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Abstract 

Background 

Inhibition of sclerostin is a novel therapeutic approach to lowering fracture risk. However, phase III 

randomised controlled trials (RCTs) of romosozumab, a monoclonal antibody that inhibits sclerostin, 

suggest an imbalance of serious cardiovascular events. 

 

Methods 

We used two independent genetic variants (rs7209826 and rs188810925) in SOST (encoding sclerostin) 

associated with bone mineral density (BMD) as proxies for therapeutic inhibition of sclerostin. We estimated 

the effects on risk of osteoporosis, fracture, coronary heart disease (CHD) and a further 22 cardiometabolic 

risk factors and diseases, by combining data from up to 478,967 participants of European ancestry from 

three prospective cohorts and up to 1,030,836 participants from nine GWAS consortia. In addition, we 

performed meta-analyses of cardiovascular outcome data from phase III RCTs of romosozumab. 

 

Results 

Meta-analysis of RCTs identified a higher risk of cardiac ischemic events in patients randomised to 

romosozumab (25 events among 4,298 individuals; odds ratio [OR] 2·98; 95% confidence interval [CI], 1·18 

to 7·55; P=0·017). Scaled to the equivalent dose of romosozumab (210mg/month; 0·09 g/cm2 higher BMD), 

the SOST variants associated with lower risk of fracture (OR, 0·59; 95% CI, 0·54-0·66; P= 1·4×10-24), and 

osteoporosis (OR, 0·43; 95% CI, 0·36-0·52; P=2·4×10-18). The SOST variants associated with higher risk 

of myocardial infarction and/or coronary revascularisation (69,649 cases; OR, 1·18; 95% CI, 1·06-1·32; 

P=0·003) and type 2 diabetes (OR 1·15; 95% CI, 1·05-1·27; P=0·003), higher systolic blood pressure 

(1·3mmHg; 95% CI 0·8-1·9; P=5·9×10-6) and waist-to-hip-ratio adjusted for BMI (0·05 SDs; 95% CI, 0·02 

to 0·08; P=8·5×10-4). 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 1, 2019. ; https://doi.org/10.1101/531004doi: bioRxiv preprint 

https://doi.org/10.1101/531004
http://creativecommons.org/licenses/by/4.0/


 

 

Conclusions 

Genetically and therapeutically lowered sclerostin leads to higher risk of cardiovascular events. Rigorous 

evaluation of the cardiovascular safety of romosozumab and other sclerostin inhibitors is warranted. 
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Introduction 

Osteoporosis, a disorder of bone demineralisation, is a common condition associated with considerable 

morbidity and mortality, particularly among postmenopausal women and the elderly.1 A range of 

therapeutics for osteoporosis is currently available, though these agents are plagued by poor adherence 

(fewer than 40% of patients prescribed oral bisphosphonates still take these medications after one year2), 

occurrence of rare but serious adverse events (e.g., bisphosphonate-induced osteonecrosis of the jaw), 

high cost, and uncertainty regarding long-term efficacy.3 There is therefore a substantial demand for 

effective, safe and well-tolerated anti-osteoporotic therapies.4 

 

Sclerostin, a glycoprotein encoded by the SOST gene, is a negative regulator of bone formation that is 

secreted by osteocytes. It inhibits Wnt signaling, which leads to down-regulation of osteoblast development 

and function.5 Loss-of-function mutations in SOST lead to sclerosteosis, a rare autosomal recessive 

condition characterised by bone overgrowth.6 Similarly, van Buchem’s disease, another rare autosomal 

recessive condition with a clinical picture similar to sclerosteosis (albeit generally milder), is caused by a 

deletion of a SOST-specific regulatory element.7 The discovery of functional variants in SOST as the 

underlying cause of these rare conditions of bone overgrowth nearly 2 decades ago, led to the development 

of sclerostin inhibitors as a treatment for osteoporosis.8  

 

