1	Bacterial interspecies interactions modulate pH-mediated antibiotic tolerance
2	in a model gut microbiota
3	
4	Andrés Aranda-Díaz ¹ , Benjamin Obadia ² , Tani Thomsen ¹ , Zachary F. Hallberg ³ ,
5	Zehra Tüzün Güvener ² , Kerwyn Casey Huang ^{1,4,5,*} , William B. Ludington ^{2,6,*}
6	
7	¹ Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
8	² Department of Molecular and Cell Biology, University of California, Berkeley,
9	Berkeley, CA 94720, USA
10	³ Department of Plant and Microbial Biology, University of California, Berkeley,
11	Berkeley, CA 94720, USA
12	⁴ Department of Microbiology and Immunology, Stanford University School of
13	Medicine, Stanford, CA 94305, USA
14	⁵ Chan Zuckerberg Biohub, San Francisco, CA 94158
15	⁶ Department of Embryology, Carnegie Institution of Washington, Baltimore, MD
16	21218
17	
18	*To whom correspondence should be addressed: <u>kchuang@stanford.edu</u> ,

19 <u>ludington@carnegiescience.edu</u>

20 Abstract

Despite decades of investigation into how antibiotics affect isolated bacteria, it 21 remains highly challenging to predict consequences for communities in complex 22 environments such as the human intestine. Interspecies interactions can impact 23 24 antibiotic activity through alterations to the extracellular environment that change bacterial physiology. By measuring key metabolites and environmental 25 pH, we determined that metabolic cross-feeding among members of the fruit fly 26 27 gut microbiota drives changes in antibiotic sensitivity in vitro. Co-culturing of 28 *Lactobacillus plantarum* with *Acetobacter* species induced tolerance to rifampin. Mechanistically, we found that acetobacters counter the acidification driven by *L*. 29 30 *plantarum* production of lactate, and that pH shifts during stationary phase were 31 sufficient to drive rifampin tolerance in *L. plantarum* monocultures. The key 32 *Lactobacillus* physiological parameter related to tolerance was a reduction in lag time exiting stationary phase, opposite to a previously identified mode of 33 tolerance to ampicillin in *E. coli. Lactobacillus* tolerance to erythromycin also 34 35 depended on growth status and pH, suggesting that our findings generalize to 36 other antibiotics. Finally, tolerance of *L. plantarum* to rifampin varied spatially across the fruit fly gut. This mechanistic understanding of the coupling among 37 38 interspecies interactions, environmental pH, and antibiotic tolerance enables

³⁹ future predictions of growth and the effects of antibiotics in more complex

40 communities and within hosts.

41 Introduction

42	Decades of investigations have described detailed and precise molecular
43	mechanisms of antibiotic action in model organisms. Yet, our current
44	understanding is biased by a narrow set of standardized laboratory conditions; a
45	recent study reported that resistance of Escherichia coli to the beta-lactam
46	mecillinam is rarer in clinical isolates than in the laboratory and involves distinct
47	genetic loci ¹ . Unlike in laboratory monocultures, the vast majority of bacteria live
48	in diverse communities such as the human gut microbiota. Antibiotics impact
49	gut communities in many ways, ranging from the loss of diversity ^{2,3} to the
50	evolution of multidrug-resistant gut pathogens ⁴ . Hence, there is a pressing need
51	for new frameworks that predict how antibiotics affect bacterial communities.
52	
53	Bacteria can survive antibiotics through (i) resistance mutations, which
54	counteract the antibiotic mechanism; (ii) persistence, whereby a subset of the
55	bacterial population survives the antibiotic by becoming metabolically dormant;
56	or (iii) tolerance, whereby the entire population enters an altered physiological
57	state that is not susceptible to the antibiotic ⁵ . Members of multispecies
58	communities, such as biofilms and models of urinary tract infections, can display
59	altered sensitivity to antibiotics ⁶⁻⁹ . A few studies have delved into the molecular
60	mechanisms behind cross-species antibiotic protection and sensitization. For

61	example, the exoproducts of <i>Pseudomonas aeruginosa</i> affect the survival of
62	Staphylococcus aureus through changes in antibiotic uptake, cell-wall integrity,
63	and intracellular ATP pools ¹⁰ . In synthetic communities, intracellular antibiotic
64	degradation affords cross-species protection against chloramphenicol ¹¹ .
65	Additionally, metabolic dependencies within synthetic communities can lower
66	the viability of bacteria when antibiotics eliminate providers of essential
67	metabolites, leading to an apparent change in the minimum inhibitory
68	concentration (MIC) of the dependent species9. However, we still lack
69	understanding of how contextual metabolic interactions between bacteria affect
70	the physiological processes targeted by antibiotics and the resulting balance
71	between growth inhibition (bacteriostatic activity) and death (bactericidal
72	activity).
73	
74	Characterizing the impact of metabolic interactions on antibiotic susceptibility
75	requires functional understanding of how bacterial species interact during
76	normal growth. Interspecies interactions can occur through specific mechanisms
77	within members of a community (e.g. cross-feeding or competition for specific
78	resources), or through global environmental variables modified by bacterial

79 activity. An example of the latter is pH, which has recently been shown to drive

community dynamics in a highly defined laboratory system of decomposition
bacteria¹².

82

83	While synthetic communities afford the opportunity to design and to tune
84	bacterial interactions, it is unclear whether findings are relevant to natural
85	communities. The stably associated gut microbiota of Drosophila melanogaster fruit
86	flies constitutes a naturally simple model community for determining how
87	metabolic interactions between species affect growth, physiology, and the action
88	of antibiotics ¹³ . This community consists of ~5 species predominantly from the
89	Lactobacillus and Acetobacter genera ¹⁴ (Fig. 1a). Lactobacilli produce lactic acid ¹⁵ ,
90	while acetobacters are acetic acid bacteria that are distinguished by their ability
91	to oxidize lactate to carbon dioxide and water ¹⁶ . Short chain fatty acids, such as
92	lactate, decrease the pH of natural fermentations and may constitute a
93	mechanism through which pH plays a prominent role in community dynamics.
94	The naturally low number of species in Drosophila gut microbiota and its
95	compositional modularity (lactobacilli versus acetobacters) enable systematic
96	dissection of microbial interactions.
97	

In the current study, we interrogated how interspecies interactions affect growth
and antibiotic susceptibilities. We used high-throughput assays to measure these

100	parameters in monocultures versus co-cultures and inside fly guts. Lactobacillus
101	<i>plantarum</i> (<i>Lp</i>) exhibited antibiotic tolerance (delay in death ⁵ by ~12 h) in the
102	presence of acetobacters. Lactate accumulation by Lp in monocultures acidified
103	the media, inhibiting growth during stationary phase. Acetobacter-mediated
104	lactate consumption released this inhibition by increasing pH, leading to a
105	shorter <i>Lp</i> lag while exiting stationary phase. This reduced lag exiting stationary
106	phase corresponded with the antibiotic tolerance of Lp that we observed. We
107	determined that changes in pH elicited by Acetobacter activity are sufficient to
108	modulate tolerance of <i>Lp</i> to both rifampin and erythromycin. Finally, <i>ex vivo</i>
109	experiments revealed that antibiotic tolerance differs in distinct compartments of
110	the host gastrointestinal tract. Taken together, our findings indicate that simple
111	changes to the environment can drive complex behaviors within bacterial
112	communities.

