












 

 
Figure 1. Behavioral task 
(A) Experimental block design of a single session. 

(B) Left panels show examples of the firing rate of the target neuron across two complete sessions for 

both monkeys; the firing rate increased during the BMI-state block. Right panels show raster plots for the 

same neurons during 400 successful trials in the BMI-state block. Rasters are locked to reward (time 0, 

orange line). Above the rasters, the Peri-Event Time Histogram (PETH) depicts the increase in firing rate 

that led to reward. 

(C) Cursor trajectories during all trials of one session (in each trial the there was a single target) Left: 

trajectories during the movement-state block. Center: trajectories during the observation-state block. 

Right: trajectories during the BMI-state block. 
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Figure 2. Comparison of population activity in the different action-perception states 
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(A) The panel shows the neural state-space during the different behavioral blocks in three complete 

sessions. Each point represents a trial. For clarity, every 5th trial is shown in the plots. Trials are color 

coded according to the block in which they occurred : dark and light blue: first and last movement-state 

blocks. Green: observation-state block. Light to dark red: BMI-state block. For this block, the color 

gradient also shows the temporal order of the trials along the session. The axes represent the first three 

dimensions of the neural state, computed using GPFA (see Methods).  

(B) Correlation matrices between all pairs of neurons recorded in one session, for the different behavioral 

blocks. Each bin represent the correlation between two neurons, and each matrix shows the structure of 

the pairwise correlations of the same set of neurons in one block. Note the difference between 

correlations during the movement-states and BMI-state. 

(C) Similarity index to the average firing rate vectors during BMI-state in all sessions (see Methods). High 

values indicate increased similarity to the observation-state firing rates, and lower values increased 

similarity to the movement-states firing rates. Chance level (equal similarity) is indicated by the dashed 

line. Significance is denoted in the figure (based on a Wilcoxon signed rank test of the median of the 

distribution to the chance level). 

(D) Similar to C, but showing the similarity index of the neural correlation matrices.  

(E) Variance alignment analysis for same session shown in B. The neural spaces in the two 

movement-state blocks are significantly aligned (left panel), while alignment between the first 

movement-state and the BMI-state is not different than random (right panel). 

(F) Similarity to the BMI-state neural space computed by variance alignment analysis (all sessions). For 

each session we subtracted the alignment score between the movement- and BMI-states from the 

alignment score of the observation- and BMI-states. A positive value thus indicates a higher alignment 

score between the observation- and BMI-states. The histogram is significantly skewed to positive values 

(p<0.0025, Wilcoxon signed rank test). 
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Figure 3. Activity 
changes across the 
network during 
learning, 
experiment and 
model. 
(A) Change in Firing 

Rate index (ΔFR indx ) 

between the 

observation and 

BMI-state blocks (all 

sessions and neurons). 

Target neurons are 

marked in red, 

non-target neurons in 

gray (non-significant 

change in firing rate) or 

orange (significant 

change in firing rate, 

p<0.05, Wilcoxon 

rank-sum test). 

(B) Average ΔFR indx 

grouped by the sign of 

the CC with the target 

neuron during the 

observation-state 

block. For all neurons 

(brown), neurons 

which evidenced a 

significant change in 

firing rate (orange) and 

neurons with 

non-significant CC with 
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the target neuron (black). Error bars are s.e.m. 

(C) Same as B, but this time ΔFR indx is calculated between the first movement-state block (1st mov.-state) 

and the BMI-state block, and the grouping is by the sign of the CC with the target neuron during the first 

movement-state block. 

(D) ΔCC indx  between neuronal pairs. Top: between non-target and target neurons. Bottom: between pairs 

of non-target neurons. Orange color denotes significant change in the CC between the two blocks 

(p<0.05, two-tailed z-test on the Fisher transformed CCs). Gray color denotes no significant change in the 

CCs. 

(E) Change in Firing Rate index (ΔFR indx ) between the “observation” (pre-learning) and “BMI” states 

(learning) blocks in the simulation. The target neuron is marked in red and indicated by the red arrow, 

non-target neurons in gray (non-significant change in firing rate) or orange (significant change in firing 

rate, p<0.05, Wilcoxon rank-sum test). 