Three anti-sclerostin monoclonal antibodies have been, or are, currently in clinical development,5 including 

romosozumab (Amgen, UCB) and blosozumab (Eli Lilly and Company) for osteoporosis and setrusumab 

(Mereo BioPharma), currently in phase IIb for osteogenesis imperfecta. Despite phase II results showing 

significant improvements in bone mineral density (BMD),9 a biomarker used to evaluate the effect of anti-

osteoporotic treatments, clinical development for blosozumab was halted in 2015, reportedly due to 

injection site reactions.10 Phase II and III randomised controlled trials (RCTs) have shown that 

romosozumab is effective at increasing BMD in both men and women, whilst also reducing vertebral and 

non-vertebral fracture risk in women.11–14 However, adverse event data reported in the phase III BRIDGE 

and ARCH trials (in men and post-menopausal women, respectively) have suggested that romosozumab 
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may be associated with an excess risk of cardiovascular events.13,14 Concerns about the cardiovascular 

safety of romosozumab, and sclerostin-inhibition more generally, have previously been raised.8,15–17  

 

In January 2019, the Japanese Ministry of Health, Labor and Welfare approved the use of romosozumab 

in men and postmenopausal women with osteoporosis at high risk of fracture.18 The US Food and Drug 

Administration (FDA) and the European Medicines Agency (EMA) are currently considering licensing 

applications for romosozumab for the treatment of osteoporosis in men and postmenopausal women at 

increased risk of fracture.19,20 A detailed appraisal of the cardiovascular effects of sclerostin inhibition by 

exploiting randomised data from orthogonal sources is both timely and warranted, and may assist in the 

evaluation of whether this class of drugs represents a rational and safe therapeutic strategy for the 

prevention of fracture. 

 

Naturally-occurring human genetic variation can serve as a proxy for therapeutic stimulation or inhibition of 

a drug target, presenting a valuable opportunity to assess the likely consequences of modifying a 

therapeutic target on both the intended therapeutic effects and target-mediated adverse drug reactions.21 

The application of this approach in a Mendelian randomisation framework has previously shown to 

recapitulate known clinical effects of drug target modulation.22–26 In this study, we used this genetic 

approach to examine the effect of BMD-increasing alleles in the SOST locus (as a proxy for sclerostin 

inhibition) on the risk of bone fracture, osteoporosis, cardiovascular risk factors and disease, to shed light 

on whether treatment with sclerostin inhibitors is likely to adversely impact on cardiovascular disease. 
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Methods 

Study population 

We examined individual-level genotypic and phenotypic data for 502,617 subjects in UK Biobank (UKBB), 

a population-based cohort based in the United Kingdom. Following quality control, 423,761 subjects of 

white ethnicity were included for further analysis (see Supplementary Methods and Table S1 in the 

appendix for full quality control descriptions and baseline characteristics of participants in UKBB). In 

addition, we included data from a further two European-ancestry cohorts: Partners HealthCare Biobank 

(PHB; up to 19,132 subjects) and Estonian Biobank (EGCUT; up to 36,074 subjects). Trans-ethnic 

replication was attempted in China Kadoorie Biobank (CKB; up to 81,546 subjects). See Supplementary 

Methods in the appendix for further detail on each cohort.  

 

We supplemented these data with summary-level data from 9 genome-wide association study (GWAS) 

consortia, including data for BMD (ultrasound-derived estimated heel-bone BMD [up to 142,487 individuals] 

and dual-energy x-ray absorptiometry (DXA)-derived BMD [up to 49,988]), coronary heart disease (CHD; 

up to 60,801 cases and 123,504 controls) and myocardial infarction, stroke (up to 40,585 cases and 

406,111 controls), atrial fibrillation (up to 60,620 cases and 970,216 controls), type 2 diabetes mellitus (T2D; 

up to 74,124 cases and 824,006 controls), glycemic traits (up to 123,665 individuals), serum lipid fractions 

(up to 92,804 individuals), anthropometric traits (up to 222,233 individuals), and renal function (up to 

110,515 individuals). Further details on each consortium are provided in the Supplementary Methods and 

Table S2 in the appendix. An overview of the overall study design is shown in Figure S1 in the appendix. 