114 **Results**

115

116 *Interspecies interactions induce tolerance to rifampin*

117	To determine the composition of the gut microbiota in our laboratory fruit flies,
118	we performed deep sequencing of 16S rRNA V4 amplicons from 18 individual
119	dissected guts (Methods). We identified five species belonging to seven unique
120	operational taxonomic units (OTUs) by clustering the sequences at 99% identity:
121	L. plantarum (Lp), L. brevis (Lb), Acetobacter pasteurianus (Ap), A. tropicalis (At), and
122	A. aceti (Aa) (Fig. 1a). We then isolated the species in culture and determined the
123	antibiotic sensitivities of the four major fly gut inhabitants (<i>Lp</i> , <i>Lb</i> , <i>Ap</i> and <i>At</i> ; Fig.
124	1a) in vitro using isolates of these species (Table S1) grown in Man, Rogosa, and
125	Sharpe (MRS) medium. We tested 10 antibiotics representing a wide variety of
126	classes using plate-based growth assays (Methods). For many drugs, some of the
127	fly gut species were resistant (detectable growth) at least up to the highest
128	concentrations tested. Rifampin was the only drug for which all four species
129	exhibited sensitivity (Table S2) and it is bactericidal ¹⁷ , hence there is the
130	opportunity to study survival as well as sensitivity.
131	

We noted from growth curves in the absence of drug that *Lb* grew significantly more slowly than Lp (0.60 ± 0.054 h⁻¹ vs. 0.64 ± 0.001 h⁻¹ for Lp, $P = 5.5 \times 10^{-3}$, n = 16,

Fig. S1) and had a much longer lag phase than Lp (6.55 ± 0.16 h vs. 1.92 ± 0.08 h for Lp, $P = 1.8 \times 10^{-39}$, n = 16, Fig. S1). Thus, we focused on Lp and its interactions with the *Acetobacter* species, particularly Ap, which is more abundant in the fly gut than the other acetobacters (Fig. 1a).

139	We grew Lp and Ap separately for 48 h in test tubes, combined them in test tubes
140	at an optical density at 600 nm (henceforth OD) of 0.02 each, and co-cultured
141	them in MRS for 48 h. We then diluted this co-culture and 48-h monocultures of
142	<i>Lp</i> and <i>Ap</i> into fresh MRS at ~5×10 ⁵ colony-forming units/mL (CFU/mL) in 96-
143	well plates with various concentrations of rifampin and measured growth over
144	48 h. The MIC of the co-culture was similar to that of Lp alone (2.5 µg/mL, Fig.
145	S2a). To determine whether the co-culture still contained both species, we
146	measured the percentage of survival and the fraction of each species at various
147	rifampin concentrations by taking advantage of the fact that <i>Lp</i> and the
148	acetobacters have distinct colony morphologies and colors on MRS and MYPL
149	plates (Table S1). We measured <i>Lp</i> CFUs on MRS and <i>Ap</i> CFUs on MYPL because
150	<i>Lp</i> and <i>Ap</i> grow more quickly on MRS and MYPL, respectively. In the co-culture,
151	Ap died off at a similar concentration of rifampin as during growth in a
152	monoculture (1.25 μ g/mL, Fig. S2b). For <i>Lp</i> , the MIC was the same in co-culture
153	as in monoculture (1.25 μ g/mL, Fig. 1b), but at concentrations above the MIC,

significantly more *Lp* cells survived in co-culture than in monoculture (Fig. 1b).
This effect could not be explained by small differences in the initial inoculum, as
increasing cell densities up to 100-fold did not change the MIC or survival of *Lp*in monoculture (Fig. S2c,d). Because of the change in *Lp* survival, we focused
herein on this phenotype.

159

160	To determine whether Lp 's increased survival was specific to co-culturing with
161	<i>Ap</i> , we co-cultured <i>Lp</i> with each of the acetobacters, including a wild fly isolate
162	of <i>A. indonesiensis</i> (<i>Ai</i>), and lab fly isolates of <i>A. orientalis</i> (<i>Ao</i>) and <i>Aa</i> , the fifth
163	major component of the microbiota of our flies (Fig. 1a). We then diluted each co-
164	culture to an initial Lp cell density of ~5×10 ⁵ CFU/mL into fresh MRS with 20
165	μ g/mL rifampin (16X MIC) and let the cells grow for 24 h. Co-culturing with any
166	of the acetobacters increased survival by approximately one order of magnitude
167	(Fig. 1c). To determine whether this increased survival requires co-culturing
168	prior to rifampin treatment (rather than the presence of the acetobacters being
169	sufficient), we grew <i>Lp</i> and <i>Ap</i> separately for 48 h and mixed and diluted them at
170	the time of addition of 20 $\mu\text{g/mL}$ rifampin. After 24 h of growth, the number of
171	CFU/mL was significantly lower in mixed culture than in co-culture (Fig. 1d),
172	indicating a history dependence to increased survival.

173

174	To determine whether co-culturing slows killing by the drug, we examined the
175	survival of Lp over time at a high drug concentration (50 µg/mL, 40X MIC).
176	Similar to the experiments above, we compared <i>Lp</i> CFU/mL in a monoculture
177	with that in a co-culture with <i>Ap</i> . In monoculture, <i>Lp</i> rapidly died, with CFU/mL
178	becoming undetectable within 18 h; in contrast, <i>Lp</i> survived >30 h after co-
179	culturing (Fig. 1e). This increased time to death of <i>Lp</i> as a bulk population, and
180	unchanged MIC, together indicate that co-culturing <i>Lp</i> with <i>Ap</i> induces tolerance
181	of Lp to rifampin ⁵ .
182	
183	Co-culturing leads to growth of Lp in stationary phase
184	Our finding that co-culturing Lp with acetobacters affects antibiotic tolerance
185	(Fig. 1c,e) prompted us to investigate the environmental factors that cause this
186	phenotype. We first inquired whether the total amount of growth of the co-
187	culture was larger or smaller than expected from the yield of the monocultures.
188	We grew <i>Lp</i> and each of the acetobacters separately for 48 h, diluted the
189	monocultures to OD = 0.04, combined the Lp monoculture 1:1 with each
190	Acetobacter monoculture, and grew the co-cultures for 48 h in test tubes. In bulk
191	measurements, the <i>Lp-Ap</i> co-culture showed a significant synergistic effect
192	(Supplementary Text, Fig. S3a). We then determined the total carrying capacity
193	of each of the species in the co-cultures grown in test tubes by counting CFUs.

