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Abstract11

T cells have a range of cytotoxic and immune-modulating functions, depending on activation state and12

subtype. However, current methods to assess T cell function use exogenous labels that often require cell13

permeabilization, which is limiting for time-course studies of T cell activation and non-destructive quality14

control of immunotherapies. Label-free optical imaging is an attractive solution. Here, we use autofluores-15

cence imaging of NAD(P)H and FAD, co-enzymes of metabolism, to quantify optical imaging endpoints16

in quiescent and activated T cells. Machine learning classification models were developed for label-free,17

non-destructive determination of T cell activation state. T cells were isolated from the peripheral blood of18

human donors, and a subset were activated with a tetrameric antibody against CD2/CD3/CD28 surface19

ligands. NAD(P)H and FAD autofluorescence intensity and lifetime of the T cells were imaged using20

a multiphoton fluorescence lifetime microscope. Significant differences in autofluorescence imaging end-21

points were observed between quiescent and activated T cells. Feature selection methods revealed that22

the contribution of the short NAD(P)H lifetime (α1) is the most important feature for classification of23

activation state, across multiple donors and T cell subsets. Logistic regression models achieved 97-99%24

accuracy for classification of T cell activation from the autofluorescence imaging endpoints. Additionally,25

autofluorescence imaging revealed NAD(P)H and FAD autofluorescence differences between CD3+CD8+
26

and CD3+CD4+ T cells, and random forest models of the autofluorescence imaging endpoints achieved27

97+% accuracy for four-group classification of quiescent and activated CD3+CD8+ and CD3+CD4+ T28
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cells. Altogether these results indicate that autofluorescence imaging of NAD(P)H and FAD is a powerful29

method for label-free, non-destructive determination of T cell activation and subtype, which could have30

important applications for the treatment of cancer, autoimmune, infectious, and other diseases.31

1 Introduction32

T cells are an important component of the adaptive immune response and have diverse cytotoxic and immune-33

modulating, or “helper” activities, upon activation. The two main T cell subtypes are CD3+CD8+ T cells34

that engage in cell-mediated cytotoxicity and release toxic cytokines, including interferon gamma (IFN-γ)35

and tumor necrosis factor alpha (TNF-α), and CD3+CD4+ T cells that can be further divided into additional36

subtypes with differing pro- and anti- inflammatory functions due to chemokine and cytokine production[1, 2].37

T cells are a promising target for immunotherapies because of these diverse functions. Immunotherapies that38

directly increase T cell cytotoxic activity, such as immune checkpoint blockade therapies and adoptive cell39

transfer therapies, are currently used clinically for cancer treatment and are in development for additional40

diseases including HIV[3, 4]. Immunotherapies that enhance regulatory T cell (TREG) behaviors are in41

development to treat transplant rejection and autoimmune diseases, including diabetes and Crohn’s disease42

[5–7]. Due to the variable behaviors of T cell subsets, full evaluation of immunotherapy efficacy requires43

profiling of T cell subtypes and activation states to assess the impact of different T cell compartments on44

the patient, select for appropriate therapeutic cell populations, and evaluate the degree of response upon45

stimulation.46

New tools that are non-destructive and label-free are needed to fully characterize T cells for assessment of47

immunotherapies. Currently, T cell subtype and function is determined from expression of surface proteins48

(e.g. CD3, CD4, CD8, CD45RA, etc.) and cytokine production (e.g. IFN-γ, TGF-β, IL-2, IL-4, IL-17, etc.)49

by antibody-based methods such as flow cytometry, immunohistochemistry, or immunofluorescence, or by50

transgenic fluorophore expression. However, all of these methods require exogenous contrast agents, and flow51

cytometry and immunohistochemistry require tissue dissociation and fixation, respectively. A non-destructive52

and label-free method of determining T cell activity would enable direct observation of T cell behavior and53

immunotherapy effects in vivo in preclinical models of cancer. Additionally, such a tool could be amenable54

for single-cell quality control of adoptive T cell therapies, where T cells, expanded in vitro, are injected into55

the patient. Autofluorescence imaging is an attractive method to probe immune cell behaviors because it is56

non-destructive, relies on endogenous contrast, and provides high spatial and temporal resolution.57

Fluorescence imaging of the endogenous metabolic co-enzymes NAD(P)H and FAD provides quantitative58

endpoints of cellular metabolism [8–10]. (NADH and NADPH fluorescence are indistinguishable; therefore,59
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NAD(P)H is used to represent the combined fluorescence signal[11].) The optical redox ratio is the fluo-60

rescence intensity of NAD(P)H divided by the sum of the fluorescence intensities of NAD(P)H and FAD,61

and provides an optical measurement of the redox state of the cell [8, 12]. The fluorescence lifetime, the62

time the fluorophore is in the excited state before returning to ground state, provides information on the63

protein binding of NAD(P)H and FAD [9, 13]. NAD(P)H and FAD can both exist in two conformations: a64

quenched and unquenched form, with a short and long lifetime, respectively. NAD(P)H has a short lifetime65

in the free state and a long lifetime in its protein-bound state [9]. Conversely, FAD has a short lifetime66

when bound to an enzyme and a long lifetime when free [13]. Fluorescence lifetime imaging (FLIM) allows67

quantification of the short (τ1) and long (τ2) lifetime values, the fraction of free and protein-bound co-enzyme68

(α1 and α2, respectively, for NAD(P)H, and α2 and α1, respectively, for FAD), and the mean lifetime (the69

weighted average of the short and long lifetimes, τm = α1 ∗ τ1 + α2 ∗ τ2). The fluorescence intensity and70

lifetime of NAD(P)H and FAD are sensitive to metabolic differences between neoplasias and malignant tis-71

sues, anti-cancer drug effects in cancer cells, and differentiating stem cells [14–19]. Autofluorescence imaging72

has been used previously to identify macrophages in vivo and detect metabolic changes due to macrophage73

polarization [20–22]. Altogether, fluorescence lifetime imaging of NAD(P)H and FAD provide quantitative74

and functional endpoints of cellular metabolism.75

T cells undergo metabolic reprogramming when activated by an antigen. Upon activation, T cells have76

increased metabolic demands to support cell growth, proliferation, and differentiation [23]. CD28 stimulation77

induces glucose uptake and glycolysis in T cells through upregulation of GLUT1, phosphatidylinositol 3’-78

kinase (PI3K), and Akt. This metabolic state of increased aerobic glycolysis is required for T cells to maintain79

effector function [23–25]. Therefore, this study tests the hypothesis that fluorescence lifetime imaging of80

NAD(P)H and FAD provides a label-free, non-destructive method with quantitative endpoints to identify81

activated T cells. To test this hypothesis, we isolated T cells from the blood of healthy donors, activated82

the cells in an antigen-independent manner with a tetrameric antibody (anti-CD2/CD3/CD28) and imaged83

the NAD(P)H and FAD fluorescence intensity and lifetime of quiescent and activated T cells. This is the84

first study to (1) demonstrate autofluorescence lifetime differences between quiescent and activated T cells85

and (2) accurately classify T cell activation state from machine learning models using quantitative endpoints86

from autofluoresence lifetime images.87
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2 Results88