All studies contributing data to these analyses were approved by their local ethics committees (details in 

appendix). 

 

Genetic instrument selection and validation 

A recent large-scale GWAS for estimated heel-bone BMD (eBMD), conducted in 142,487 individuals,27 

identified two conditionally independent (r2=0·13 among European ancestry individuals in UKBB) genetic 

variants in the SOST locus associated with eBMD: rs7209826 (A>G, G-allele frequency in UKBB = 40%) 

and rs188810925 (G>A, A-allele frequency = 8%). Both SNPs are located ~35kb downstream from SOST 
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and fall within or near a 52kb area that contains the van Buchem disease deletion (Figure S2 in the 

appendix), a region previously shown to affect SOST expression in human bone.7 Recent functional 

evidence has also shown that SNPs in this area (one of which, rs7220711, is in high LD [r2=0·99] with 

rs7209826) regulate SOST expression via differential transcription factor binding.28 Previous Mendelian 

randomisation studies have also made use of non-coding variants with an effect on gene expression as 

proxies for pharmacologic modulation of the same target-gene.22,26,29,30 

 

We extracted estimates for these two SNPs (rs7209826 and rs188810925) from GWAS consortia listed in 

Table S2 in the appendix. For GWAS datasets that did not include these variants, we selected variants in 

high LD (r2>0·9) with our selected SNPs (See Supplementary Methods in the appendix for details). We 

selected rs7220711 as a proxy for rs7209826 based on high LD (r2=0·99 in European ancestry populations), 

availability across most consortia, and prior functional evidence linking rs7220711 to SOST expression (see 

above). In addition, we validated the effect of rs7220711 on various measures of BMD as being comparable 

to that of rs7209826 (Figure S3 in the appendix). There were no suitable proxies (r2>0·9) for rs188810925.  

 

We examined the associations of rs7209826 and rs188810925 (and their selected proxies) on DXA-derived 

measures of BMD measured at specific body sites (lumbar spine, femoral neck, and forearm), using data 

from the largest GWAS to date for these phenotypes.31  

 

We next examined the effect of these variants on SOST mRNA expression levels in various human tissues 

in the Genotype-Tissue Expression (GTEx) project dataset.32 

 

Study outcomes  

Detailed definitions of each outcome studied are described in the Supplementary Methods and Tables 

S3-5 in the appendix. We first tested the association of rs7209826 and rs188810925 with key efficacy 

outcomes, i.e., fracture risk and risk of osteoporosis (both defined as a combination of self-reported 

outcomes and International Classification of Diseases, ninth and tenth revision (ICD-9 and ICD-10) codes).  
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Next, we examined the association of the BMD-increasing alleles of rs7209826 and rs188810925 with risk 

of myocardial infarction and/or coronary revascularisation (including self-reported and ICD-9/ICD-10 codes 

for myocardial infarction, coronary artery bypass graft surgery and/or percutaneous transluminal coronary 

angioplasty) and a broader composite of all coronary heart disease (CHD; including all codes for myocardial 

infarction [MI] and/or coronary revascularisation, plus self-reported and ICD-9/ICD-10 codes for angina and 

chronic stable ischemic heart disease; see Tables S3-5 in the appendix for specific codes included). 

Secondary disease outcomes included additional cardiovascular outcomes of interest (ischemic stroke, 

hemorrhagic stroke, all stroke, peripheral vascular disease, atrial fibrillation, heart failure), chronic kidney 

disease, aortic aneurysm and aortic stenosis (given sclerostin’s putative role in these conditions17,33,34), 

hypertension and T2D. Association with 11 quantitative cardiometabolic traits, many of which are 

established as causal risk factors for CHD, were also evaluated (systolic blood pressure (SBP), diastolic 

blood pressure (DBP), body mass index (BMI), waist-hip ratio (WHR) adjusted for BMI, low-density 

lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, fasting glucose, 

fasting insulin, HbA1c and serum creatinine-estimated glomerular filtration rate (eGFR)).  