194	We determined that the <i>Lp</i> CFU/mL values for 48-h co-cultures with <i>Ap</i> , <i>At</i> , and
195	<i>Ai</i> were higher than the <i>Lp</i> CFU/mL values in monoculture (Fig. 2a). Co-cultures
196	with <i>Ap</i> showed the strongest effect; <i>Aa</i> and <i>Ao</i> did not significantly increase <i>Lp</i>
197	CFU/mL (Fig. 2a). All acetobacters except for <i>Ap</i> reached lower CFU/mL in co-
198	cultures with <i>Lp</i> than in monocultures (Fig. S3b). Thus, <i>Lp</i> has a strong positive
199	interaction with Ap , and negative or neutral interactions with the rest of the
200	acetobacters (Supplementary Text, Fig. S3c).
201	
202	To determine when the additional growth took place, we monitored CFU/mL
203	values for <i>Lp</i> and <i>Ap</i> in co-culture throughout a 48-h time course starting from an
204	initial combined cell density of ~5×10 ⁵ CFU/mL. Initially, <i>Lp</i> accounted for the
205	bulk of the growth in the co-culture (Fig. 2b). Interestingly, <i>Ap</i> in liquid
206	monoculture showed little to no growth in most replicates after 40 h (Fig. 2b); by
207	contrast, in liquid co-culture Ap started to grow after ~20 h and reached
208	saturation by ~40 h (Fig. 2b), indicating that <i>Ap</i> also benefited from growth as a
209	co-culture. This benefit likely stemmed from a reduction in Ap cell death during
210	lag phase (Supplementary Text, Fig. S4). Thus, a mutualism exists between <i>Lp</i>
211	and <i>Ap</i> driven by growth during and exiting from stationary phase.
212	

213 Lactate metabolism leads to changes in pH in stationary phase co-cultures

214	Interestingly, after 30 h, <i>Lp</i> displayed a significant (~2X) increase in CFU/mL in
215	the co-culture that did not occur in the monoculture (Fig. 2b), indicating that the
216	increase in final yield occurs late in stationary phase. We therefore hypothesized
217	that Lp has a common metabolic interaction with each of the acetobacters. An
218	obvious candidate is cross-feeding, since <i>Lp</i> produces lactate and the acetobacters
219	consume it. We measured lactate levels in the supernatants of <i>Lp</i> monocultures
220	and co-cultures of Lp with each of the acetobacters individually, after 48 h of
221	growth. As expected, the Lp monoculture accumulated L- and D-lactate to high
222	levels (>100 mM; Fig. 2c). All co-cultures had significantly lower concentrations
223	of both isomers than the monoculture (<2 mM, Fig. 2c). The <i>Lp-Ao</i> co-culture
224	harbored higher levels of L-lactate than any other co-culture and Lp-Aa had
225	higher concentration of L-lactate than the rest of the co-cultures (Fig. 2c). Lp-Ap,
226	<i>Lp-Ao,</i> and <i>Lp-Aa</i> co-cultures all accumulated lactate (>10 mM) at 20 h (Fig. S5a).
227	Taken together, these data suggest that <i>Lp</i> metabolism leads to an initial
228	accumulation of lactate and that the acetobacters consume it, although Aa and Ao
229	are less efficient at consuming L-lactate than the other species.
230	
231	Since lactate is a short-chain fatty acid with a p K_a of 3.86, we suspected that
232	lactate production would affect the pH of the culture. We first monitored the pH

233 dynamics of monocultures of *Lp* and of each *Acetobacter* using the pH-sensitive

234	fluorophore 2',7-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) ¹⁸ . In
235	the <i>Lp</i> monoculture, pH decreased from pH=6.75 to below 4 during growth (Fig.
236	2d); more precisely, we measured a final supernatant pH=3.77 using a pH meter
237	(Fig. S5a). We measured pH over time in <i>Acetobacter</i> monocultures using BCECF.
238	For all acetobacters except <i>Ap</i> , the medium first acidified down to pH~5, and
239	then increased back to pH=6-7 (Fig. 2d).
240	
241	To test whether acetobacters reverse the pH decrease due to the accumulation of
242	lactate produced by <i>Lp</i> , we measured the pH of co-cultures over time using
243	BCECF. Co-cultures with Ap, At, and Ai followed similar trajectories in which the
244	pH followed that of the <i>Lp</i> monoculture for the first 20 h, after which the pH
245	increased up to a final value of ~7 (Fig. 2f). The <i>Lp-Aa</i> co-culture experienced a
246	~10-h delay in the pH increase, while the co-culture with Ao showed only a slight
247	pH increase by 48 h (Fig. 2f). The slight pH increase in Ao co-culture is consistent
248	with lower L-lactate consumption by this species (Fig. 2c). Using a pH meter for
249	validation, we measured final pH values of 5.9, 5.8, 4.6, 5.4, and 4.8 in co-cultures
250	with Ap, At, Ao, Ai, and Aa, respectively (Fig. S5b). Thus, lactate metabolism
251	dictates dramatic shifts in environmental pH that are related to physiological
252	changes in antibiotic tolerance (Fig. 1c).

254	Given the strong acidification of the medium in <i>Lp</i> monoculture but not in co-
255	culture (Fig. 2d), we hypothesized that intracellular pH decreases in monoculture
256	and increases in co-culture. To measure intracellular pH, we transformed our <i>Lp</i>
257	strain with a plasmid expressing pHluorin (a GFP variant that acts as a
258	ratiometric pH sensor ¹⁹) under the control of a strong constitutive promoter ²⁰ .
259	The two absorbance peaks, which we measured at 405 and 475 nm, are sensitive
260	to pH and the ratio of the emission (at 509 nm) at these two excitation
261	wavelengths can be used to estimate intracellular pH. We grew this strain in
262	monoculture and in co-culture with Ap and measured fluorescence over time in a
263	plate reader. Because of the high autofluorescence of the medium at 405 nm (data
264	not shown), we could only track changes in fluorescence at an excitation
265	wavelength of 475 nm. We observed an initial increase in signal as the Lp cells
266	started to proliferate (Fig. S6a). After the cultures saturated (t ~20 h), we detected
267	a decrease in the signal down to the levels of medium autofluorescence in the
268	monoculture (Fig. S6a). In the co-culture, where the extracellular pH is raised by
269	the metabolic activity of <i>Ap</i> , fluorescence did not decrease over time (Fig. S6a),
270	suggesting that intracellular pH decreases in a time-dependent manner in
271	monoculture but not in co-culture.

273	To verify that the decrease in fluorescence in monoculture was due to a drop in
274	intracellular pH, as opposed to a decrease in protein synthesis, we sampled cells
275	after 48 h of growth, centrifuged them, resuspended them in PBS in order to
276	measure pHluorin signal at both its excitation wavelengths, and measured
277	fluorescence within 1 minute of resuspension. The ratio of the signal from
278	pHluorin at its two excitation wavelengths was significantly higher in co-culture
279	(Fig. S6b). Taken together, these data indicate that the intracellular pH of <i>Lp</i> cells
280	is significantly lower in monoculture than in co-culture with acetobacters.
281	
282	Low pH inhibits the growth of Lp and extends lag phase
283	Since <i>Ap</i> growth causes a large increase in the extracellular pH of an <i>Lp-Ap</i> co-
284	culture, we sought to determine the dependence of <i>Lp</i> growth on pH. We diluted
285	a 48-h culture of <i>Lp</i> cells grown in MRS at starting pH=6.75, to a starting OD=0.02
286	in MRS adjusted to starting pH ranging from 3 to 8 (Methods). We then
287	measured growth and BCECF fluorescence in a plate reader (Fig. S7a,b). For
288	
	lower starting pH values, the carrying capacity was lower (Fig. 3a) and varied
289	
	lower starting pH values, the carrying capacity was lower (Fig. 3a) and varied

292	differences in	yield. Interestir	ngly, the maximum	growth rate was also p	oH-
-----	----------------	-------------------	-------------------	------------------------	-----

dependent (Fig. 3c), with the highest growth rate at starting pH=7.