(F) Average ΔFR indx  grouped by the sign of the CC with the target neuron during the “observation” state 

block in the simulation. For all neurons (brown), neurons which evidenced a significant change in firing 

rate (orange) and neurons with non-significant CC with the target neuron (black). Error bars are s.e.m. 

(G) Firing rate of the target neuron during the simulated session. Learning started at t=10 min. (beginning 

of the “BMI” block). 

(H) ΔCC indx  between neuronal pairs in the simulation. Top: between non-target and target neurons. 

Bottom: between pairs of non-target neurons. Orange color denotes significant change in the CC between 

the two blocks (p<0.05, two-tailed z-test on the Fisher transformed CCs). Gray color denotes no 

significant change in the CCs. 

 
 
 
 
 
 
 
 

19 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 1, 2019. ; https://doi.org/10.1101/537613doi: bioRxiv preprint 

https://doi.org/10.1101/537613
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Figure 4.Flowchart depicting the processes that lead to context-dependent learning in 
our model. 
Variability is achieved through the chaotic dynamics of the network, while the action-perception state 

determines the functional correlation structure in which the network operates. This results in exploration 

that is limited to specific regions of neural space. When learning starts, reward-modulated plasticity 

reinforces activity patterns within that subspace that lead to reward, resulting in a learning process 

modulated by the action-perception state. 
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Methods 
  

Animals and Surgical Procedure 
Two monkeys (Macaca fascicularis) were chronically implanted with a microelectrode array 

(Blackrock Microsystems) in the arm region of M1 contralateral to the performing arm, under 

anesthesia and aseptic conditions. Animal care and surgical procedures complied with the 

National Institutes of Health Guide for the Care and Use of Laboratory Animals and with 

guidelines defined by the Institutional Committee for Animal Care and Use at the Hebrew 

University. 

  

Behavioral Task 
A single recording session was composed of four blocks. The first and last (movement-state 

blocks) consisted of a center-out task, with grip-and-reach movements to eight targets located in 

the corners of a three-dimensional cube. The monkeys used a robotic arm (Phantom Premium 

1.5 High Force; SensAble Devices) and a custom-made gripping handle to control the 

movements. Grip force and the manipulandum position were sampled at 100 Hz. The monkeys 

could not see their arms. Instead, images of the targets and cursor were projected to the arm 

workspace. The cursor represented the hand location and grip force. Targets were defined as 

spheres of 8 mm radii, and the distance between the center of the origin and the center of each 

target was 4.85 cm. The trial began with a presentation of the origin in the center of the 

workspace. The monkeys were required to move the cursor to the origin, press the handle to a 

minimum force level and maintain the cursor position for a random period between 800 and 

1300 ms (hold period). After the hold period, one of 8 targets selected randomly was presented, 

and the cursor had to remain in the origin for a second random period between 800 and 1300 

ms (target presentation period). The origin then disappeared, which represented the go signal 

for movement. The monkeys then had to move the cursor to the target while maintaining the 

minimum grip force level (movement period). After reaching the target, the cursor needed to 

remain on the target for an additional 800 ms, after which a liquid reward was delivered and the 

trial ended. After an inter-trial interval of 1500 ms, a new trial began. 

  

The second block of the session was termed the observation-state block (Figure 1A). In this 

block, the cursor and target were displayed in similar sizes and distances as in the movement 

blocks, but the monkeys’ arms were restrained, and the cursor position was determined 
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randomly every 100 ms, resulting in random delivery of the reward. Four small red spheres 

located in the corners of the workspace were lit throughout this block to indicate the 

observation-state. In the BMI-state block (third block of the session), conditions were the same 

as in the observation-state, , but the cursor position was determined by the mean firing rate of a 

single neuron (termed the target neuron). The details of the conditioning algorithm are described 

below. In the both the observation- and BMI-state blocks, an interpolation method was used to 

provide the appearance of smooth cursor movement. 

  

Electrophysiology 
The recording array contained 100 electrodes (Blackrock Microsystems), of which 96 were 

functional, arranged in a 10×10 matrix with a 400 μm interelectrode distance. Spikes were 

extracted from the raw signal, sampled at 30 KHz, manually sorted using the histogram peak 

count algorithm and collected using the Cerebus data acquisition system (Blackrock 

Microsystems). A total of 34 recording sessions were analyzed (23 from monkey M, 11 from 

monkey Q). Of these, 24 sessions (16 from monkey M, 8 from monkey Q) were considered 

successful (see below) and were analyzed in further detail. A custom accelerometer (based on 

the MXR9500G/M chip, MEMSIC, Inc.) was placed on the middle finger of the contralateral 

hand of both monkeys during the observation- and BMI-state blocks and sampled at 100 Hz. 