 

Statistical Analyses 

We derived cohort-specific SNP effect estimates from participants in the 4 prospective cohorts (see 

Supplementary Methods for specific methodology applied in each cohort). Estimates (log(OR) and the 

standard error of log(OR) for binary outcomes and beta and the standard error of beta for quantitative traits) 

for the per-allele effect of these variants on disease outcomes and quantitative traits were aligned to the 

BMD-increasing alleles (as per the effect of therapeutic sclerostin inhibition), and scaled to an increase in 

BMD equivalent to that reported with romosozumab treatment (see below). We then meta-analysed 

estimates from the prospective cohorts with (scaled) estimates from GWAS consortia for equivalent 

outcomes using inverse-variance weighted fixed-effect meta-analysis. We predefined a p-value threshold 

of <0·05 for the association with CHD given the reported association of sclerostin inhibition with cardiac 

ischemic events in prior RCTs.13,14 For the remaining 11 cardiometabolic outcomes and 11 quantitative 

traits, we set a Bonferroni adjusted p-value threshold of <0·0045 (0·05/11). 
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Scaling of allelic estimates 

We scaled allelic estimates pertaining to risk of osteoporosis, fractures, cardiometabolic outcomes and 

quantitative traits to an increase in BMD equivalent to that reported in a phase II RCT of 12 months of 

210mg romosozumab monthly.35 This corresponds to the dose evaluated in phase III RCTs of 

romosozumab, and represents a 0·09 g/cm2 increase in lumbar spine BMD (LS-BMD) in postmenopausal 

women.35 See Supplementary Methods in the appendix for further details. 

 

Meta-analysis of cardiovascular outcomes in RCTs of sclerostin-inhibitors 

We searched for all phase III RCTs performed for sclerostin inhibitors (see Supplementary Methods in 

the appendix for further details). We then performed meta-analyses of cardiovascular outcome data at 12 

months from phase III RCTs using 210mg romosozumab monthly for 12 months, with ‘cardiac ischemic 

events’ as the primary outcome of interest. Further meta-analyses were performed for ‘cerebrovascular 

events’ and a composite outcome of ‘serious cardiovascular events’ (including cardiac ischemic events, 

cerebrovascular events, heart failure, cardiovascular death, non-coronary revascularisation and peripheral 

vascular ischemic events not requiring revascularisation). We set a prespecified p-value threshold of <0·05 

for meta-analyses of the RCTs given the prior evidence for ischemic cardiovascular events seen in 

individual RCTs of romosozumab.13,14 

 

All meta-analyses of RCT cardiovascular outcomes were performed according to the Mantel-Haenszel 

method without continuity correction,36,37 a non-parametric test designed for rare outcomes. Additional 

sensitivity analyses were performed using the Peto method37 (see Supplementary Methods in the 

appendix). 

 

Role of the funding source 

The funders of the study had no role in study design, data collection, data analysis, data interpretation, or 

writing of the report. The corresponding authors (JB, CML and MVH) had full access to all the data in the 

study and shared final responsibility for the decision to submit for publication with all authors. 
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Results 

Risk of cardiovascular events in phase III RCTs of sclerostin inhibitors 

Romosozumab was the only sclerostin inhibitor with data from phase III RCTs. Four phase III RCTs of 

romosozumab, including 11,954 individuals were identified (Table S6 in the appendix), of which three trials 

(BRIDGE14, ARCH13 and FRAME12) reported cardiovascular adverse event data (Table S7 in the appendix). 

Only the BRIDGE14 and ARCH13 trials reported data on cardiac ischemic events and cerebrovascular 

events. 