294

295	Given these findings, we hypothesized that the inhibition of growth in stationary
296	phase of an <i>Lp</i> monoculture is due to the decreased intracellular and extracellular
297	pH, and that Ap releases Lp 's growth inhibition by raising intracellular and
298	extracellular pH. To test this hypothesis, we inoculated a 48-h culture of Lp to an
299	initial OD=0.02 into the supernatant of a 48-h <i>Lp</i> culture at pH=3.77 or set to
300	pH=7. We observed substantially more growth (~20-fold increase) of the bulk
301	culture in supernatant raised to pH=7, while no growth took place starting from
302	pH=3.77 (Fig. 3d). As expected, the maximal growth rate was lower than in fresh
303	MRS due to the partial depletion of nutrients (Fig. 3d); addition of glucose to the
304	conditioned medium supported faster growth, but only starting from neutral pH
305	(Fig. S7c). We also hypothesized that the accumulation of lactate by Lp would
306	allow growth of <i>Ap</i> in <i>Lp</i> -conditioned medium even at low starting pH. When
307	we diluted a saturated <i>Ap</i> culture into <i>Lp</i> -conditioned medium generated as
308	above, <i>Ap</i> grew to similar levels as in fresh MRS (Fig. S7d).
309	

These findings suggested that the effects of *Ap* in co-culture on *Lp* growth might be due primarily to the pH changes that *Ap* initiates because of the ability of

312	acetobacters to grow at low pH and to consume lactate. Thus, we first increased
313	the pH of an <i>Lp</i> monoculture to 7 after 30 h, when the pH increased most rapidly
314	in the <i>Lp-Ap</i> co-culture (Fig. 3e), and incubated cells for an additional 18 h. We
315	did not observe a significant increase in CFU/mL from this pH-adjusted culture
316	versus controls that simply grew for 48 h or were subjected to all washes
317	required for pH adjustment and then returned to the same supernatant (Fig. S7e).
318	We then assessed if increasing the pH at 30 h resulted in a decrease in the
319	duration of lag phase by diluting the monoculture to OD=0.0375 into fresh MRS
320	after an additional 18 h of growth. The lag phase was shorter in the pH-adjusted
321	culture than control bulk cultures (Fig. 3e). Thus, pH is a driver of the growth
322	advantages of <i>Lp</i> in lag phase.
323	
324	Co-culturing Lp with acetobacters reduces lag time
325	Canonical antibiotic tolerance in <i>E. coli</i> results from a decrease in growth rate or
326	an increase in lag phase that protects cells through metabolic inactivity ⁵ . To
327	measure growth rate and lag phase, we co-cultured <i>Lp</i> with each of the
328	acetobacters individually for 48 h, diluted the culture to a common OD of 0.0375,
329	and monitored growth in a plate reader. The maximum growth rate was the
330	

higher for co-cultures with *Ao* and *Aa* (Fig. S8). We previously observed for *Lp*

332	monocultures when shifting the pH that the stimulation of growth in stationary
333	phase was connected with tolerance (Fig. 3e), opposite to that of <i>E. coli</i> tolerance
334	to ampicillin ⁵ . In agreement with these data, there was a significant decrease in
335	bulk lag time for all of the Acetobacter co-cultures (Fig. 4a,b). Ap, At, and Ai co-
336	cultures had the largest lag decreases. The <i>Aa</i> and <i>Ao</i> co-cultures had a smaller,
337	although still significant, decrease (Fig. 4a,b); interestingly, Aa and Ao were also
338	less efficient at consuming lactate than the other Acetobacter species (Fig. 2c).
339	These data indicate that interspecies interactions can change the physiology of
340	the community, and that differences across the acetobacters constitute an
341	opportunity to probe the underlying cause of the lag phenotype.
342	
343	As with <i>Lp</i> tolerance to antibiotics (Fig. 1b), the shortened lag phase of the <i>Lp-Ap</i>
344	co-culture was history dependent. When we mixed 48-h cultures of Lp and Ap to
345	a combined initial OD of 0.0375 in the absence of antibiotics, the resulting bulk
346	
	culture had the same lag time as an <i>Lp</i> monoculture (Fig. 4c,d). To determine

h co-culture of *Lp* and *Ap* 1:200, spotted 2 μL onto a 1% agarose + MRS pad, and

349 performed time-lapse microscopy (Methods) to monitor the initiation of growth

at the single-cell level (Fig. 4e). *Lp* and *Ap* are clearly distinguishable based on

morphology (Fig. S9): *Lp* cells are longer ($2.46 \pm 0.78 \mu m vs. 1.66 \pm 0.38 \mu m$) and

352	thinner (0.72 ± 0.12 μ m vs. 0.90 ± 0.09 μ m) than <i>Ap</i> cells. Therefore, we used the
353	aspect ratio (length/width; 3.41 ± 0.91 for <i>Lp</i> and 1.87 ± 0.46 for <i>Ap</i>) to distinguish
354	single cells from each species in co-culture. We validated this strategy on co-
355	cultures of fluorescently tagged strains of the same two species and observed a
356	10% error rate in classification (Fig. S9d-f). In co-culture, most <i>Lp</i> cells were
357	observed to have grown by 1 h after spotting, but in <i>Lp</i> monoculture, few cells
358	were growing even after 2 h (Fig. 4e,f). <i>Ap</i> cells did not grow during the time of
359	imaging (Fig. 4f), indicating that the reduced lag time was due to Lp 's growth, in
360	agreement with CFU/mL measurements (Fig. 2b).

362 Growth status and pH are drivers of antibiotic tolerance

363	Since pH changes shortened lag phase (Fig. 3e), and since changes in lag time
364	were related to antibiotic tolerance (Fig. 1,4), we tested whether shortening lag
365	phase was sufficient to induce tolerance. Lag phase can be manipulated by
366	increasing time in starvation ²¹ . To determine the relationship between time spent
367	in stationary phase and lag time in <i>Lp</i> , we diluted a 48-h monoculture to a
368	starting OD=0.02 in fresh medium and grew it for varying amounts of time. We
369	then diluted these monocultures into fresh medium at OD=0.0375 and measured
370	bulk culture growth in a plate reader. Incubating the Lp monocultures for more

371	than 48 h resulted in a dramatic increase in the duration of lag phase, while
372	reducing the culturing time shortened lag phase (Fig. 5a).

374	Because lag phase in co-culture is slightly shorter than that of a 24-h monoculture
375	(Fig. 5a), we decided to match the lag time of a co-culture by growing a
376	monoculture for 20 h from an initial OD=0.02. We then measured Lp survival in
377	20 μ g/mL rifampin after 24 h in cultures diluted from a 48-h-old or a 20-h-old
378	culture. Culturing for 20 h resulted in a significant increase in survival (Fig. 5b).
379	We next tested whether shortening lag phase by changing the pH in stationary
380	phase also yielded increased rifampin tolerance of <i>Lp</i> in co-culture. We increased
381	the pH of an <i>Lp</i> monoculture to 7 after 30 and 40 h, and grew cells for an
382	additional 18 h and 8 h, respectively. We then measured the change in CFU/mL
383	upon treatment with 50 μ g/mL rifampin for 24 h. The upshift in pH at t = 30 h or
384	40 h resulted in increased tolerance relative to the unshifted monoculture (Fig.
385	5c). To test the extent to which changes in pH affect tolerance, we grew co-
386	cultures of <i>Lp</i> and <i>Ap</i> for a total of 48 h and decreased the pH to 3.7 at $t = 30$ h or
387	40 h. In both cases, the viability after 24 h of rifampin exposure was significantly
388	reduced relative to an untreated monoculture (Fig. 5d). Thus, pH can affect
389	tolerance both positively and negatively.