2.1 Autofluorescence imaging reveals metabolic differences with activation in89

T cells.90

T cell isolations for CD3+ (pan-T cell marker) and CD3+CD8+ cells were used to study all T cells, as might91

be utilized in adoptive cell transfer therapies, and the cytotoxic CD3+CD8+ sub-population, respectively.92

NAD(P)H and FAD autofluorescence imaging reveals metabolic differences in quiescent and activated T93

cells (Fig. 1, S1). The high resolution multiphoton imaging allows visualization of bulk CD3+ and isolated94

CD3+CD8+ T cells (Fig. 1A). In the autofluorescence images, the nucleus remains dark as NAD(P)H is95

primarily located in the cytoplasm and mitochondria, and FAD is primarily in the mitochondria. Immunoflu-96

orescence labeling of CD4, CD8, and CD69 surface proteins verified cell type and activation (Fig. S2). There97

were significant differences in cell size, optical redox ratio, NAD(P)H τm, NAD(P)H α1, and FAD α1 between98

quiescent and activated T cells (p<0.001, Fig. 1B-F). Significant changes (p<0.001) in FAD τm between99

quiescent and activated T cells were found only for T cells within the bulk CD3+ T cell population (Fig. 1E).100

Additionally, significant changes (p<0.001) in the short and long lifetimes were observed between quiescent101

and activated CD3+ and CD3+CD8+ T cells (Fig. S1). These differences in autofluorescence endpoints102

were consistent across the 6 donors (Fig. 1, S1), at 24 and 48 hr of exposure to the activating antibodies103

(Fig. S3), and between experiments from two different blood draws (183 days apart) from the same donor104

(Fig. S4). A slight increase in FAD τ1 was found in both quiescent and activated CD3+ T cells, suggesting105

a slight change in the microenvironment of bound FAD between CD3+ T cells of the same donor from two106

blood draws; however, no other autofluorescence endpoints were signficantly different between the two blood107

draws.108

Seahorse OCR and ECAR measurements confirm increased metabolic rates of the activated T cells109

(p<0.001, Fig. 1H-J). In a metabolic inhibitor experiment (Fig. S5), the redox ratio of activated T cells110

decreased (p<0.001) with a glycolysis inhibitor (2-deoxy-d-glucose), and the redox ratio of quiescent T cells111

increased (p<0.001) with oxidative phosphorylation inhibitors (antimycin A and rotenone). Additionally,112

the glutaminolysis inhibitor BPTES significantly decreased (p<0.001) the optical redox ratio, NAD(P)H τm,113

and FAD τm of both quiescent and activated T cells, suggesting a significant contribution of glutaminolysis114

to the metabolism of quiescent and activated T cells (Fig. S5).115
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A

Figure 1: NAD(P)H and FAD autofluorescence imaging reveals metabolic differences between
quiescent and activated T cells. Representative optical redox ratio, NAD(P)H τm, and FAD τm images
of quiescent (columns 1, 3) and activated (columns 2, 4) CD3+ (rows 1-3) and CD3+CD8+ (row 4-6) T cells
from two different donors. Scale bar is 20 µm. Cell size (B), optical redox ratio (C), NAD(P)H τm (D), FAD
τm (E), NAD(P)H α1 (F), and FAD α1 (G) of quiescent and activated CD3+ and CD3+CD8+ T cells. Black
circles represent mean of all data (6 donors), triangles (donors A [dark red], B [medium red], and F [light
red]) represent data from female donors, squares (donors C [dark blue], D [medium blue], and E [light blue])
represent data from male donors. Each color shade represents data from an individual donor. Data are mean
+/- 99% CI. *** p<0.001. n = 54-1058 cells per donor per group. (H-J) Cellular respiration increases in
activated T cells. The oxygen consumption rate (OCR; panel H) and extracellular acidification rate (ECAR,
panel I) are increased in activated bulk CD3+ and isolated CD3+CD8+ T cells. The ratio of OCR to ECAR
(J) is significantly decreased in activated bulk CD3+ and isolated CD3+CD8+ T cells as compared with
that of quiescent T cells. *** p<0.001, Student’s t-test, n = 6 wells/group CD3+CD8+ isolation, n = 12
wells/group CD3+ isolation.

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2019. ; https://doi.org/10.1101/536813doi: bioRxiv preprint 

https://doi.org/10.1101/536813
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.2 Machine learning models of autofluorescence imaging endpoints allow clas-116

sification of quiescent and activated T cells with high accuracy.117

Uniform Manifold Approximate and Projection (UMAP) [26], a dimension reduction technique similar to118

tSNE, was used to visualize how cells cluster from autofluorescence measurements. Neighbors were defined119

through a cosine distance function computed across the autofluorescence endpoints (optical redox ratio,120

NAD(P)H τm, NAD(P)H τ1, NAD(P)H τ2, NAD(P)H α1, FAD τm, FAD τ1, FAD τ2, and FAD α1) and121

cell size for each cell. UMAP was chosen over other techniques, notably PCA or tSNE, for its speed, ability122

to include non-metric distance functions, and performance on preserving the global structure of the data.123

UMAP representations of the autofluorescence imaging data reveals separation of quiescent and activated124

T cells (Fig. 2A-B). The gain ratio of autofluorescence endpoints indicates that NAD(P)H α1, cell size,125

and optical redox ratio are the most important features for classification of activation state of CD3+ T126

cells (Fig. 2C), and NAD(P)H α1, optical redox ratio, and NAD(P)H τm are the most important features127

for classification of activation state of CD3+CD8+ T cells (Fig. 2C). The order of feature importance was128

consistent across multiple feature selection methods including information gain, χ2, and random forest (Fig.129

S6). Correlation analysis revealed that NAD(P)H α1, cell size, and the optical redox ratio are not significantly130

correlated (Fig. S7), suggesting these features are independent and provide complementary information for131

classification. NAD(P)H α1 and τm are significantly correlated (Fig. S7), as expected, given that τm is132

computed from α1. Similar feature weight and order of importance were observed from analysis without133

NAD(P)H τm and FAD τm (Fig. S8), indicating that the multivariate models were not significantly affected134

by the correlations between the mean lifetimes and the lifetime components.135

Classification models were developed to predict T cell activation state from NAD(P)H and FAD autoflu-136

orescence imaging endpoints (Fig. 2D-F). To protect against over-fitting, models were trained on data from137

4 donors with activation state assigned from culture conditions and tested on data with same-cell CD69138

expression immunofluorescence validation from 3 donors (completely independent and non-overlapping ob-139

servations). Receiver operator characteristic (ROC) curves reveal high classification accuracy for predicting140

activation in bulk CD3+ (AUC = 0.975) and isolated CD3+CD8+ (AUC = 0.996) T cells, when the models141

use all autofluorescence endpoints (optical redox ratio, cell size, NAD(P)H τm, NAD(P)H τ1, NAD(P)H τ2,142