Jerk amplitude was obtained by subtracting the mean from each of the accelerometer channels 

and calculating the square root of the sum of the squared first-order derivatives of each channel. 

  

Conditioning Algorithm 
In each session, a single unit (from an electrode not previously chosen) was randomly selected 

for conditioning at the start of the BMI-state block. Firing rates were computed every 100 ms by 

counting spikes in a window of the last 400 ms. The cursor was positioned on the line between 

the origin and the target, with a linear correspondence to the firing rate. At 0 spikes, the cursor 

was placed at the origin. Above a maximum value the cursor was placed on the target, a reward 

was delivered, and the trial ended. The threshold for obtaining a reward was adjusted manually 

during the block to provide a relatively constant rate of reward, thus encouraging the monkeys 

to continuously improve their performance. A BMI session was considered successful if the 

ΔFRindx (see below) was at least 0.4; however, this value usually was significantly higher (Figure 

3A). 
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State-space analysis for visualization of neural data 
Gaussian Process Factor Analysis was implemented using a publicly available Matlab toolbox 

[29]. The procedure was conducted on the spike trains of the non-target neurons during 

successful trials of all blocks using a bin width of 50 ms. The resulting three-dimensional 

orthonormalized vectors for each trial were averaged to a single point, and plotted on a common 

scale for all blocks (Figure 2A). For clarity, every fifth trial is shown. This procedure was only 

used for visualization; all subsequent analyses were done on the full dimensionality of the data. 

  
Test for statistical significance of the difference in firing rates across blocks 
Firing rates of the non-target neurons were estimated by summing spikes in a 1500-ms segment 

ending at reward for all successful trials in all blocks. In all sessions, we compared every pair of 

blocks in the following way: the distribution of neural distances within each block was estimated 

by calculating all the pairwise Euclidean distances between the different trials. Next, the 

distribution of neural distances between the blocks was estimated by calculating all the pairwise 

neural distances between trials belonging to different blocks. Finally, a Kolmogorov-Smirnoff 

test was run between the between-block distance distribution and a distribution composed of the 

union of the two within-block distances distributions. 

  

Test for statistical significance of the difference in neuronal correlations across blocks 
To obtain the correlation matrices, we first convolved the spike trains of the non-target neurons 

with a zero-phase Gaussian kernel with s.d.=70 ms. Correlations between pairs of neurons were 

calculated for a concatenation of 5-second segments ending at reward for all successful trials in 

each block. Correlations were unrolled in a vector, and for each pair of blocks in a session the 

“between-blocks” correlation distance distribution was estimated by calculating the term-by-term 

root of the squared difference between the correlation vectors of the two blocks. Next, the 

“within-block” correlation distance distribution for each block was calculated as above but by 

comparing correlations found by using two disjoint and randomly sampled halves of the total 

number of trials. Finally, a Kolmogorov-Smirnoff test was run between the between-block 

distance distribution and a distribution composed of the union of the two within-block distance 

distributions. 

  
Quantifying the learning-related changes in firing rates and correlations 
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The change in firing rate index (ΔFRindx) between the observation-state block and the BMI-state 

block was calculated by first obtaining the mean firing rate in the 800-ms segment before reward 

in each block, and then dividing the difference between the two rates by their sum (see main 

text). For the ΔFRindx involving movement blocks (Figure 3; Figure S1), firing rates for the 

movement block were taken from an 800-ms segment starting 200 ms before movement onset. 

Similar results were obtained if an 800-ms segment just before reward was used (not shown). 

To calculate the CCs of firing rates (Figures 3, S4, and S5), we binned the spike trains using 

100-ms bins sampled every 50 ms, and calculated the cross-correlations of the resulting 

spike-count vectors across the whole block, allowing a maximum lag of 5 bins (250 ms). The CC 

was chosen as the correlation with lag that had the highest absolute value. The change in CC 

index (ΔCCindx) was calculated by subtracting the CC during the observation-state block from the 

CC during the BMI-state block and dividing the result by the sum of the CCs. This index was 

only calculated for CCs that maintained their sign in both blocks. 

