germany). Fluorescence lifetime decays with
;s 256 time bins were acquired across 256x256 pixel images with a pixel dwell time of 4.6 ps and an integration
s time of 60 s. Photon count rates were “1-5x10° and monitored during image acquisition to ensure that no
sr  photobleaching occurred. The second harmonic generation at 890 nm from red blood cells was used as the
38 instrument response function and had a full width at half maximum of 240 ps. A YG fluorescent bead (7 =
0 2.13 +/- 0.03 ns, n = 6) was imaged daily as a fluorescence lifetime standard [14, 18, 48]. Four to six images

w0 per group were acquired.

2 4.3 Antibody Validation

32 Antibodies against CD4 (clone OKT4, PerCP-conjugated, Biolegend Item #317431, Lot B198303), CD8
33 (clone SK1, PerCP-conjugated, Biolegend Item #344707, Lot B204988), CD69 (clone FN50, PerCP-
3¢ conjugated, Biolegend Item #310927, Lot B180058), CD45RA (clone HI100, Alexa 647-conjugated, Bi-
35 olegend Item #304153, Lot B220325), and CD45RO (clone UCHLI1, PerCP-conjugated, Biolegend Item
s #304251, Lot B219295) were used for validation of cell type and activation. Cells (30,000-200,000 per
7 condition) were stained with 5 pl antibody/10° cells in 50 1l of ImmunoCult-XF T cell Expansion Medium
¢ for 30 minutes in the dark at room temperature. Cells were washed with ImmunoCult 1-2 times, resuspended
30 in 50-200 pl of media, and added to the center of a 35 mm poly-d-lysine coated glass bottom dish (MatTek).
wo Cells were kept in a 37°C, 5% COs, humidified environment until imaging. All cells were imaged within 3
s hours of staining. NAD(P)H and FAD fluorescence lifetime images were acquired as described. To identify
w2 PerCP positive cells, an additional fluorescence intensity image was acquired with the Titanium:Sapphire
w3 laser tuned to 1040 nm and a 690/45 nm bandpass filter before the PMT. For evaluation of Alexa647
ws  fluorescence, the Titanium:Sapphire laser was tuned to 1300 nm for excitation, and a 690/45 nm bandpass

ws  filter was used to filter emitted light.
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o 4.4 Data Analysis

wr  Fluorescence lifetime decays were analyzed to extract fluorescence lifetime components (SPClmage, Becker
ws & Hickl). A bin of 9 surrounding pixels (3x3) was used to increase the fluorescence counts in each decay. A
w0 threshold was used to exclude pixels with low fluorescence signal (i.e. background). Fluorescence lifetime
a0 decays were deconvolved from the instrument response function and fit to a 2 component exponential decay
m model, I(t) = aje™™ 4 age™ /™ 4+ C, where I(t) is the fluorescence intensity as a function of time, t,
a2 after the laser pulse, a; and as are the fractional contributions of the short and long lifetime components,
a3 respectively (i.e., a3 + as = 1), 71 and 7» are the short and long lifetime components, respectively, and
as  C accounts for background light. Both NAD(P)H and FAD can exist in quenched (short lifetime) and
as  unquenched (long lifetime) configurations [9, 13]; therefore, the fluorescence decays of NAD(P)H and FAD
s are fit to two components.

a7 Images were analyzed at the single cell level to evaluate cellular heterogeneity [49]. NAD(P)H intensity
s images were segmented into cytoplasm and nucleus using edge detect and thresholding methods in CellProfiler
a9 using a customized image processing routine [50]. Images of the optical redox ratio (fluorescence intensity
20 of NAD(P)H divided by the summed intensity of NAD(P)H and FAD) and mean fluorescence lifetimes (7,
m = a7 + agrp) of NAD(P)H and FAD were computed (MATLAB). NAD(P)H and FAD autofluorescence
«2 imaging endpoints, including the optical redox ratio, NAD(P)H 7,,,, NAD(P)H 71, NAD(P)H 7o, NAD(P)H
2 «ay, FAD 7, FAD 71, FAD 75, and FAD «; were averaged across all pixels within a cell cytoplasm for each
2s  segmented cell. Cell size in 1m? was also computed from the segmented images using the number of pixels
»s  within the 2D-image of the cell * 0.167 ym? (which is the pixel dimension).

a2 Statistical analysis and data representation were performed in R. A generalized linear model was used to
w7 evaluate significant differences (o = 0.05) of autofluorescence imaging endpoints between quiescent and acti-
ws  vated T cells, CD45RA™T and CD45RO™ cells (Fig. 3), and CD3TCD4% and CD3TCD8* T cells. Presented
29 boxplots are constructed from the median (central line) and first and third quartiles (lower and upper hinges,
w0 respectively). The whiskers extend to the farthest data points that are no further than 1.5* the interquartile

= range. Dots represent data points beyond 1.5*% the interquartile range from the hinge.

