












recent selective forces driving the divergence between E. dilemma and E. viridissima and 159	
suggests that the identified genomic region harbors loci mediating reproductive isolation 160	
between these nascent bee lineages. 161	
 162	

 163	
Fig. 3 Whole-genome differentiation. (a) Eight regions of the genome revealed higher interspecific (black) than intraspecific 164	
(blue) differentiation (∆FST >99th percentile red). (b) Interspecific divergence (Dxy) was negatively correlated with ∆FST (left 165	
panel, r=-0.06, p=0) and significantly reduced in outlier windows (red) in comparison to non-outliers (black, inlet, Mann-166	
Whitney U test, p<0.0001). Only two of three ∆FST outlier windows (circled blue) that revealed increased Dxy also had and a net 167	
differential of intraspecific nucleotide diversity (∆π) skewed towards E. dilemma (right panel), a pattern expected in genomic 168	
regions evolving under positive selection. Both correspond to the same outlier peak (yellow background in (a)). Grey dashed 169	
lines: mean Dxy and ∆π. Black dashed lines: one standard deviation of mean Dxy. 170	

	171	
Close inspection of the selective sweep region revealed the presence of 14 genes (Fig. 4a), all of 172	
which belong to the odorant receptor (OR) gene family and are located within a large ~170 kb 173	
tandem array of 39 ORs (23). The OR gene family is the largest chemosensory gene family in 174	
insects and is integral to the sensory detection of odorant compounds including pheromones (24, 175	
25). Olfactory tuning is controlled by the OR protein sequence and therefore amino acid 176	
substitutions can shift odorant binding properties and sensory perception (26, 27). To identify the 177	
specific genetic targets of divergent selection, we mapped loci within the tandem array. We 178	
found that the region containing the selective sweep overlapped with both elevated interspecific 179	
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FST values and reduced nucleotide diversity (π) in E. dilemma centered around a single OR gene, 180	
OR41, that we previously identified as divergent between Ednorth and Ev (28) (Fig. 4a). This 181	
suggests that OR41 evolved under strong positive selection in the common ancestor of E. 182	
dilemma after or during the split between E. dilemma and E. viridissima. Re-sequencing of OR41 183	
confirmed these results (N=47, Fig. 4b, Table S9-S10, Supplementary Text), and revealed that 184	
the protein coding sequences were fixed for 19 substitutions between species, 17 of which were 185	
non-synonymous leading to changes in the amino acid sequence of the resulting protein (Fig. 4c). 186	
A comparison with distantly related Euglossa species demonstrated that all fixed substitutions 187	
were derived (Fig. S11) and evolved under strong positive selection in E. dilemma (dN/dS = 3.6, 188	
χ2 =16.1, p <0.0001, Table S11, Supplemental Text) but not E. viridissima (dN/dS = 0.3), 189	
suggesting that strong selective forces fixed amino acid substitutions and possibly drove odorant 190	
perception changes in E. dilemma. Future studies should focus on elucidating the binding 191	
properties of this receptor and each allelic variant. 192	
 193	
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Fig. 4 Odorant receptor (OR) gene OR41 evolved through a species-specific selective sweep. (a) The only species-specific 195	
selective sweep identified was located within an FST outlier window (dashed lines) overlapping with a high interspecific 196	
difference in π in the middle of a tandem array containing 37 OR genes. High composite likelihood ratios (CLR, bottom) within 197	
Ednorth (light blue) and Edsouth (dark blue) but not in Ev (green) indicate a selective sweep shared by both E. dilemma lineages that 198	
overlap with OR41 in the center (shaded regions). (b) A Maximum Likelihood phylogeny of OR41 (N=47 individuals) 199	
demonstrates that genotypes are species-specific. π was five times lower in E. dilemma in comparison to E. viridissima. A dN/dS 200	
analysis of species-specific genotypes with five outgroup species (grey dot) indicates positive selection on the E. dilemma branch 201	
(dN/dS=3.6), but purifying selection of the ancestral genotype in E. viridissima (dN/dS=0.3). Bootstrap support for tested branches 202	
is indicated. (c) 17 of 19 substitutions mapped on the predicted membrane topology of the OR41 protein were non-synonymous.  203	

 204	
Our results show that a simple major phenotypic difference in a reproductive barrier trait 205	
between two lineages in the early stages of speciation is maintained despite low genetic 206	
differentiation and ongoing gene flow. Only strong selection can counteract such equalizing 207	
mechanisms, highlighting the adaptive value of the species-specific major perfume compounds 208	
in E. dilemma and E. viridissima. While genome-wide analyses often lack resolution to identify 209	
the genes that control barrier traits (3, 6-9, 29), we were able to identify a single genetic locus of 210	
adaptive interspecific divergence, leading to a unique opportunity to understand the genomic 211	
landscape of speciation on a fine genetic scale in a non-model system. Our findings provide a 212	
link between a discrete shift in perfume composition with a single olfactory receptor gene that 213	
evolved under strong positive selection, linking a chemosensory barrier trait with an olfactory 214	
gene. Perfume composition in orchid bees is intricately connected to the sense of smell (16, 30, 215	
31). In fact, E. dilemma and E. viridissima are known to differ in the behavioral preference 216	
towards and the sensory detection of HNDB (16) the major perfume compound in E. dilemma. 217	
This observation lends support to the hypothesis that the 17 non-synonymous substitutions 218	
present in OR41 in the E. dilemma lineage underlie functional changes in sensory perception 219	
between species. Accordingly, the data presented here are consistent with the genetic coupling of 220	
a reproductive trait and trait preference (17, 18, 32) that evolved through rapid divergent 221	
selection in a single gene leading to speciation.  222	
 223	
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