  
Statistical test to assess whether firing rates during the BMI-state were more similar to 
those occurring during the observation-state or movement-state blocks 
Mean firing rates were calculated in different segments of 800 ms along the trial for the different 

blocks. In the BMI-state block, firing rates were calculated just before reward. In the 

movement-state blocks, firing rates were calculated in 4 segments: just before reward, starting 

at the initial hold period, starting at the time of target presentation, and starting 200 ms before 

movement onset. These segments were chosen because a different pattern of neural activity 

was expected in each [39]. For the observation-state block, two segments were used: just 

before reward and at the start of the trial. To calculate neural distances from the non-BMI blocks 

to the BMI-state block, we first obtained activity vectors for all non-target neurons for each 

segment, using trials to each target direction separately. For each activity vector (for each 

segment and cursor direction), we calculated the normalized Euclidean distance from the 

activity vector of the BMI-state block using the square root of the sum of square differences, 

divided by the number of neurons. In order to account for possible general fluctuations in the 

mean activity, an optimal gain factor was found and applied to each activity vector, so as to 

minimize the normalized Euclidean distance by using the least-squares criterion. From the 

obtained distances, we selected the vector belonging to the target direction with the shortest 

distance for each segment. Thus, this analysis took into account the possibility that the monkeys 

used a movement-based re-aiming strategy during the BMI-state [40]. To account for the 

24 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 1, 2019. ; https://doi.org/10.1101/537613doi: bioRxiv preprint 

https://paperpile.com/c/Tppuec/t9G9
https://paperpile.com/c/Tppuec/ER2T
https://doi.org/10.1101/537613
http://creativecommons.org/licenses/by-nc-nd/4.0/


different number of trials in the different conditions (block and target direction), we found the 

condition with the lowest number of of trials (tmin) and then for all conditions randomly sampled 

tmin trials (from all trials in that block and with that target direction) to compute the firing rates. 

This analysis was repeated for 1000 iterations where, in each, the subset of tmin trials used for 

each condition was re-selected randomly.. For each iteration, we calculated a binary variable 

that was assigned a value of 1 if the distances were shorter than the "most-similar" (shortest 

distance) observation-state segment or 0 if the shortest segment was the most similar 

movement-state segment (from either of the movement-state blocks). The similarity index 

(Figure 2C) was the average of this binary variable. The chance level was 0.2 because we 

tested 8 segments from both movement-state blocks and 2 segments from the observation-state 

block.  

  

Statistical test to assess whether correlations during the BMI-state were more similar to 
those occurring during the observation- or movement-state blocks 
To obtain the correlation matrices, we first convolved the spike trains of the non-target neurons 

with a zero-phase Gaussian kernel with s.d.=70 ms. Correlations were calculated in 5-second 

segments either ending at reward (all blocks) or beginning at the start of the trial (observation- 

and movement-state blocks) for trials to each target direction separately. Correlations were 

unrolled in a vector, and the sum of the squared differences was calculated between 

correlations in the BMI-state blocks and all the segments in all the other blocks. To account for 

the different number of trials in the different conditions (block and target direction), we found the 

condition with the lowest number of of trials (tmin) and then for all conditions randomly sampled 

tmin trials (from all trials in that block and with that target direction) to compute the correlation 

matrices. This analysis was repeated for 1000 iterations where, in each, the subset of tmin trials 

used for each condition was re-selected randomly. For each iteration, we calculated a binary 

variable that was assigned a value of 1 if the difference between the correlations vector of the 

BMI- and observation-state (in the observation-state condition where this difference was 

smallest) was smaller than the difference between the correlation vector of the BMI- and 

movement-state (in the movement-state condition where this difference was smallest, from 

either of the movement-state blocks). The similarity index (Figure 2D) was calculated as above. 

Here the chance level was 0.33 because we tested 4 segments from both movement-state 

blocks and 2 segments from the observation-state block. 
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Analysis of variance 
Analysis of variance was carried out using published matlab code [30]. In each trial, average 

activity was computed using 1 s of data (starting 250 ms before movement onset in the 

movement-state blocks, and 1 s before reward delivery in the observation- and BNI-state 

blocks; similar results were obtained if we used 1 s before reward in the movement-state 

blocks). We compared the matrices containing the average activities of all non-target neurons in 

the observation- and BMI-state blocks, or the first movement-state and the BMI-state blocks. In 

each session, we used the minimum number of dimensions that accounted for 95% of the 

variance of the data (concatenating all the blocks), according to a principal component analysis, 

and used 10000 random seeds to calculate the alignment to random spaces. 