NAD(P)H α1, FAD τm, FAD τ1, FAD τ2, and FAD α1). When the NAD(P)H and FAD autofluorescence143

imaging endpoints of the T cells are normalized within a donor to the mean value of the quiescent CD3+144

population, the ROC AUC decreases to 0.857 for CD3+ T cells (Fig. 2D) and increases slightly to 0.998145

for isolated CD3+CD8+ T cells. While all 10 NAD(P)H and FAD autofluorescence features achieved the146

highest classification accuracy (AUC = 0.975) for activation of CD3+ T cells, a model using only NAD(P)H147
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α1 achieved a slightly lower accuracy of 0.965 (Fig. 2E). Models that include cell size or cell size and the148

optical redox ratio, endpoints that can be obtained from fluorescence intensity images, were less effective149

at accurately predicting activation of bulk CD3+ T cells with ROC AUCs of 0.708 and 0.901, respectively150

(Fig. 2E). Similar results were obtained for the isolated CD3+CD8+ T cells, with the highest ROC AUC151

values achieved for logistic regression classification models using all 10 autofluorescence imaging endpoints152

and NAD(P)H α1 alone, AUC = 0.996 and 0.994, respectively (Fig. 2F). Similar classification accuracy153

was achieved with random forest and support vector machine models using all 10 autofluorescence imaging154

endpoints (Fig. S9).155

Figure 2: Autofluorescence imaging endpoints allow classification of quiescent and activated
T cells. (A-B) UMAP data reduction technique allows visual representation of the separation between
quiescent (”Q”) and activated (”Act”) bulk CD3+ (A) and isolated CD3+CD8+ (B) T cells. Each color shade
corresponds to a different donor, grays correspond to quiescent cells and green or purple to activated CD3+

or CD3+CD8+ T cells, respectively. (C) Feature weights for classification of quiescent versus activated T
cells by the gain ratio method. (D) ROC curves for logistic regression models for classification of activation
state within bulk CD3+ T cells, bulk CD3+ T cells normalized within each donor (CD3+ Norm), isolated
CD3+CD8+ T cells, and isolated CD3+CD8+ T cells normalized within each donor (CD3+CD8+ Norm).
(E-F) ROC curves for logistic regression classification models computed using different features for the
classification of (E) quiescent or activated bulk CD3+ or (F) isolated CD3+CD8+ T cells. Models were
trained on cells that lacked same cell validation data from donors A, B, C, and D but were known to be
quiescent or activated by culture conditions (n = 4131 CD3+ cells, n = 2655 CD3+CD8+ cells), and cells
from donors B, E, and F with CD69 validation of activation state were used to test the models (n = 696
CD3+ cells, n = 595 CD3+CD8+ cells).
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2.3 Autofluorescence imaging reveals T cell heterogeneity within and across156

donors.157

T cell heterogeneity was assessed within and across donors (Fig. 3). Heatmap representation (Fig. 3A) of158

the z-score of autofluorescence imaging endpoint values at the donor level (each row is the mean data of a159

single donor, cell type, and activation) reveals that the T cells cluster by activation state (i.e. quiescent and160

activated cluster separately) and isolation (bulk CD3+ or isolated CD3+CD8+). Corresponding coefficient161

of variation heatmaps highlight the high intra-donor variability of the size of activated T cells and low162

intra-donor heterogeneity of the autofluorescence endpoints (Fig. S10).163

A representative z score heatmap where each row is a single cell from one donor reveals distinct clusters164

of T cells by autofluorescence imaging endpoints within the quiescent and activated CD3+CD8+ T cell165

populations (Fig. 3B). Multiple quiescent and activated T cell populations were observed across all six donors166

and arises from varied distributions of autofluorescence imaging endpoints within the T cell populations (Fig.167

3C, S11-12). For example, histograms of the NAD(P)H τm values of quiescent and activated CD3+CD8+ T168

cells reveals a bimodal population within the quiescent CD3+CD8+ T cells, with one peak of the quiescent169

cells consistent with the peak of the activated cells (Fig. 3C).170

We hypothesized that memory and näıve T cells within the quiescent population contributed to the ob-171

served heterogeneity within the quiescent CD3+CD8+ T cell population (Fig. 3B-C, S11-13) (i.e. the multiple172

clusters of quiescent CD3+CD8+ cells within the heatmaps and bimodal distribution of the NAD(P)H τm173

of quiescent CD3+CD8+ T cells). To test this, we co-stained quiescent CD3+CD8+ T cells with antibodies174

against CD45RA, a marker of näıve T cells, and CD45RO, a marker of memory T cells. NAD(P)H τm was175

significantly decreased in CD45RO+ cells as compared with NAD(P)H τm of CD45RA+ cells (Fig. 3D).176

Additionally, the optical redox ratio and NAD(P)H α1 were increased (p<0.01) in CD45RO+ CD3+CD8+177

T cells as compared to CD45RA+ cells (Fig. S14).178

2.4 Culture with CD3+CD4+ T cells affects the autofluorescence of CD3+CD8+
179

T cells180

NAD(P)H and FAD autofluorescence imaging endpoints reveal metabolic differences between CD3+CD8+ T181

cells cultured as an isolated population and CD3+CD8+ T cells cultured with CD3+CD4+ T cells (bulk CD3+182

isolation). A UMAP (data dimension reduction) representation of NAD(P)H and FAD autofluorescence183

imaging endpoints reveals that CD3+CD8+ T cells cultured from the CD3+CD8+ specific T cell isolations184

cluster separately from CD3+CD8+ T cells within bulk CD3+ T cell populations (Fig. 4A). The optical redox185

ratio and NAD(P)H α1 are decreased in both quiescent and activated CD3+CD8+ T cells of the isolated186
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Figure 3: Autofluorescence imaging reveals inter- and intra-donor T cell heterogeneity. (A)
Heatmap of z-scores of NAD(P)H and FAD autofluorescence imaging endpoints where each row is the mean
data representing a single donor, subtype (CD3+ or CD3+CD8+), and activation. Data clusters by activation
state and isolation (bulk CD3+ or isolated CD3+CD8+). (B) Heatmap of z-scores of NAD(P)H and FAD
autofluorescence imaging endpoints of CD3+CD8+ T cells from a single donor, each row is a single cell
(n=635 cells). Distinct clusters are identified within the quiescent and activated CD3+CD8+ T cells. (C)
Histogram analysis of NAD(P)H τm reveals two populations in quiescent CD3+CD8+ T cells across all donors
(n=2126 quiescent cells, 1352 activated cells). (D) NAD(P)H τm is decreased in CD45RO+ CD3+CD8+ T
cells compared to NAD(P)H τm of CD45RA+ CD3+CD8+ T cells (CD45RA+ n=27 cells, CD45RO+ n=11
cells from 1 donor, ** p<0.01, - Act = quiescent cells, + Act = cells exposed to anti-CD3/CD2/CD28 for
48hr.)
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CD3+CD8+ population as compared to the corresponding values of quiescent and activated CD3+CD8+ T187

cells, respectively, within the bulk CD3+ population (Fig. 4B-C). Additional differences in NAD(P)H and188