391	In co-culture with <i>Lp</i> , <i>Ap</i> raised the pH earlier than did <i>Aa</i> , while <i>Ao</i> only raised
392	the pH very slightly (Fig. 2d). We hypothesized that due to these distinct pH
393	dynamics, rifampin would also have different killing Lp dynamics in these co-
394	cultures. We grew co-cultures of these acetobacters with Lp as previously, and
395	then treated the co-cultures with 50 μ g/mL rifampin. While all co-cultures had
396	extended survival relative to Lp monoculture, the killing dynamics of Lp were
397	indeed distinct, with Aa inducing the highest tolerance (Fig. 5e). To determine
398	the extent to which these dynamics can be explained by the time at which each
399	species raises the pH, we measured CFU/mL at various time points after
400	rifampin treatment for <i>Lp</i> monocultures grown for 48 h whose pH was raised to
401	pH 7 at $t = 30$ h or 40 h, mimicking the early and late increases in pH for Ap and
402	Aa co-cultures, respectively. The shift to pH 7 at 40 h induced higher rifampin
403	tolerance than the shift at 30 h (Fig. 5f), consistent with the increased tolerance of
404	the <i>Lp-Aa</i> co-culture (Fig. 5e). Moreover, shifting the pH to 4.5 at $t = 30$ h, to
405	mimic the slight increase caused by Ao, was also sufficient to increase tolerance
406	comparable to pH neutralization at $t = 30$ h (Fig. 5f), consistent with the similar
407	killing dynamics of the Ap and Ao co-cultures (Fig. 5e). All pH shifts induced
408	higher tolerance compared to control cultures that underwent the same protocol
409	but whose pH was maintained (Fig. 5f). Taken together, these experiments

410 establish that pH changes drive the tolerance of *Lp* to rifampin through changes411 in the exit from stationary phase.

412

413	Growth status and pH also drive tolerance to a ribosome-targeting antibiotic
414	The robust relationships among changes in pH, lag time, and rifampin tolerance
415	prompted us to explore how changes in pH and lag time affect survival to other
416	antibiotics. We decided to use the ribosome-targeting macrolide erythromycin
417	because it is bactericidal and Lp is sensitive to it (Table S2). We treated Lp
418	monocultures grown for 20 h or 48 h with increasing concentrations of
419	erythromycin for 24 h at a starting cell density of ~5×10 ⁵ CFU/mL. In contrast to
420	our observations with rifampin (Fig. 5b), a 48-h Lp monoculture displayed
421	tolerance to erythromycin, while a 20-h culture did not (Fig. 5g). While both
422	cultures had the same MIC in erythromycin (0.078 μ g/mL, Fig. 5g), at
423	concentrations above the MIC, the 48-h culture showed no changes in CFU/mL
424	after 24 h of erythromycin treatment; the 20-h culture had a reduction of ~10-fold
425	in CFU/mL (Fig. 5g). This result suggests that <i>Lp</i> cells diluted from a 48-h culture
426	are tolerant to erythromycin, opposite to the effect we observed with rifampin.
427	
428	To further determine whether antibiotic tolerance underlies the survival of Lp to

erythromycin as well as to rifampin, we diluted 20- and 48-h cultures to a

430	starting density of ~5×10 ⁵ CFU/mL, exposed them to a high concentration of
431	erythromycin (2 $\mu\text{g}/\text{mL}$, 25X MIC), and monitored CFU/mL over time. Cells from
432	a 20-h culture died significantly more rapidly than cells from a 48-h-old culture
433	(Fig. 5h), indicating that the differences in survival (Fig. 5g) are explained by
434	erythromycin tolerance. Further, increasing the pH of an <i>Lp</i> monoculture at 30 h
435	and then exposing it after an additional 18 h of growth to 2 $\mu\text{g/mL}$ erythromycin
436	in fresh medium had an increase in the rate of killing that was similar to that
437	achieved with a 20-h culture (Fig. 5h). These results highlight that the effects of
438	changing the growth status of a culture by different means are not limited to
439	rifampin and $-as$ in the case of erythromycin $-can$ be opposite.

441 Growth state in the fruit fly gut determines antibiotic tolerance ex vivo

442 Our *in vitro* observations connecting changes in pH to lag time and antibiotic 443 tolerance prompted us to examine whether these properties are also linked 444 within the fruit fly gut. This tract consists of a ~5-mm-long tube divided into 445 three sections: foregut, midgut, and hindgut (Fig. 5i). The foregut includes an 446 accessory storage organ known as the crop. The contents of the crop are delivered to the midgut through the proventriculus and transit through the 447 448 midgut to end in the hindgut, where they are expelled into the environment through the rectum and the anus²². Specialized "copper" cells in the central 449

450	portion of the midgut keep the pH of this section low, akin to the stomach in
451	mammals ²³ . Bacteria are distributed along the <i>Drosophila</i> gastrointestinal tract; <i>Lp</i>
452	in particular can colonize all compartments with slight variations in its
453	distribution along the tract ²⁴ .

455	To examine whether variations along the fly gut impact Lp physiology, we
456	coarse-grained the digestive tract into the crop and the midgut and quantified
457	rifampin tolerance of Lp from these regions. We hypothesized that the different
458	functions of these regions – storage, or nutrient absorption and transit – lead to
459	differences in bacterial physiology. We colonized 5-7-day-old, female, germ-free
460	flies with Lp and left them for three days in sterile food to reach equilibrium
461	(Methods). We then dissected the flies and separated the crop from the midgut.
462	We pooled (i) dissected crops and (ii) dissected midguts in MRS to obtain a final
463	bacterial density of ~5×10 ⁵ CFU/mL. Crops had overall ~10 times less Lp than the
464	midgut (8,700 CFU/crop vs. 86,000 CFU/midgut). After homogenization, the
465	samples were exposed to 20 $\mu\text{g/mL}$ or 50 $\mu\text{g/mL}$ rifampin for 24 h. The MIC of
466	rifampin for these ex vivo samples was approximately the same as for in vitro
467	cultures (1.25 μ g/mL). For cultures extracted from the crop, significantly more
468	cells survived than for cultures extracted from the midgut, with values
469	comparable to those of a co-culture with <i>Ap</i> and a monoculture, respectively (Fig.

- 5j). These results indicate that spatial heterogeneity in the host can lead to
- 471 differences in the duration of lag phase and antibiotic tolerance *ex vivo*.

472 Discussion

473	Our measurements of the growth behavior of the fly gut microbiota indicate that
474	interspecies interactions impact both the metabolism of a microbial community
475	and the effect of antibiotics on individual species. For fly gut commensals, the
476	pH-based mechanism underlying the tolerance of <i>Lp</i> induced by acetobacters is
477	intrinsically connected to the metabolic capacity of each species, and hence is
478	likely to be generally relevant in vivo to the resilience of this community under
479	perturbations. Moreover, these findings could have important implications for
480	human health, for example in the context of Lactobacillus-dominated vaginal
481	microbiotas ²⁵ , and their generality should be tested broadly in other contexts.
482	

In this study, we observed a novel form of antibiotic tolerance. Tolerance has 483 been defined as increased time to killing²⁶, as opposed to resistance (a change in 484 the MIC), or persistence (the ability of a subpopulation of clonal bacteria to 485 survive high concentrations of antibiotic⁵). Tolerance to beta lactams such as 486 487 ampicillin has been observed in *E. coli* cultures that exhibit slow growth or a long lag phase⁵, and *E. coli* mutants with longer lag phases can be selected through 488 experimental evolution to match the time of treatment^{27,28}. Based on these 489 490 previous studies, we were surprised to find the opposite effect with rifampin on *Lp*: cultures with a shorter lag phase exhibited increased tolerance (Fig. 1,4). 491

492 Moreover, although tolerance to erythromycin was associated with a longer lag 493 phase (Fig. 3e, 5a,h), killing retardation was at least an order of magnitude longer 494 than the change in lag time (Fig. 5a,h), indicating that tolerance is not determined 495 by an elongation of lag phase alone, in contrast to the effects of ampicillin on *E*. 496 $coli^{27}$.