 

Meta-analysis of 25 cardiac ischemic events in 4,298 individuals, from two RCTs (BRIDGE14 and ARCH13) 

identified that 210mg romosozumab monthly, as compared to the comparator, led to a higher risk of disease 

(odds ratio [OR], 2·98; 95% confidence interval (CI), 1·18-7·55; P=0·02; Figure 1). Estimates from meta-

analysis of ‘cerebrovascular events’ (27 events; OR, 2·15; 95% CI, 0·94-4·92; P=0·07) and ‘serious 

cardiovascular events’ (183 events; OR 1·21; 95% CI, 0·90-1·63; P=0·20) were directionally concordant 

with increased vascular risk arising from romosozumab treatment. Sensitivity analyses using the Peto-

method showed similar results (Figure S4 and Table S8 in the appendix). 

 

Expression of SOST mRNA 

Expression of SOST across 53 human tissue types in the Genotype-Tissue Expression consortium was 

highest in arterial tissue (Figure S5 in the appendix; bone expression data not available). The minor alleles 

of rs7209826 (G-allele) and rs188810925 (A-allele) were both associated with lower expression of SOST 

mRNA in various human tissues, with the strongest associations with SOST expression for each variant 

identified in tibial artery (rs7209826: P=1·4×10-8) and aorta (rs188810925; P=7·6×10-6; Figure S6 in the 

appendix).  

 

Association of rs7209826 and rs188810925 with BMD 

The minor alleles of both SNPs were associated with higher estimated heel-bone BMD (eBMD) in UKBB 

(rs7209826: 0·04 g/cm2 [95% CI, 0·04-0·05; P=2·3×10-36] per G allele and rs188810925: 0·07 g/cm2 [95% 

CI, 0·05-0·08; P=1·3×10-26] per A allele, Figure S7 in the appendix), and with higher LS-BMD (rs7209826: 
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0·008 g/cm2 [95% CI, 0·005-0·01; P=5·4×10-07] per G allele; rs188810925: 0·016 g/cm2 [95% CI, 0·01-

0·022; P=4·3×10-07] per A allele, Figure S7 in the appendix). We subsequently scaled all further genetic 

estimates to the increase in lumbar spine BMD seen with 12 months of 210mg romosozumab monthly 

(equivalent to a 0·09 g/cm2 higher BMD).35  

 

Association with osteoporosis and fracture risk 

Scaled to match the effect of 12 months of 210mg romosozumab monthly on lumbar spine BMD, meta-

analysis of rs7209826 and rs188810925 yielded a 57% lower risk of osteoporosis (OR, 0·43; 95% CI, 0·36-

0·52; P=2·4×10-18) and a 41% lower risk of sustaining a bone fracture (OR, 0·59; 95% CI, 0·54-0·66; 

P=1·4×10-24; Figure 2 and Figure S8 in the appendix). Associations were consistent across fracture sites 

(Figure S9 in the appendix).  

 

Association with coronary heart disease  

In meta-analysis of scaled estimates including up to 69,649 cases, the BMD-increasing SOST variants 

associated with an 18% higher risk of myocardial infarction and/or coronary revascularisation (OR, 1·18; 

95% CI, 1·06-1·32; P=0·003; Figure 3 and Figure S10 in the appendix). Using a broader definition of CHD, 

which included self-reported angina and chronic stable ischemic heart disease (up to 106,329 cases), the 

SOST variants associated with a 13% increased risk of disease (OR, 1·10; 95% CI, 1·00-1·20; P=0·04; 

Figure 3 and Figure S10 in the appendix). 

 

Association with additional cardiometabolic risk factors and diseases 

Evaluation of cardiometabolic risk factors and diseases revealed that the BMD-increasing SOST variants 

associated with higher risks of hypertension (OR, 1·12; 95% CI, 1·05-1·20; P=8·9×10-4) and T2D (OR, 1·15; 

95% CI, 1·05-1·27; P=0·003; Figure 4A).  