FAD autofluorescence lifetime endpoints were observed between CD3+CD8+ T cells within the bulk CD3+189

population and the isolated CD3+CD8+ population (Fig. S15).190

Despite these differences between CD3+CD8+ T cells of CD3+CD8+ specific isolations and bulk CD3+191

isolations, significant changes in NAD(P)H and FAD autofluorescence endpoints due to activation are main-192

tained, and classification models predict activation status of CD3+CD8+ cells with high accuracy regardless193

of isolation (Fig. 4D). Random forest feature selection revealed that NAD(P)H α1 is the most important194

feature for classification of quiescent from activated CD3+ or CD3+CD8+ T cells (Fig. S16A).195

2.5 Machine learning models of autofluorescence endpoints classify CD3+CD4+
196

from CD3+CD8+ T cells within bulk CD3+ populations197

Heterogeneity in NAD(P)H and FAD autofluorescence endpoints between CD3+CD4+ and CD3+CD8+ T198

cells was observed within the T cells from the bulk CD3+ isolation. A UMAP representation of the NAD(P)H199

and FAD autofluorescence data allows visualization of the clustering and separation of quiescent and activated200

CD3+CD4+ and CD3+CD8+ T cells within the bulk CD3+ isolation (Fig. 4E). These differences between201

CD3+CD4+ and CD3+CD8+ T cells are due to significant differences in NAD(P)H and FAD endpoints,202

including NAD(P)H τ2, which is increased (p<0.05) in quiescent CD3+CD8+ T cells compared to quiescent203

CD3+CD4+ T cells, and NAD(P)H α1, which is decreased in activated CD3+CD8+ T cells compared to204

activated CD3+CD4+ T cells (p<0.05, Fig. 4F-G, S17). Random forest models to classify T cell subtype205

(CD3+CD4+ or CD3+CD8+) within the bulk CD3+ T cell isolation have average predictions of 97.5% and206

99.7% for separate predictions on subsets of quiescent or activated T cells, respectively, and 99.4% for all207

four groups, when trained on 75% of the T cell observations and tested on the remaining 25% (Fig. 4H).208

Classification accuracy scales with number of cells in train versus test groups (Fig. 4H). Random forest209

feature analysis revealed that NAD(P)H τ2 is the highest weighted feature for the classification of activated210

CD3+CD4+ from activated CD3+CD8+ T cells, and FAD τ1 is the highest weighted feature for quiescent211

CD3+CD4+ from quiescent CD3+CD8+ T cells (Fig. S16B).212

2.6 Autofluorescence imaging allows classification of activated T cells in cul-213

tures of combined quiescent and activated T cells214

NAD(P)H and FAD autofluorescence imaging allows label-free imaging and classification of T cell activation215

in T cell cultures with combined quiescent and activated cells. A representative NAD(P)H α1 image with216
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Figure 4: T cell population composition affects T cell autofluorescence. (A) UMAP of NAD(P)H and
FAD autofluorescence endpoints of quiescent and activated (“Act”) CD3+CD8+ T cells identified within bulk
CD3+ and specific CD3+CD8+ isolations. (B) Optical redox ratio and (C) NAD(P)H α1 of CD3+CD8+ T
cells cultured as an isolated population (CD3+CD8+ specific isolation, n=39 quiescent cells, n=174 activated
cells) and with CD3+CD4+ T cells (bulk CD3+ isolation, n=83 quiescent cells, n=170 activated cells). Stars
between quiescent and activated boxplots compare quiescent and activated CD3+CD8+ T cells within an
isolation (CD3+ or CD3+CD8+), stars above the quiescent box plot represent signficance between quiescent
CD3+CD8+ T cells from the bulk CD3+ and CD3+CD8+ specific isolations, stars above the activated
box plot represent signficance between activated CD3+CD8+ T cells from the bulk CD3+ and CD3+CD8+

specific isolations, ** p<0.01, *** p<0.001. (D) Accuracy of random forest classification of quiescent versus
activated CD3+CD8+ T cells from CD3+CD8+ specific isolations (n=213 cells) and bulk CD3+ isolations
(n=253 cells). (E) UMAP of NAD(P)H and FAD autofluorescence imaging endpoints of quiescent and
activated CD3+CD4+ and CD3+CD8+ cells identified within bulk CD3+ populations. (F) NAD(P)H τ2
of quiescent CD3+CD4+ and CD3+CD8+ cells (bulk CD3+ isolation, n=66 quiescent CD3+CD4+ T cells,
n=83 quiescent CD3+CD8+ T cells, * p<0.05, *** p<0.001). (G) NAD(P)H α1 of activated CD3+CD4+ and
CD3+CD8+ cells (bulk CD3+ isolation, n=264 activated CD3+CD4+ T cells, n=170 activated CD3+CD8+

T cells). (H) Accuracy of random forest classification of CD3+CD4+ and CD3+CD8+ T cells from quiescent
(2 group classification, “CD3+ Q”), activated (2 group classification, “CD3+ Act”), or both quiescent and
activated T cells (4 group classification, “CD3+ All”) within bulk CD3+ isolations, total observations include
66 quiescent CD3+CD4+ T cells, 83 quiescent CD3+CD8+ T cells, 264 activated CD3+CD4+ T cells, and
170 activated CD3+CD8+ T cells.
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CD69 immunofluorescence overlaid in pink, demonstrates the difference in NAD(P)H α1 between quiescent217

(CD69−) and activated (CD69+) T cells (Fig. 5A). UMAP visualization of the autofluorescence imaging218

data reveals separation of quiescent and activated CD3+ T cells within this population of combined quiescent219

and activated cells (Fig. 5B). When cultured in isolated populations, quiescent and activated T cells have220

significantly different NAD(P)H and FAD imaging endpoints, including the optical redox ratio and NAD(P)H221

α1, than their respective counterpart from a combined (quiescent with activated T cells) population (Fig.222

5C-D, Fig. S18). Random forest feature selection for classification of activation status of T cells within a223

combined, quiescent and activated, T cell population reveals that NAD(P)H α1 is the most important feature224

for classification, followed by NAD(P)H τm (Fig. S19). Logistic regression models to predict activation status225

of T cells in a combined, quiescent and activated, CD3+ T cell culture achieves ROC AUCs of 0.95 when all226

10 NAD(P)H and FAD imaging endpoints are included, 0.95 and 0.68 when only predicting from NAD(P)H227

α1 or cell size, respectively, and 0.67 for redox ratio and cell size (Fig. 5E).228

2.7 Autofluorescence imaging resolves temporal changes in T cells with activa-229

tion230

Metabolic changes occur rapidly within T cells upon activation [27]; therefore, we hypothesized that time-231

course imaging of T cells would resolve changes in T cell autofluorescence. NAD(P)H fluorescence lifetime232

images were acquired from CD3+ quiescent T cells immediately after exposure to the activating tetrametic233

antibody (anti-CD2/CD3/CD28). The NAD(P)H intensity of the nucleus increased by 10% relative to the234

pre-activator values, within a few minutes of addition of the activator, and remained consistently higher than235

the average pre-activation NAD(P)H intensity throughout the time-course (Fig. 5F). NAD(P)H intensity236

within the nucleus may indicate increased transcription [28]. The NAD(P)H intensity in the cytoplasm237

initially increased (t<1 m) and then decreased, relative to the pre-activation NAD(P)H intensity of the238

cytoplasm. NAD(P)H α1 increased significantly in the cytoplasm by 2% at t = 6 minutes post addition of239

the activator and remained significantly increased until t=8.75 m. These autofluorescence changes observed240

early, within minutes of activation, indicate that autofluorescence lifetime imaging is sensitive to robust241

transcription and metabolic changes that occur with activation in T cells [27].242