  

Network model simulations 
  
Architecture and dynamics of the recurrent balanced network 
We simulated a recurrent network composed of  excitatory (E) and  inhibitory (I) neurons,NE N I  

where each neuron receives inputs from an average of  excitatory and  inhibitoryKE K I  

neurons. The input field of the i’th neuron in population  ( ) obeys the followingα , E, }α β ∈ { I  

dynamics: 

ḣ (t) − (t) r (t) (t)τ h i
α = hi

α + ∑
Nβ

j=1
J ij

αβ
j
β + Iα + I i

E,L  

where  is a time constant,  where  is a non-linear transfer function, isτ h (t)  rj
β = Φ h (t)( j

β ) Φ (x)  

the strength of the connectivity between the pre-synaptic j'th neuron in population  and theβ  

post-synaptic i'th neuron in population , and  is a constant input drive to population . Weα Iα α  

followed the same architecture as the well-studied balanced networks [25,26], such that 

 and the recurrent connections are modeled by a sparse and random interaction IIα = √Kα
 α

 

matrix; i.e.,  where  with probability  and 0 otherwise.CJ ij
αβ = J

 αβ

√Kβ ij
αβ C ij

αβ = 1
Kβ
Nβ

 

The behavior of this rate model (without the additional  input) has been extensively(t)I i
E,L  

explored [28] and was found to be equivalent to a full spiking neuronal model when the time 

constant  (interpreted as a synaptic time constant) is not too small (see Model Parametersτ h  

below); in our model, we add an additional feedforward (FF) input only to the excitatory neurons 

in the recurrent network which represents the command signal sent to motor cortex: 
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, where  is the firing rate of the l'th neuron in an external network and(t) (t)ν (t)I i
E,L = ∑

KFF

l=1
W il l (t)ν l  

(assumed to be large) is the number of FF connections each neuron in the recurrentKFF  

network receives from this additional FF input. The strength of these FF connections alone 

changes throughout learning and scales with the number of connections; i.e., (t)W il = KFF

w (t)il  

where  are order unity. These FF synapses are weak compared to the recurrent synapseswil  

because the sum of FF synapses for a given neuron is order unity, whereas the sum of 

recurrent synapses is order . This implies that the command signal will not change the √Kα  

global state of the network; i.e., the mean of the firing rates and correlations. In particular, it 

guarantees that the network remains throughout learning in the balanced regime. In this work, 

we used  as , where . SimilarΦ (x) Φ (x) = {0 | x ; x | 0  ; S(x) | x }≤ 0  < x < d  ≥ d (x) S = a
1+e − b

x−c  

results were obtained using the threshold-linear function:  (not shown).ax(0, )Φ (x) = m x  

  

Learning procedure 
 We use a covariance-based learning algorithm to increase the firing rate of the target neuron. 

The rationale behind this family of learning rules is that synaptic weights are changed according 

to the co-variation of a global reward signal with local neuronal activity, such that a small 

increase (decrease) in the expected reward that is correlated with an increase in the neuronal 

activity will be implemented (discarded) in the system. Specifically, we used the following 

learning rule: 

 (t)τL dt
dw (t)il = R (r (t) (t))i − ri    

where  is an exponential running average with a time constant of 10 s, and(t)ri  

 is the delivery of the reward following time  for a duration of ,H(t )H(t )R(t) = 
1
τR

− tR R + τR − t tR τR  

where  is the Heaviside step function. We assume that the FF input comes from an(x)H  

asynchronous network with a population average firing rate of , which changes according to(t)ν   

the command signal sent to motor cortex (see below). As the activity of neurons in the FF 

network is uncorrelated with the strength of their projections, the FF input is simplified to 

, where  is the expected value (over synapses) of the FF synapses for the(t)I (t) (t) νi
E,L = wi  