 

Consistent with the effect on hypertension, we found the SOST variants to be associated with 1·3 mmHg 

higher SBP (95% CI, 0·8-1·9; P=5·9×10-6), but observed no effect on DBP (Figure 4B). In addition, the 

SOST variants associated with 0·05 standard deviation (SD) units higher WHR adjusted for BMI (95% CI, 
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0·02-0·08; P=8·5×10-4), and, nominally, with higher serum triglycerides (9·6 mg/dl higher; 95% CI, 1·3-18·8 

mg/dl; P=0·02). We found no further associations (Figures S11-14 and Tables S9-10 in the appendix). 

 

Trans-ethnic replication 

We attempted trans-ethnic replication in the China Kadoorie Biobank. In 21,547 individuals with eBMD 

measurements available, the rs7209826 variant showed no evidence of association (beta=0·0016 g/cm2; 

SE=0·001; P=0·14) and strong evidence of heterogeneity with the corresponding eBMD estimate in UKBB 

(P-heterogeneity=1·35×10-28; Figure S15 in the appendix). A regional analysis showed no evidence of a 

suitable genetic instrument (Figure S16 in the appendix). Of note, the lack of association with CHD and 

other endpoints (Table S11 in the appendix) in CKB suggests that the associations obtained in Europeans 

were not due to pleiotropy. 

 

Triangulation of randomised controlled trials and human genetics 

We performed fixed-effect meta-analysis of 337 clinical fractures in 11,273 individuals from two RCTs with 

fracture outcome data (FRAME12 and ARCH13, Table S12 in the appendix), and identified that 210mg 

romosozumab monthly, as compared to comparator, led to a 32% lower risk of clinical fracture (hazard ratio 

0·68; 95% CI, 0·55-0·85; P=6·0×10-4; Figure 5 and Figure S17 in the appendix) at 12 months. This 

compared well to the scaled genetic estimate, using the two SOST variants, of a 41% lower risk of fracture 

(OR, 0·59, 95% CI, 0·54-0·66, P= 1·4×10-24). Evidence from treatment trials (two romosozumab phase III 

RCTs13,14), and human genetics (two SOST variants) showed that inhibition of sclerostin increases risk of 

coronary events (Figure 5), indicating that this adverse effect is likely real and target-mediated.  
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Discussion 

Using data from both naturally-occurring human genetics and randomised interventional trials, we have 

shown that while raising BMD through lifelong lowering of sclerostin is associated with lower risk of 

osteoporosis and fractures, it also results in a higher risk of CHD. While prior phase III RCTs of sclerostin 

inhibition by romosozumab suggested an increased risk of adverse cardiac events, it remained possible 

that the finding was due to chance owing to the low number of events (only 25 cases). Our genetic analysis, 

including up to 106,329 CHD cases, shows that this excess risk of CHD from sclerostin inhibition is very 

likely to be real. Our findings also suggest that the excess risk of coronary events may be driven by an 

increase in central adiposity, SBP (and hypertension), and increased risk of T2D. 

 

There are several additional lines of evidence supporting the findings of our study. Sclerostin is expressed 

in cardiovascular tissues,33,38 supporting a potential biological role in these tissue types. In observational 

studies, higher levels of circulating sclerostin are associated with a higher risk of cardiovascular disease 

together with higher levels of cardiometabolic risk factors such as hypertension, T2D and central 

adiposity.39–44 However, further evidence has suggested that sclerostin may be up-regulated in the 

vasculature in response to vascular calcification, as part of a regulatory process aimed at counteracting 

such calcification.17 Recent murine studies have implicated sclerostin in adipocyte metabolism45 and the 

development of atherosclerosis, aortic aneurysm and hemopericardium.34,46 However, extrapolating 

findings from animal models of disease to humans is plagued by failures of translation47,48, and 

observational studies of humans can be influenced by sources of error: this is why studies employing a 

randomised design in humans provide more reliable evidence on causation.49 

 