3 Discussion243

T cells are an important component of the adaptive immune response with direct cytotoxic and immune-244

modulating behaviors. Novel immunotherapies that directly modify T cell behavior show promise for treating245
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Figure 5: Autofluorescence imaging allows classification of quiescent and activated T cells within
combined quiescent and activated T cell populations. (A) Representative NAD(P)H α1 image of
combined quiescent (CD69−) and activated (CD69+) T cells with CD69 immunofluorescence overlaid in
pink. Scale bar is 30 µm. (B) UMAP representation of NAD(P)H and FAD imaging endpoints of CD69−

and CD69+ CD3+ T cells from a combined population of quiescent and activated T cells. (C) Optical redox
ratio and (D) NAD(P)H α1 of isolated (“Iso.”) and combined quiescent (CD69−) and activated (CD69+)
CD3+ T cells. *** p < 0.001, n=289-438 cells per group, single donor. (E) ROC curves of logistic regression
classification of quiescent and activated CD3+ T cells from a combined population of CD69− and CD69+ T
cells. (F) Percent difference of NAD(P)H α1 and fluorescence intensity in CD3+ T cell nuclei and cytoplasms
over time. Anti-CD2/CD3/CD28 added at t=0 m. mean +/- SD of 34 cells.
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a variety of conditions including cancer and autoimmune disease. Due to their varied activities, character-246

ization of T cell function is imperative for assessment of immunotherapy efficacy for pre-clinical evaluation247

and quality control of clinical immunotherapies. In this study, we develop autofluorescence lifetime imaging-248

based methods for determination of T cell activation at the single cell level. Autofluorescence lifetime249

imaging is non-destructive, label-free, and has high spatial and temporal resolution that is amenable with250

live cell assessment, longitudinal studies, and in vivo imaging. Autofluorescence imaging offers advantages251

over antibody-labeling methods that are traditionally used to assess T cell function with high specificity252

which are less amenable to non-invasive time-course studies within intact samples.253

Upon activation, T cell metabolism switches from tricarboxylic acid oxidation of glucose and β-oxidation254

of fatty acids to glycolysis and glutaminolysis [23–25, 29, 30]. T cells with high glycolytic activity in vitro show255

poor persistence, low recall responses and low proliferation rates that lead to poor effector activity in vivo,256

whereas T cells with high fatty acid oxidation show increased persistence, recall responses and proliferation257

leading to better effector activity within the tumor [31]. Changes in NAD(P)H and FAD autofluorescence258

imaging endpoints, including the increased optical redox ratio observed in activated T cells relative to the259

optical redox ratio of quiescent T cells, reflect a shift towards glycolysis in activated T cells (Fig. 1, S1,260

S18-19). Significant changes in the lifetimes of protein-bound NAD(P)H (τ2) and protein-bound FAD (τ1;261

Fig. S1) indicate differences in the protein binding partners of NAD(P)H and FAD [32]. A significant262

increase in the fraction of free NAD(P)H (α1; Fig. 1F) in activated T cells as compared to that of quiescent263

T cells, suggests a relative increase in free NAD(P)H and a decrease in protein-bound NADH, consistent264

with a shift from TCA metabolism to glycolysis [33], which was verified by the Seahorse assay and metabolic265

inhibitor experiment (Fig. 1H-J, S5). The significant increase in the lifetime of free NAD(P)H (τ1, Fig. S1),266

suggests a change in the microenvironment (e.g., pH, oxygen) of the free fraction of NAD(P)H that reduces267

the quenching of the fluorophore. Altogether, the significant changes observed between NAD(P)H and FAD268

fluorescence lifetime values reflect changes in the microenvironment of the metabolic coenzymes NAD(P)H269

and FAD and altered metabolic pathway utilizition by quiescent and activated T cells [23–25, 29, 30].270

T cells are known to be highly heterogeneous, with phenotypic heterogeneity of surface proteins and271

effector function observed for CD3+CD4+ and CD3+CD8+ T cells [34]. This heterogeneity can arise from272

the strength of the activating event, the microenvironment of the T cell, and differences in gene regulation at273

the time of activation [35–37]. Heterogeneity analysis, by heatmaps and histograms, revealed heterogeneous274

clustering of T cells within the autofluorescence imaging dataset. One of these populations within the275

quiescent CD3+CD8+ population, was identified due to a difference in the mean NAD(P)H lifetime which276

was found to be due to näıve (CD45RO+) and memory (CD45RA+) CD3+CD8+ T cells (Fig. 3C-D),277

which are known to have differing metabolic states: memory T cells have increased glycolytic capacity and278
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mitochondrial mass as compared with näıve T cells [27]. An additional subpopulation was identified within279

the activated T cell subset and characterized by larger than average cells (Fig. 3B, S6-7). These large cells280

may be actively dividing cells, a condition which is also accompanied by metabolic and autofluorescence281

differences [38, 39].282

Machine learning approaches are powerful tools for classification of biomedical imaging data and have283

been used on extracted morphological features of phase-contrast images to identify cancer cells from immune284

cells, on brightfield images to assess cell cycle, and on phase contrast and autofluorescence images to classify285

macrophage exposure to LPS [22, 40, 41]. Here, high ROC AUCs (0.95+) were achieved using machine286

learning techniques to classify T cells as activated or quiescent using the autofluorescence imaging endpoints287

(optical redox ratio, cell size, NAD(P)H τm, NAD(P)H τ1, NAD(P)H τ2, NAD(P)H α1, FAD τm, FAD288

τ1, FAD τ2, and FAD α1) quantified for each cell. Classification of activation of T cells from CD3+CD8+289

specific isoations was slightly higher than that of T cells from bulk CD3+ isolations as might be expected for290

a homogeneous population (CD3+CD8+) rather than a heterogeneous population (bulk CD3+ populations291

contain CD4+ and CD8+ subsets). Although multiple classification models were found to have similar292

performance, logistic regression was the best fitting model, suggesting that the predicted probability of293

activation is a linear combination of all 10 of the autofluorescence imaging endpoints. Interestingly, donor294

normalization (Fig. 2D) of the autofluorescence imaging endpoints did not improve classification accuracy,295

suggesting that the autofluorescence endpoints reflect changes in T cells with activation that are consistent296

across donors so generalized models can be used for unspecified donors or patients, which is beneficial for297

robust implementation of autofluorescence imaging as a universal tool to evaluate T cell activation.298