497

498	Several genetic factors that increase time to killing have been identified in <i>E. coli</i> ,
499	including toxin-antitoxin modules such as <i>hipBA</i> ²⁹ that induce the stringent
500	response and thus cause transient growth arrest. In Lp co-culture with
501	acetobacters, metabolic interactions alter the physiological state of <i>Lp</i> during late
502	stationary phase by changing the environmental pH (Fig. 2). The stringent
503	response is required to survive acid shock in <i>Helicobacter pylori</i> ³⁰ but not in
504	<i>Enterococcus faecalis</i> ³¹ , which is in the same order as Lp . In the case of Lp , whether
505	the stringent response could be a major factor in the increased tolerance to
506	rifampin is unclear due to the surprising connection with decreased lag (not to
507	mention the opposite behavior with erythromycin).
508	
509	The pH in stationary phase can affect many factors, such as the chemistry of
510	extracellular metabolites and macromolecules as well as the surface of the cell ³² .

511 Importantly, our assays of antibiotic sensitivities were all performed at a starting

512	pH of 7. Nonetheless, shifts in extracellular pH can lead to buffered drops in
513	cytoplasmic pH ^{33,34} ; such drops can be regulated ³⁵ or result from internalization
514	of low-p K_a species such as short-chain fatty acids ³⁶ . Such changes could lead to
515	protonation of macromolecules involved in adsorption or changes in the proton
516	motive force ³⁷ . How these factors affect non-polycationic antibiotics such as
517	rifampin remains to be determined; neither of the ionizable functional groups of
518	rifampin (pK _a s 1.7 and 7.9 ³⁸) nor erythromycin (pK _a 8.88 ³⁹) have pK _a s in the pH
519	range achieved in our cultures (Fig. 2,S7b). Protonation changes in target
520	macromolecules could also lead to protection against antibiotics, although we
521	would expect a subsequent change in MIC, contrary to our findings (Fig. 1,5).
522	Intracellular acidification by the short-chain fatty acid propionate has been
523	proposed to lengthen lag phase in <i>Salmonella in vitro</i> and in the mouse gut ⁴⁰ ,
524	consistent with our finding that lag time (Fig. 4) and intracellular pHluorin
525	fluorescence (Fig. S6a) are related.
526	

527 Changes in intra- and extracellular pH have been shown to lead to

⁵²⁸ transcriptional responses that provide cross-protection against antibiotics⁴¹⁻⁴³,

529 suggesting that the killing retardation due to a pH increase in stationary phase

530 may result from a complex regulatory process. One major factor influencing the

531 *Lactobacillus-Acetobacter* interaction is that these organisms form a recurrent

532	community and may therefore have evolved to sense and benefit from each
533	other's presence. Further experiments are needed to uncover the molecular
534	mechanisms that link growth state and susceptibility to antibiotics in lactobacilli,
535	other non-model organisms, and microbial communities. In addition, although
536	we consistently observed related shifts in lag phase and tolerance (Fig. 3,5), it
537	remains to be established whether lag time and tolerance are causally linked or
538	coupled to some global variable, particularly given the opposite effects on
539	rifampin and erythromycin tolerance.
540	
541	Previous work has shown that bacterial interactions can elicit changes in
542	antibiotic sensitivity by changing cellular physiology or interfering with
543	antibiotic action directly or indirectly ⁹⁻¹¹ . In principle, a myriad of intra- and
544	extra-cellular variables are subject to the composition and dynamics of the
545	ecosystems that bacteria inhabit, and microbial communities within mammalian
546	hosts can elicit changes in environmental variables both locally and globally.
547	Specifically, the microaerobic and anaerobic microenvironments of the human
548	and fly ²⁴ gastrointestinal tracts enable the growth of short chain fatty acid
549	producers. Some of these short chain fatty acids, like butyrate, have been shown
550	to play an important role on host physiology and health ⁴⁴ . The consequences of
551	the accumulation of these short chain fatty acids and other small molecules on

552	microenvironments, as well as their effect on bacterial physiology and antibiotic
553	treatment efficacy in vivo, have yet to be systematically explored. Our results
554	emphasize the need to probe the action of antibiotics – as well as other drugs that
555	are thought not to target microbial growth ⁴⁵ – in complex and varied conditions ⁴⁶ .
556	Furthermore, our findings highlight the utility of studying growth physiology in
557	co-cultures in the absence of antibiotics for uncovering novel mechanisms of
558	community-encoded protection against antibiotics.

560 Online Methods

561

562 Fruit fly stocks and gut microbiome sequencing

563	Wolbachia-free Drosophila melanogaster Canton-S (BL64349) flies were obtained
564	from the Bloomington Drosophila Stock Center, and were reared and maintained
565	as previously described ²⁴ . To determine the bacterial strains present in our flies,
566	we performed culture-independent 16S amplicon sequencing targeting the V4
567	region on an Illumina MiSeq. Individual flies were CO2-anesthetized, surface-
568	sterilized by washing with 70% ethanol and sterile PBS six times each. Flies were
569	dissected under a stereo microscope and their guts were placed in 2-mL screw
570	cap microtubes containing 200 μ L of 0.1-mm sterile zirconia-silicate beads
571	(BioSpec Products 11079101z) and 350 μL of sterile lysis buffer (10 mM Tris-HCl,
572	pH 8, 25 mM NaCl, 1 mM EDTA, 20 mg/mL lysozyme). Samples were
573	homogenized by bead beating at maximum speed (Mini-Beadbeater, BioSpec
574	Products) for 1 min. Proteinase K was added at 400 $\mu\text{g/mL}$ and samples were
575	incubated for 1 h at 37 °C. Sample were then centrifuged (3,000 × g for 3 min) and
576	300 μ L of the nucleic acids-containing supernatant were transferred to 1.7-mL
577	microtubes. Genomic DNA from samples was cleaned up through a DNA Clean
578	& Concentrator-5 column (Zymo Research D4014). Using the protocol described
579	in Ref. ⁴⁷ for library preparation and sequencing, we sequenced the gut contents

580	of 18 individual flies, three flies each from six independent vials. Paired-end 250-
581	base pair sequencing generated >10,000 reads per sample. Reads were filtered
582	using PrinSeq as in Ref ⁴⁸ . The reads were then clustered into operational
583	taxonomic units (OTUs) at 99% identity and assigned taxonomy using LOTUS ⁴⁹
584	with the following parameters: [-threads 60 -refDB SLV -highmem 1 -id 0.99 -p
585	miseq -useBestBlastHitOnly 1 -derepMin 3:10,10:3 -simBasedTaxo 1 -CL 3].
586	Redundant strain identities were collapsed into single OTUs. Common reagent
587	contaminant strains were then removed ⁵⁰ . After filtering, only five unique species
588	were identified (Fig. 1a). We isolated these species in culture and verified the
589	taxonomic identity of our isolates using Sanger sequencing of the complete 16S
590	rRNA gene ¹³ . At 97% OTU clustering, only three species were found: Acetobacter
591	sp., Lactobacillus plantarum, and Lactobacillus brevis. When less stringent FASTQ
592	quality filtering was used, trace amounts (~0.01%) of two mammalian gut strains
593	were identified: Blautia sp. and Bacteroides sp. Because these OTUs were
594	eliminated by more stringent quality filtering, we speculate that they may have
595	resulted from barcode bleed-through on the MiSeq flowcell.
596	