(t)wi  

i'th neuron. Thus, the learning rule is reduced to the dynamics of the mean connectivity 

strengths:  .(t)τL dt
dw (t)i = R (r (t) (t))i − ri  

The initial weights  were randomly sampled from a standard normal distribution.(0)wi  
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We took an instantaneous delivery of reward, such that =1 ms. In the simulation, at theτR  

beginning of the BMI block, one excitatory (target) neuron was chosen randomly for conditioning 

(as in the experiment); a reward was delivered whenever the rate of the target neuron 

(smoothed with an exponential running average with a time constant of 400 ms) increased its 

firing rate with respect to an exponential running average with a time constant of 10 seconds. A 

reward was delivered no sooner than 1500 ms after the previous reward, to mimic the inter-trial 

interval in the experiment. 

  

Simulation of the incoming feed-forward (volitional) signal 
We simulated the average firing rate of the feed-forward projections  as an episodic signal(t)ν   

manifesting at random times as a consequence of the command signal. Each episode of 

increased drive was modeled as a square wave with a duration of 300 ms and an amplitude of 

2.5 that was smoothed by a zero phase Gaussian filter with s.d.=20. When a given episode 

ended, the start time of the next episode was sampled randomly from a uniform distribution 

between 500 and 2000 ms. 

  

Maintaining the balanced regime during learning 
As stated above, because the synapses of the command feedforward projections are weak 

compared to the recurrent synapses, the balance between excitation and inhibition, which is a 

dynamic property of the recurrent network, is maintained for a wide range of network 

parameters [26,28]. In this sense, the network behavior is robust to the specific choice of 

parameters. These parameters do, however, determine the specific values of the 

population-average firing rate of the neurons, which can be calculated by solving a set of 

equations expressing the fact that the network operates in the balanced regime [26]. The 

solution to these equations does not depend on the volitional input, as the latter is much weaker 

than the background (constant drive) input or the recurrent synapses. In our model, we chose 

the network parameters to fit the average firing rates estimated from the experimental data (see 

below) and to position the network in the chaotic balanced state. As long as the network is in 

that state, the simulation results are robust to the specific set of parameters. In such conditions, 

increases in firing rates in one subpopulation induced by the learning process must be 

compensated across the network by a decrease in firing rates in a different subpopulation. The 

same argument is valid for the observed balance in the changes in neuronal correlations [31]. 
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Model parameters 
The autocorrelations of the neurons in the model are mainly determined by . We therefore setτ h  

= 20 ms, which corresponds to a decay of ~ 400 ms of the autocorrelation, as typically foundτ h  

in the data during the observation-state blocks (not shown). As for the network size and number 

of connections, we used the fact that the distribution of correlations in balanced networks has 

finite width when considering a finite number of connections and neurons in the network to 

ensure that correlations in our simulated network were similar to the estimated correlations from 

the data. We therefore set ,  and . We chose the learning800NE = 4 200N I = 1 00KE = K I = 2  

time scale to fit the typical time it took the monkeys to learn the task: = 630 s. The averageτL  

firing rate of the neurons was fixed by using the balance equation [26] to fit the estimated firing 

rates from the data, by using the following parameters: ; ; ; ;J
 EE

= 0 J
 EI

= 6 .5J
 IE

= 0 J
 II

= 2  

; . These parameters provide an average global firing rate close to 7 Hz, up to0I
 E

= 4 0I
 I

= 1  

corrections resulting from using a finite number of connections [26]. The average firing rate also 

remained fixed during learning, as described above. For the threshold-linear-sigmoid transfer 

function, the following parameters were used: , , , . The time step of00a = 2 0b = 4 00c = 1 0d = 3  

the simulation was ms.tΔ = 1   

  

Data analysis of the simulations 
The simulated data were analyzed similarly to the experimental data (see Results and 

Methods). As our recordings were biased toward the large pyramidal cells in layer 5 of motor 

cortex, we assumed that the majority of our recorded neurons were excitatory and therefore 

analyzed only the excitatory cells in the simulation to enable the comparison. Additionally, 

because we did not detect any neurons with average firing rates below 0.1 Hz in the 

experiment, we assume this was an additional bias in our recordings, and thus did not analyze 

neurons in the simulation that had an average firing rate of less than 0.1 Hz in the pre-learning 

period. Finally, due to computational limitations, cross-correlations were computed for a random 

subset of pairs of non-target neurons. 
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