The models for classification of activation in T cells reported here have higher ROC AUC values than the299

previously reported accuracy of 84-87% found for binary logistic regression classification of morphological300

and Raman spectra features of control and LPS-exposed macrophages [22]. The increased accuracy obtained301

in our study could be due to the metabolic information gained from the NAD(P)H and FAD autofluorescence302

signals, differences in the heterogeneity of the measured populations, and/or differing numbers of cells in the303

training and testing data sets. Although high classification accuracy was achieved with the machine learning304

approaches, deep learning methods such as neural networks may achieve improvements in classification305

accuracy, as has been demonstrated for the classification of cancer cells from immune cells in phase-contrast306

images [40].307

NAD(P)H α1 was consistently identified as the most important feature for differentiation of quiescent308

and activated T cells across different feature selection methods (including gain ratio, information gain, χ2,309

and random forest), and different subsets of CD3+, CD3+CD8+, and CD69+/CD69− T cells (Fig. 2C, S6,310

S19). The classification analysis also revealed that while models trained on all 10 autofluorescence imaging311
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endpoints yielded the highest accuracy for classification of activation state of T cells, logistic regression312

using only NAD(P)H α1 yielded comparably high ROC AUCs and was more accurate for predicting T cell313

activation than cell size alone (Fig. 2E), or fluorescence intensity measurements (cell size + redox ratio),314

which can be obtained by wide-field or confocal fluorescence microscopy. Additional label-free methods,315

including third harmonic generation imaging and Raman spectroscopy of quiescent and activated splenic-316

derived murine T cells have revealed a significant increase in cell size and lipid content in activated T cells317

[42]. However, we observed a high variance in cell size within and across patients, which makes it a less318

important predictor than NAD(P)H lifetime values that change with activation and have lower variance319

(Fig. S10).320

CD3+CD4+ T cells have a variety of immune-modulating behaviors. While not necessary for activation321

of CD3+CD8+ T cells, the presence of CD3+CD4+ T cells during activation is required for the development322

of memory CD3+CD8+ T cells [43]. Additionally, TREGS (CD3+CD4+FoxP3+ T cells, 5-10% of peripheral323

CD3+CD4+ population) suppress the activation and proliferation of other T cells [44, 45]. Differences in the324

NAD(P)H and FAD autofluorescence imaging endpoints (Fig. 4, S15) between CD3+CD8+ T cells cultured325

with and without CD3+CD4+ T cells were observed, suggesting autofluorescence imaging is sensitive to326

CD3+CD4+ induced changes in CD3+CD8+ T cells (Fig. 4). However, despite these differences, NAD(P)H327

α1 remains the highest weighted feature for classification of activation state (Fig. S16), and activation state of328

CD3+CD8+ T cells can be classified from autofluorescence imaging endpoints with high accuracy, regardless329

of T cell population (Fig. 4D).330

Due to the differing physiological functions of CD3+CD4+ and CD3+CD8+ T cells [1, 46], it is impor-331

tant to detect CD3+CD4+ and CD3+CD8+ subtypes of T cells in addition to the activation state of T332

cells. Therefore, we explored whether machine learning methods could use autofluorescence imaging data333

to distinguish between CD3+CD8+ and CD3+CD4+ T cells within bulk CD3+ populations. Significant334

differences in NAD(P)H fluorescence lifetime values between CD3+CD4+ and CD3+CD8+ T cells suggests335

variations in metabolic activity upon activation of CD3+CD4+ and CD3+CD8+ T cells, which is consis-336

tent with previously observed differences in CD3+CD4+ and CD3+CD8+ T cell activation: CD3+CD4+337

activation occurs through Myc, ERRα, and mTOR, while CD3+CD8+ T cells activate through Akt and338

mTOR [47]. These subtle differences in metabolic pathway utilization by CD3+CD4+ and CD3+CD8+ T339

cells enabled high classification accuracy of not only quiescent CD3+CD4+ from quiescent CD3+CD8+ cells340

and activated CD3+CD4+ from activated CD3+CD8+ cells, but also all four groups, activated and quiescent341

CD3+CD4+ from activated and quiescent CD3+CD8+ accurately (Fig. 4H). Although successful classifi-342

cation was achieved for CD3+CD4+ versus CD3+CD8+ T cells, these changes are much subtler than the343

metabolic changes with activation, as evidenced by the increased number of cells needed to train the models344
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to achieve high classification accuracy (Fig. 4D,H).345

Autofluorescence lifetime imaging has spatial and temporal resolution advantages over traditional assays346

to survey T cell activation and function. Autofluorescence imaging can be high resolution to allow mea-347

surements at the single cell level, allowing insights into metabolic heterogeneity within T cell populations.348

Additionally, the high spatial resolution and non-destructive nature of autofluorescence imaging maintains349

the spatial integrity of immune cells, allowing high fidelity measurements on neighboring cells as demon-350

strated in the combined population of quiescent and activated T cells (Fig. 5A). Finally, autofluorescence351

imaging also has high temporal resolution (Fig. 5F) allowing time-course study of T cell activation. Alto-352

gether, autofluorescence lifetime imaging of NAD(P)H and FAD of T cells, combined with machine learning353

for classification, is a powerful tool for non-destructive, label-free assessment of activation status of T cells.354

NAD(P)H and FAD autofluorescence lifetime imaging is label-free and provides high spatial, temporal, and355

functional information of cell metabolism, which makes it an attractive tool to evaluate T cells in vivo or356

characterize expanded T cells.357

4 Methods358

4.1 T cell Isolation and Culture359

This study was approved by the Institutional Review Board of the University of Wisconsin-Madison (#2018-360

0103), and informed consent was obtained from all donors. Peripheral blood was drawn from 6 healthy361

donors into sterile syringes containing heparin. Two blood draws, 183 days apart, were performed on one362

donor to evaluate the consistency of the experimental protocol and imaging endpoints. Bulk CD3+ T cells363

or an isolated CD3+CD8+ T cell subset were extracted from whole blood using negative selection methods364

(RosetteSep, StemCell Technologies) and cultured in ImmunoCult-XF T cell Expansion Medium (StemCell365

Technologies). Approximately 24 hours post-isolation, the T cells were divided into two groups, a “quiescent”366

population that was grown in medium without activating antibodies, and an “activated” population that was367

cultured in medium supplemented with 25 µl/ml tetrameric antibody against CD2/CD3/CD28 (StemCell368

Technologies). Quiescent and activated T cell populations were cultured separately for 48 hours at 37°C,369

5% CO2, and 99% humidity before imaging and subsequent experiments, unless otherwise noted. Prior to370

imaging, T cells were plated at approximately 200,000 cells/200 µl media on 35 mm poly-d-lysine coated371

glass bottom dishes (MatTek). To ensure that autofluorescence imaging and the classification models extend372

for mixed populations of quiescent and activated T cells, a subset of quiescent and activated T cells (48hr of373

culture with activating antibody) were combined and plated together in a dish 1 hour before imaging.374
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4.2 Autofluorescence Imaging of NAD(P)H and FAD375

Fluorescence images were acquired using an Ultima (Bruker Fluorescence Microscopy) two-photon microscope376

coupled to an inverted microscope body (TiE, Nikon) with an Insight DS+ (Spectra Physics) as the excitation377

source. A 100X objective (Nikon Plan Apo Lambda, NA 1.3), lending an approximate field of view of 110 µm,378

was used in all experiments with the laser tuned to 750 nm for NAD(P)H two-photon excitation and 890 nm379

for FAD two-photon excitation. NAD(P)H and FAD images were acquired sequentially through 440/80 nm380

and 500/100 nm bandpass filters (Chroma), respectively, by GaAsP photomultiplier tubes (PMTs; H7422,381