597 Bacterial growth and media

598 Bacterial strains used in this study are listed in Supplementary Table 1. For

599 culturing, all strains were grown in MRS medium (Difco™ Lactobacilli MRS

600	Broth, BD 288110). Frozen stocks were streaked onto MRS agar plates (1.5% agar,
601	Difco™ agar, granulated, BD 214530) and single colonies were picked to start
602	cultures. MYPL medium was adapted from Ref. 51 , with 1% (w/v) D-mannitol
603	(ACROS Organics AC125345000, Lot A0292699), 1% (w/v) yeast extract (Research
604	Products International Y20020, Lot 30553), 0.5% (w/v) peptone (Bacto TM peptone,
605	BD 211677 Lot 7065816), 1% (w/v) lactate (Lactic acid, Sigma L6661-100ML Lot
606	MKCC6092), and 0.1% (v/v) Tween [®] 80 (Polyoxyethylene(20)sorbitan
607	monooleate, ACROS Organics AC278632500 Lot A0375189). The medium was set
608	to pH 7 with NaOH (EMD Millipore SX0590, Lot B0484969043). All media were
609	filter-sterilized. Strains were grown at 30 °C with constant shaking.
610	
611	To count CFUs in cultures, aliquots were diluted serially in PBS. For cultures
612	treated with high concentrations of antibiotics, cells were centrifuged for 1.5 min
613	at 8000 x g and resuspended in 1X PBS pH 7.4 (Gibco TM 70011044) after removing
614	the supernatants. PBS-diluted cultures were plated on MRS and MYPL because
615	lactobacilli grow faster than acetobacters on MRS and vice versa on MYPL.
616	Colony morphology and color enable differentiation of lactobacilli from
617	acetobacters.
618	

619 Conditioned media

620	Conditioned media were obtained by centrifuging cultures at $4500 \ge g$ for 5 min
621	and filtering the supernatant with a 0.22- μ m polyethersulfone filter (Millex-GP
622	SLGP033RS) to remove cells. Conditioned media were acidified with HCl (Fisher
623	Chemical A144-500, Lot 166315) or basified with NaOH (EMD Millipore SX0590,
624	Lot B0484969043). Conditioned media were sterilized after adjusting pH with
625	0.22-µm PES filters.
626	
627	MIC estimations
628	To estimate the sensitivity of each species to various antibiotics, colonies were
629	inoculated into MRS and grown for 48 h at 30 °C with constant shaking. Cultures
630	were diluted to an OD of 0.001 for <i>Lp</i> , <i>Lb</i> , and <i>At</i> , and 0.01 for <i>Ap</i> . Diluted
631	cultures (195 $\mu L)$ were transferred to 96-well plates containing 5 μL of antibiotics
632	at 40X the indicated concentration. Antibiotics used were ampicillin (ampicillin
633	sodium salt, MP Biomedicals 02194526, Lot R25707, stock at 100 mg/mL in milliQ
634	H2O), streptomycin (streptomycin sulfate salt, Sigma S9137 Lot SLBN3225V,
635	stock at 50 mg/mL in milliQ H2O), chloramphenicol (Calbiochem 220551, Lot
636	D00083225, stock at 50 mg/mL in ethanol), tetracycline (tetracycline
637	hydrochloride, MP Biomedicals 02103011, Lot 2297K, stock at 25 mg/mL in
638	dimethyl sulfoxide (DMSO)), erythromycin (Sigma E5389-1G, Lot WXBC4044V,
639	stock at 64 mg/mL in methanol), ciprofloxacin (Sigma-Aldrich 17850, Lot

640	116M4062CV, stock at 1.2 mg/mL in DMSO), trimethoprim (Alfa Aesar J63053-03,
641	Lot T16A009, stock at 2 mg/mL in DMSO), spectinomycin (spectinomycin
642	hydrochloride, Sigma-Aldrich PHR1426-500MG, Lot LRAA9208, stock at 50
643	mg/mL in milliQ H2O), rifampin (Sigma R3501-5G, Lot SLBP9440V, stock at 50
644	mg/mL in DMSO), and vancomycin (vancomycin hydrochloride, Sigma-Aldrich
645	PHR1732-4X250MG, Lot LRAB3620, stock at 200 mg/mL in DMSO:H2O 1:1).
646	Antibiotics were diluted serially in 2-fold increments into MRS. Cultures were
647	grown for 24 h at 30 °C with constant shaking and absorbance was measured in
648	an Epoch2 plate reader (BioTek Instruments) at 600 nm. The MIC was estimated
649	as the minimum concentration of antibiotic with absorbance within two standard
650	deviations of media controls.
651	
652	For experiments in Supplementary Figure S2, colonies of <i>Lp</i> and <i>Ap</i> were
653	inoculated into MRS and grown for 48 h at 30 $^\circ\mathrm{C}$ with constant shaking. The

654 saturated cultures were diluted to OD 0.02, mixed 1:1, and grown for 48 h at 30

⁶⁵⁵ °C with constant shaking. Then, the mono- and co-cultures were diluted to an

656 OD of 0.001 (final cell density $\sim 5 \times 10^5$ CFU/mL) and transferred to 96-well plates

 $_{657}$ containing 5 µL of rifampin at 40X working concentration. Cultures were grown

658 for 24 h and MICs were estimated as described above. For Figures 1b-e, cultures

were serially diluted in 5-fold increments in PBS, and 3 μ L of the dilutions were

660	spotted onto MRS and MYPL rectangular plates using a semi-automated high-
661	throughput pipetting system (BenchSmart 96, Mettler Toledo). Plates were
662	incubated at 30 °C until colonies were visible for quantification of viability.
663	
664	Plate reader growth curves
665	Cultures were grown from single colonies for 48 h in MRS at 30 °C with constant
666	shaking. Then, cultures were diluted to a final OD of 0.02 and 200 μL of the
667	dilutions were transferred to clear-bottom transparent 96-well plates. Plates were
668	sealed with transparent film pierced with a laser cutter to have ~0.5-mm holes to
669	allow aeration in each well. Absorbance was measured at 600 nm in an Epoch2
670	plate reader (BioTek Instruments). Plates were shaken between readings with
671	linear and orbital modes for 145 s each.
672	
673	Growth rates and lag times were quantified using custom MATLAB (Mathworks,
674	R2008a) code. The natural logarithm of OD was smoothed with a mean filter
675	with window size of 5 timepoints for each condition over time, and the smoothed
676	data were used to calculate the instantaneous growth rate $d(\ln(OD))/dt$. The
677	smoothed ln(OD) curve was fit to the Gompertz equation ⁵² to determine lag time
678	and maximum growth rate.
679	

680 *pH measurements*

681	Culture pH was measured using the dual-excitation ratiometric pH indicator
682	2',7-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein, mixed isomers (BCECF,
683	Invitrogen B1151, Lot 1831845), which has a p K_a of ~6.98. A stock solution of 1
684	mg/mL BCECF in DMSO (Fisher BioReagents BP231, Lot 165487) was diluted
685	1000-fold into MRS to a final concentration of 1 μ g/mL. Cells were grown in a
686	Synergy H1 plate reader (BioTek Instruments) following the procedure described
687	above. In addition to absorbance, fluorescence was measured every cycle using
688	monochromators at excitation (nm)/emission (nm) wavelength combinations
689	440/535 and 490/535. After subtracting the fluorescence of wells containing cells
690	without the indicator, the ratio of the signals excited at 440 nm and 490 nm was
691	used to calculate the culture pH using a calibration curve of MRS set to various
692	pH values.
693	
694	Culture pH after 48 h of growth was directly measured with a pH meter
695	(sympHony, VWR) equipped with a pH combination electrode (Fisherbrand™

696 accumetTM 13-610-104A).