Elucidation of whether adverse effects are on- or off-target is critical8 as on-target effects would mean that 

any drug under development in the same class (i.e., a sclerostin inhibitor), would be expected to share a 

similar adverse effect profile (i.e. higher risk of vascular events). Our genetic data provide strong evidence 

in support of target-mediated adverse effects of sclerostin inhibition on coronary events. Sclerostin exerts 

its effects on bone as an inhibitor of the Wnt-signaling pathway (a pathway also previously linked to vascular 

calcification50–52) by binding to the Wnt co-receptor low density lipoprotein receptor-related protein (LRP) 5 
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and 6.53 Protein-coding mutations in both LRP5 and LRP6 have been linked to alterations in BMD and 

cardiometabolic risk profiles, including insulin resistance, dyslipidemia, hypertension and CHD,54,55 which 

supports our findings of altered cardiometabolic disease in carriers of SOST variants.  

 

Concerns of cardiovascular safety have also plagued other anti-osteoporotic agents. Odanacatib, a 

cathepsin K inhibitor developed by Merck for the treatment of osteoporosis, while shown to reduce fracture 

risk in phase III trials, was not developed further owing to an increased risk of stroke.56 While we did not 

identify strong associations of SOST with risk of stroke subtypes in our analyses, the point estimates for 

both ischemic and hemorrhagic stroke were OR > 1. With genetic lowering of sclerostin leading to elevations 

in systolic blood pressure and WHR adjusted for BMI (each of which plays a causal role in stroke57,58), it is 

plausible that additional stroke cases would identify such an association. More broadly, genetically elevated 

BMD may exert a modest causal effect on risk of T2D and CHD.59 Interestingly, other BMD-raising 

therapies, e.g., denosumab or bisphosphonates, have not shown an association with increased 

cardiovascular risk in clinical trials.60–62  

 

The approach to exploiting human genetics to validate target-mediated effects is well-established.22–26 In 

our study, we selected variants associated with reduced expression of SOST and increased BMD as 

proxies for the effect of sclerostin inhibition. We validated the effects of the SOST genetic variants on risk 

of osteoporosis and bone fracture (including fracture across several sites), and leveraged a large number 

of CHD cases (a more than 2,700-fold increase over the number of cases reported in phase III trials of 

romosozumab13,14). Our approach also facilitated identification of potential mechanisms and mediators that 

may drive this excess coronary risk. For example, the association of SOST variants with central adiposity, 

SBP and T2D has not been previously reported and if not measured in a clinical trial, such associations 

cannot be readily explored. Whilst trans-ethnic replication in a large East Asian biobank (CKB) could not 

be reliably performed owing to a lack of association of SOST variants  

 

with BMD, we note the lack of association with CHD and other outcomes in CKB (Table S11 in the 

appendix). This provides an opportune means to illustrate that the multiple cardiometabolic risk factor and 
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disease associations identified in the European datasets, where genetic variants in SOST do act as valid 

instruments for inhibition of sclerostin, did not arise as a consequence of horizontal pleiotropy (in other 

words, the genetic associations did not arise through a mechanism other than that which operates through 

inhibition of sclerostin).63 

 

Our findings warrant a rigorous assessment of the effect of romosozumab (and other sclerostin inhibitors 

in clinical development) on cardiovascular disease and cardiometabolic risk factors, particularly in light of 

the ongoing licensing applications for this drug. Given the high short-term mortality associated with some 

types of fragility fracture (e.g., up to 25% mortality in the 12 months following a hip fracture64), a risk-benefit 

assessment is warranted, weighing the merits of lower fracture (and fracture-related morbidity and mortality) 

against the potential harm from higher risk of metabolic and vascular disease. 