Hamamatsu). The laser power at the sample was 3.0-3.2 mW for NAD(P)H and 4.1-4.3 mW for FAD. Lifetime382

imaging was performed within Prairie View (Bruker Fluorescence Microscopy) using time-correlated single383

photon counting electronics (SPC-150, Becker & Hickl, Berlin, Germany). Fluorescence lifetime decays with384

256 time bins were acquired across 256x256 pixel images with a pixel dwell time of 4.6 µs and an integration385

time of 60 s. Photon count rates were ˜1-5x105 and monitored during image acquisition to ensure that no386

photobleaching occurred. The second harmonic generation at 890 nm from red blood cells was used as the387

instrument response function and had a full width at half maximum of 240 ps. A YG fluorescent bead (τ =388

2.13 +/- 0.03 ns, n = 6) was imaged daily as a fluorescence lifetime standard [14, 18, 48]. Four to six images389

per group were acquired.390

4.3 Antibody Validation391

Antibodies against CD4 (clone OKT4, PerCP-conjugated, Biolegend Item #317431, Lot B198303), CD8392

(clone SK1, PerCP-conjugated, Biolegend Item #344707, Lot B204988), CD69 (clone FN50, PerCP-393

conjugated, Biolegend Item #310927, Lot B180058), CD45RA (clone HI100, Alexa 647-conjugated, Bi-394

olegend Item #304153, Lot B220325), and CD45RO (clone UCHL1, PerCP-conjugated, Biolegend Item395

#304251, Lot B219295) were used for validation of cell type and activation. Cells (30,000-200,000 per396

condition) were stained with 5 µl antibody/106 cells in 50 µl of ImmunoCult-XF T cell Expansion Medium397

for 30 minutes in the dark at room temperature. Cells were washed with ImmunoCult 1-2 times, resuspended398

in 50-200 µl of media, and added to the center of a 35 mm poly-d-lysine coated glass bottom dish (MatTek).399

Cells were kept in a 37°C, 5% CO2, humidified environment until imaging. All cells were imaged within 3400

hours of staining. NAD(P)H and FAD fluorescence lifetime images were acquired as described. To identify401

PerCP positive cells, an additional fluorescence intensity image was acquired with the Titanium:Sapphire402

laser tuned to 1040 nm and a 690/45 nm bandpass filter before the PMT. For evaluation of Alexa647403

fluorescence, the Titanium:Sapphire laser was tuned to 1300 nm for excitation, and a 690/45 nm bandpass404

filter was used to filter emitted light.405
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4.4 Data Analysis406

Fluorescence lifetime decays were analyzed to extract fluorescence lifetime components (SPCImage, Becker407

& Hickl). A bin of 9 surrounding pixels (3x3) was used to increase the fluorescence counts in each decay. A408

threshold was used to exclude pixels with low fluorescence signal (i.e. background). Fluorescence lifetime409

decays were deconvolved from the instrument response function and fit to a 2 component exponential decay410

model, I(t) = α1e
−t/τ1 + α2e

−t/τ2 + C, where I(t) is the fluorescence intensity as a function of time, t,411

after the laser pulse, α1 and α2 are the fractional contributions of the short and long lifetime components,412

respectively (i.e., α1 + α2 = 1), τ1 and τ2 are the short and long lifetime components, respectively, and413

C accounts for background light. Both NAD(P)H and FAD can exist in quenched (short lifetime) and414

unquenched (long lifetime) configurations [9, 13]; therefore, the fluorescence decays of NAD(P)H and FAD415

are fit to two components.416

Images were analyzed at the single cell level to evaluate cellular heterogeneity [49]. NAD(P)H intensity417

images were segmented into cytoplasm and nucleus using edge detect and thresholding methods in CellProfiler418

using a customized image processing routine [50]. Images of the optical redox ratio (fluorescence intensity419

of NAD(P)H divided by the summed intensity of NAD(P)H and FAD) and mean fluorescence lifetimes (τm420

= α1τ1 + α2τ2) of NAD(P)H and FAD were computed (MATLAB). NAD(P)H and FAD autofluorescence421

imaging endpoints, including the optical redox ratio, NAD(P)H τm, NAD(P)H τ1, NAD(P)H τ2, NAD(P)H422

α1, FAD τm, FAD τ1, FAD τ2, and FAD α1 were averaged across all pixels within a cell cytoplasm for each423

segmented cell. Cell size in µm2 was also computed from the segmented images using the number of pixels424

within the 2D-image of the cell * 0.167 µm2 (which is the pixel dimension).425

Statistical analysis and data representation were performed in R. A generalized linear model was used to426

evaluate significant differences (α = 0.05) of autofluorescence imaging endpoints between quiescent and acti-427

vated T cells, CD45RA+ and CD45RO+ cells (Fig. 3), and CD3+CD4+ and CD3+CD8+ T cells. Presented428

boxplots are constructed from the median (central line) and first and third quartiles (lower and upper hinges,429

respectively). The whiskers extend to the farthest data points that are no further than 1.5* the interquartile430

range. Dots represent data points beyond 1.5* the interquartile range from the hinge.431

4.5 Classification432

Uniform Manifold Approximate and Projection (UMAP), a dimension reduction technique [26], and z-score433

heatmaps were used to visualize clustering within autofluorescence imaging data sets (Python and R, re-434

spectively). Machine learning classification models and training/testing data sets are summarized in Table435

S1. Random forest, logistic regression, and support vector machine classification methods were trained to436
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classify activated and quiescent T cells within either the bulk CD3+ FLIM data or the isolated CD3+CD8+437

FLIM data (R). For both data sets, gain ratio, χ2, and random forest feature selection methods were em-438

ployed to evaluate the contribution of the NAD(P)H and FAD autofluorescence endpoints to the accuracy439

of classification of quiescent versus activated T cells. These models were trained on data from donors A, B,440

C, and D because these cells lacked immunofluorescence CD69 validation but were known to be quiescent or441

activated by culture conditions (n = 4131 CD3+ cells, n = 2655 CD3+CD8+ cells). Models were tested on442

data from T cells from donors B, E, and F with CD69 immunofluorescence validation of activation state (n443

= 696 CD3+ cells, n = 595 CD3+CD8+ cells). Random forest models were developed to classify CD3+CD4+444

from CD3+CD8+ T cells, and cells were randomly assigned to training and test data sets for a range of445

train/test proportions from 12.5% to 87.5%. Each model was replicated 50 times with new training and test446

data generated before each iteration. Logistic regression models were also estimated for the classification of447

T cell activation from imaging endpoints of combined quiescent and activated CD3+ T cells (both condi-448

tions together within the images). Observations were randomly divided into training and testing data sets449