= 4.5 Classification

3 Uniform Manifold Approximate and Projection (UMAP), a dimension reduction technique [26], and z-score
¢ heatmaps were used to visualize clustering within autofluorescence imaging data sets (Python and R, re-
5 spectively). Machine learning classification models and training/testing data sets are summarized in Table

s S1. Random forest, logistic regression, and support vector machine classification methods were trained to
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s classify activated and quiescent T cells within either the bulk CD3* FLIM data or the isolated CD3+CD8*
s FLIM data (R). For both data sets, gain ratio, x2, and random forest feature selection methods were em-
a0 ployed to evaluate the contribution of the NAD(P)H and FAD autofluorescence endpoints to the accuracy
w0 of classification of quiescent versus activated T cells. These models were trained on data from donors A, B,
wa C, and D because these cells lacked immunofluorescence CD69 validation but were known to be quiescent or
a2 activated by culture conditions (n = 4131 CD3* cells, n = 2655 CD3TCD8™ cells). Models were tested on
w3 data from T cells from donors B, E, and F with CD69 immunofluorescence validation of activation state (n
wme = 696 CD3™ cells, n = 595 CD3TCDS8T cells). Random forest models were developed to classify CD3+CD4*
ws  from CD3TCDS8' T cells, and cells were randomly assigned to training and test data sets for a range of
ws  train/test proportions from 12.5% to 87.5%. Each model was replicated 50 times with new training and test
w7 data generated before each iteration. Logistic regression models were also estimated for the classification of
ws T cell activation from imaging endpoints of combined quiescent and activated CD3™ T cells (both condi-
w0 tions together within the images). Observations were randomly divided into training and testing data sets
w0 (90%/10%, respectively), and presented ROC curves are the average of 1000 iterations of randomly selected

s training and testing data.

s 4.6 Seahorse Assay

w3 Quiescent and activated T cells were plated at 5x10° cells/ml on a Seahorse 96-well plate in unbuffered
s« RPMI medium without serum. Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR)
5 measurements were obtained every 6.5 minutes for 5 cycles. A generalized linear model was used to determine
w6 statistical significance (o = 0.05) within OCR and ECAR measurements between control and activated T

w7 cells.

s 4.7 Metabolic Inhibitors

ss0  Quiescent and activated (48 hr) CD3* T cells were plated on poly-d-lysine coated 35 mm glass bottom
w0 dishes at a concentration of 200,000 cells/200 pl ImmunoCult T cell Expansion Medium as previously
a1 described (T cell Isolation and Culture). The metabolic inhibitors antimycin A (1 pM), rotenone (1 pM),
w2 2-deoxy-d-glucose (2DG, 50 mM), Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES, 20
w3 pM), and 5-(Tetradecyloxy)-2-furoic acid (TOFA, 50 1 pg/ml) were added singly, except for antimycin
ws A and rotenone which were added together, to the dishes prior to imaging. Cells were incubated with
w5 antimycin A and rotenone for ten minutes, 2DG for ten minutes, BPTES for 1 hour, and TOFA for 1 hour.

s Fluorescence lifetime images of NAD(P)H and FAD were acquired for 6 random fields of view as described
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w7 above. A generalized linear model was used to determine autofluorescence imaging endpoints with statistical

ses  significance (o = 0.05) between control and inhibitor-exposed cells.

w 4.8 Activation Time Course

mo  Quiescent CD3™ T cells were isolated and plated for imaging as previously described. NAD(P)H lifetime
an images were acquired as described but with an image size of 128x128 pixels and an integration time of 15
m s. Images were acquired sequentially for 2 minutes (8 frames), then 5 ul PBS was added to the cells as
as a mock treatment, and NAD(P)H fluorescence lifetime images were acquired for 10 minutes (40 frames).
s Subsequently, 5 pl of activating tetrameric antibody (anti-CD2/CD3/CD28) was added and NAD(P)H flu-
w5 orescence lifetime images were acquired for 10 minutes (40 frames). NAD(P)H FLIM images were analyzed
w6 in SPCImage as described. Individual cells and cell compartments (nucleus, cytoplasm) were manually seg-
w7 mented (author I1.J.), and the autofluorescence imaging endpoints were averaged across all pixels within the

ws  segmented region (ImageJ). This procedure was repeated for 3 dishes for a total of 34 analyzed cells.

m 4.9 Data Availability

w0 The datasets generated during and/or analyzed during the current study are available from the corresponding

w1 authors on reasonable request.

w 4.10 Code Availability

w3 All code and algorithms generated during the current study are available from the corresponding authors on

s reasonable request.
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