 

In conclusion, we have shown that genetic variants in the SOST locus that mimic pharmacological inhibition 

of sclerostin are associated with lower SOST expression, lower risk of osteoporosis and fractures but an 

elevated risk of coronary heart disease, likely explained by increases in systolic blood pressure, central 

adiposity and risk of type 2 diabetes mellitus. This adds valuable information as to whether pharmacological 

inhibition of sclerostin should be pursued as a therapeutic strategy for the prevention of fracture.   
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Figure 1. Meta-analysis of romosozumab and risk of cardiovascular events from phase III 

randomised controlled trials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Events represents number of events adjudicated per arm, during initial 12-month double-blind period in 

each trial. The romosozumab-group received 210mg romosozumab monthly in all trials; comparator-group 

received placebo (FRAME and BRIDGE trials) or alendronate (ARCH). Estimates derived using the Mantel-

Haenszel method. Outcome data for cardiac ischemic events and cerebrovascular events were only 

available for the ARCH and BRIDGE trials. Boxes represent point estimates of effects. Lines represent 95% 

confidence intervals. OR, odds ratio; CI, confidence interval.  
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Figure 2. Scaled estimates and meta-analysis of BMD-increasing SOST variants with risk of 

osteoporosis (15,329 cases) and fracture (53,074 cases).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Estimates are scaled to match the effect of 210mg romosozumab monthly for 12 months on lumbar spine 

bone mineral density (0·09 g/cm2; see Methods) and aligned to the BMD-increasing alleles. See Methods 

sections for outcome definitions. Boxes represent point estimates of effects. Lines represent 95% 

confidence intervals. OR, odds ratio; CI, confidence interval; LS-BMD, lumbar spine bone mineral density.  
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Figure 3. Scaled estimates and meta-analysis of BMD-increasing SOST variants with risk of 

myocardial infarction and/or coronary revascularisation (up to 69,649 cases) and coronary heart 

disease (up to 106,329 cases). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Estimates are scaled to match the effect of 210mg romosozumab monthly for 12 months on lumbar spine 

bone mineral density (0·09 g/cm2; see Methods) and aligned to the BMD-increasing alleles. Boxes 

represent point estimates of effects. Lines represent 95% confidence intervals. OR, odds ratio; CI, 

confidence interval.  
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Figure 4. Meta-analysis of BMD-increasing SOST variants and cardiometabolic risk factors. 
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Panel A shows association with hypertension and type 2 diabetes mellitus; Panel B shows association with 

quantitative traits plotted in SD units, with clinical units for each trait indicated in the column on the right. All 

estimates are scaled to match the effect of 210mg romosozumab monthly for 12 months on lumbar spine 

bone mineral density (0·09 g/cm2; see Methods) and aligned to the BMD-increasing alleles. The 

significance threshold was set at 0·0045 (see Methods for details). Boxes represent point estimates of 

effects in odds ratio (panel A) or standard deviation (panel B) units. Lines represent 95% confidence 

intervals. UKBB, UK Biobank; OR, odds ratio; CI, confidence interval; mmHg, millimetres of mercury; SD, 

standard deviations, WHR, waist to hip ratio; adj, adjusted; BMI, body mass index; LDL, low-density 

lipoprotein; HDL, high-density lipoprotein.   
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Figure 5. Inhibition of sclerostin and risk of fracture and coronary events derived from meta-

analysis of phase III randomised controlled trials of romosozumab and human genetics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fracture risk RCT estimate represents inverse variance weighted fixed-effect meta-analysis of estimates 

for hazard ratio of ‘clinical fracture’ at 12 months (a composite of non-vertebral or symptomatic vertebral 

fracture) in the ARCH and FRAME trials. Coronary event risk RCT estimate represents fixed-effect meta-

analysis (using the Mantel-Haenszel method) of estimates for odds ratio of ‘cardiac ischemic events’ in the 

ARCH and BRIDGE trials. Scaled genetic estimates for fracture risk and coronary event risk represent 

inverse variance weighted fixed-effect meta-analyses of the scaled allelic estimates for the odds ratio of 

fracture risk and myocardial infarction and/or coronary revascularisation, respectively. All RCT estimates 

refer to the effect of romosozumab 210mg monthly for 12 months relative to comparator, and all genetic 

estimates are scaled to match the effect of 210mg romosozumab monthly for 12 months on lumbar spine 

bone mineral density (0·09 g/cm2 increase). Boxes represent point estimates of effects. Lines represent 

95% confidence intervals. RR, relative risk; CI, confidence interval. 
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