(90%/10%, respectively), and presented ROC curves are the average of 1000 iterations of randomly selected450

training and testing data.451

4.6 Seahorse Assay452

Quiescent and activated T cells were plated at 5x106 cells/ml on a Seahorse 96-well plate in unbuffered453

RPMI medium without serum. Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR)454

measurements were obtained every 6.5 minutes for 5 cycles. A generalized linear model was used to determine455

statistical significance (α = 0.05) within OCR and ECAR measurements between control and activated T456

cells.457

4.7 Metabolic Inhibitors458

Quiescent and activated (48 hr) CD3+ T cells were plated on poly-d-lysine coated 35 mm glass bottom459

dishes at a concentration of ˜200,000 cells/200 µl ImmunoCult T cell Expansion Medium as previously460

described (T cell Isolation and Culture). The metabolic inhibitors antimycin A (1 µM), rotenone (1 µM),461

2-deoxy-d-glucose (2DG, 50 mM), Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES, 20462

µM), and 5-(Tetradecyloxy)-2-furoic acid (TOFA, 50 1 µg/ml) were added singly, except for antimycin463

A and rotenone which were added together, to the dishes prior to imaging. Cells were incubated with464

antimycin A and rotenone for ten minutes, 2DG for ten minutes, BPTES for 1 hour, and TOFA for 1 hour.465

Fluorescence lifetime images of NAD(P)H and FAD were acquired for 6 random fields of view as described466
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above. A generalized linear model was used to determine autofluorescence imaging endpoints with statistical467

significance (α = 0.05) between control and inhibitor-exposed cells.468

4.8 Activation Time Course469

Quiescent CD3+ T cells were isolated and plated for imaging as previously described. NAD(P)H lifetime470

images were acquired as described but with an image size of 128x128 pixels and an integration time of 15471

s. Images were acquired sequentially for 2 minutes (8 frames), then 5 µl PBS was added to the cells as472

a mock treatment, and NAD(P)H fluorescence lifetime images were acquired for 10 minutes (40 frames).473

Subsequently, 5 µl of activating tetrameric antibody (anti-CD2/CD3/CD28) was added and NAD(P)H flu-474

orescence lifetime images were acquired for 10 minutes (40 frames). NAD(P)H FLIM images were analyzed475

in SPCImage as described. Individual cells and cell compartments (nucleus, cytoplasm) were manually seg-476

mented (author I.J.), and the autofluorescence imaging endpoints were averaged across all pixels within the477

segmented region (ImageJ). This procedure was repeated for 3 dishes for a total of 34 analyzed cells.478

4.9 Data Availability479

The datasets generated during and/or analyzed during the current study are available from the corresponding480

authors on reasonable request.481

4.10 Code Availability482

All code and algorithms generated during the current study are available from the corresponding authors on483

reasonable request.484

References485

1. Mosmann, T. R. & Coffman, R. L. in Advances in Immunology Volume 46 111–147 (Elsevier, 1989).486

2. Bettelli, E., Korn, T. & Kuchroo, V. K. Th17: the third member of the effector T cell trilogy. Current487

Opinion in Immunology 19, 652–657 (Dec. 2007).488

3. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews Cancer489

12, 252–264 (Apr. 2012).490

4. Restifo, N. P., Dudley, M. E. & Rosenberg, S. A. Adoptive immunotherapy for cancer: harnessing the491

T cell response. Nature Reviews Immunology 12, 269–281 (Apr. 2012).492

21

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2019. ; https://doi.org/10.1101/536813doi: bioRxiv preprint 

https://doi.org/10.1101/536813
http://creativecommons.org/licenses/by-nc-nd/4.0/


5. Canavan, J. B. et al. Developing in vitro expanded CD45RA+regulatory T cells as an adoptive cell493

therapy for Crohn’s disease. Gut 65, 584–594 (Feb. 2015).494

6. Marek-Trzonkowska, N. et al. Administration of CD4+CD25highCD127- Regulatory T Cells Preserves495

-Cell Function in Type 1 Diabetes in Children. Diabetes Care 35, 1817–1820 (June 2012).496

7. Todo, S. et al. A pilot study of operational tolerance with a regulatory T-cell-based cell therapy in497

living donor liver transplantation. Hepatology 64, 632–643 (Mar. 2016).498

8. Chance, B., Schoener, B., Oshino, R., Itshak, F. & Nakase, Y. Oxidation-reduction ratio studies of mi-499

tochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals. Journal of Biological500

Chemistry 254, 4764–4771 (1979).501

9. Lakowicz, J. R., Szmacinski, H., Nowaczyk, K. & Johnson, M. L. Fluorescence lifetime imaging of free502

and protein-bound NADH. Proceedings of the National Academy of Sciences 89, 1271–1275 (Feb. 1992).503

10. Georgakoudi, I. & Quinn, K. P. Optical imaging using endogenous contrast to assess metabolic state.504

Annual review of biomedical engineering 14, 351–367 (2012).505

11. Huang, S., Heikal, A. A. & Webb, W. W. Two-Photon Fluorescence Spectroscopy and Microscopy of506

NAD(P)H and Flavoprotein. Biophysical Journal 82, 2811–2825 (May 2002).507

12. Varone, A. et al. Endogenous Two-Photon Fluorescence Imaging Elucidates Metabolic Changes Re-508

lated to Enhanced Glycolysis and Glutamine Consumption in Precancerous Epithelial Tissues. Cancer509

Research 74, 3067–3075 (Mar. 2014).510

13. Nakashima, N., Yoshihara, K., Tanaka, F. & Yagi, K. Picosecond fluorescence lifetime of the coenzyme511

of D-amino acid oxidase. Journal of Biological Chemistry 255, 5261–5263 (1980).512

14. Skala, M. C. et al. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence513

lifetimes, and cellular morphology in precancerous epithelia. Proceedings of the National Academy of514

Sciences 104, 19494–19499 (Nov. 2007).515

15. Quinn, K. P. et al. Quantitative metabolic imaging using endogenous fluorescence to detect stem cell516

differentiation. Scientific Reports 3 (Dec. 2013).517

16. Walsh, A. J. et al. Quantitative Optical Imaging of Primary Tumor Organoid Metabolism Predicts518

Drug Response in Breast Cancer. Cancer Research 74, 5184–5194 (Aug. 2014).519

17. Walsh, A. J., Castellanos, J. A., Nagathihalli, N. S., Merchant, N. B. & Skala, M. C. Optical Imaging520

of Drug-Induced Metabolism Changes in Murine and Human Pancreatic Cancer Organoids Reveals521

Heterogeneous Drug Response. Pancreas 45, 863–869 (July 2016).522

22

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2019. ; https://doi.org/10.1101/536813doi: bioRxiv preprint 

https://doi.org/10.1101/536813
http://creativecommons.org/licenses/by-nc-nd/4.0/


18. Walsh, A. J. et al. Optical Metabolic Imaging Identifies Glycolytic Levels, Subtypes, and Early Treat-523

ment Response in Breast Cancer. Cancer Research 73, 6164–6174 (Oct. 2013).524

19. Stringari, C. et al. Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic525

states of germ cells in a live tissue. Proceedings of the National Academy of Sciences 108, 13582–13587526

(Aug. 2011).527
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