697

698 Changes in pH during growth

699	To change the pH of monocultures and co-cultures in stationary phase, we
700	obtained conditioned medium at 30 h or 40 h as described above and set the pH
701	to the desired values. We then centrifuged 2 mL of a replicate culture for 3 min at
702	8000 x g , removed the supernatant, and resuspended cells in 1 mL of the
703	corresponding medium to wash the cells. The suspension was centrifuged a
704	second time and the pellets were resuspended in 2 mL of the corresponding
705	medium.
706	
707	Time-lapse and fluorescence microscopy
708	Cells were imaged on a Nikon Eclipse Ti-E inverted fluorescence microscope
709	with a 100× (NA 1.40) oil-immersion objective. Images were collected on a DU897
710	electron multiplying charged couple device camera (Andor) using μ Manager v.
711	1.453. Cells were maintained at 30 °C during imaging with an active-control
712	environmental chamber (Haison).
713	
714	Cultures grown for 48 h were diluted 100-fold into PBS and 2 μL were spotted
715	onto a 1% (w/v) agarose MRS pad. After drying at room temperature, the pads
716	were covered with a cover slip, sealed with a mixture of equal portions of
717	Vaseline, lanolin, and paraffin, and transferred to the microscope. Images were
718	taken every 2 min using μManager v. 1.4.

719

720	To quantify the morphology of cells using fluorescent strains, co-cultures were
721	diluted 100-fold into PBS and 2 μL were spotted onto a 1% (w/v) agarose PBS
722	pad. After drying, the pads were covered with a cover slip and transferred to the
723	microscope. Images were acquired at room temperature using μ Manager v. 1.4.
724	
725	For Figure S6, saturated <i>Ap</i> monocultures were diluted 100- or 500-fold into PBS
726	and 2 μL were spotted onto a 1% (w/v) agarose MRS pad containing 30 μM
727	propidium iodide (from a 4.3-mM stock in water, BD, Cell Viability Kit 349483).
728	After drying, the pads were covered with a cover slip and transferred to the
729	microscope. Images were taken at 30 °C every 5 min using μ Manager v. 1.4.
730	
731	The MATLAB image processing software <i>Morphometrics</i> ⁵⁴ was used to segment
732	cells and to identify cell contours from phase-contrast images. Fluorescence
733	intensity per cell was calculated by averaging the fluorescence over the area of
734	the cell. A threshold for propidium-iodide labeling was defined that clearly
735	separated labeled cells from unlabeled cells (data not shown).
736	

737 Single-cell tracking and analysis

738	Images were segmented and cells were tracked using the software SuperSegger v.
739	355. Further analysis of single-cell growth was performed using custom MATLAB
740	code. Cells with length >6 μ m were removed from further analysis due to issues
741	with segmentation. Length traces were smoothed using a mean filter of window
742	size 5. Cells were classified as Lp or Ap if 90% of their traces were above (Lp) or
743	below (Ap) a log ₁₀ (length-to-width ratio) of 0.375. Traces with more than 15
744	timepoints were used for further analysis. Elongation rates $d(\ln L)/dt$ were
745	calculated for each cell and the mean and standard error were computed for each
746	time point.
747	
748	Cloning and transformations
748 749	<i>Cloning and transformations</i> To generate the fluorescently labeled <i>Ap</i> strain, the sfGFP coding sequence was
749	To generate the fluorescently labeled <i>Ap</i> strain, the sfGFP coding sequence was
749 750	To generate the fluorescently labeled <i>Ap</i> strain, the sfGFP coding sequence was cloned into pCM62 ⁵⁶ under control of the <i>Escherichia coli</i> lac promoter. The sfGFP
749 750 751	To generate the fluorescently labeled <i>Ap</i> strain, the sfGFP coding sequence was cloned into pCM62 ⁵⁶ under control of the <i>Escherichia coli</i> lac promoter. The sfGFP coding sequence was amplified from pBAD-sfGFP using primers ZTG109 (5'
749 750 751 752	To generate the fluorescently labeled <i>Ap</i> strain, the sfGFP coding sequence was cloned into pCM62 ⁵⁶ under control of the <i>Escherichia coli</i> lac promoter. The sfGFP coding sequence was amplified from pBAD-sfGFP using primers ZTG109 (5' ggatttatgcATGAGCAAGGGCGAGGAG) and ZTG110 (5'-
749750751752753	To generate the fluorescently labeled <i>Ap</i> strain, the sfGFP coding sequence was cloned into pCM62 ⁵⁶ under control of the <i>Escherichia coli</i> lac promoter. The sfGFP coding sequence was amplified from pBAD-sfGFP using primers ZTG109 (5' ggatttatgcATGAGCAAGGGCGAGGAG) and ZTG110 (5'- gctttgttagcagccggatcgggcccggatctcgagTTACTTGTACAGCTCGTCCATG).
 749 750 751 752 753 754 	To generate the fluorescently labeled <i>Ap</i> strain, the sfGFP coding sequence was cloned into pCM62 ⁵⁶ under control of the <i>Escherichia coli</i> lac promoter. The sfGFP coding sequence was amplified from pBAD-sfGFP using primers ZTG109 (5' ggatttatgcATGAGCAAGGGCGAGGAG) and ZTG110 (5'- gctttgttagcagccggatcgggcccggatctcgagTTACTTGTACAGCTCGTCCATG). Gibson assembly ⁵⁷ was used to insert the amplified sfGFP cassette into

758	33240)in potato agar mating plates ⁵⁸ . Transformed Ap was selected with 10
-----	--

- μ g/mL tetracycline on yeast peptone glycerol agar plates⁵⁸.
- 760

761	To generate the L	<i>p</i> strain harboring	pHluorin, the	pHluorin codin	g sequence was
-----	-------------------	---------------------------	---------------	----------------	----------------

- ⁷⁶² cloned into pCD256-mCherry⁵⁹ under the control of the strong p11 promoter²⁰.
- 763 The pHluorin coding sequence was amplified using primers ZFH064-pHluorin

764 (5'-ATTACAAGGAGATTTTACAT ATGAGTAAAGGAGAAGAACTTTTC) and

- 765 ZFH065-pHluorin (5'-
- 766 gtctcggacagcggttttGGATCCTTATTTGTATAGTTCATCCATG). Gibson
- ⁷⁶⁷ assembly⁵⁷ was used to insert the amplified pHluorin cassette into NdeI/BamHI-

⁷⁶⁸ digested pCD256-mCherry. The *Lp*-pHluorin strain was generated by

- transforming wild type Lp as previously described⁶⁰.
- 770
- Fluorescent strains were further grown in MRS with antibiotics (10 μ g/mL
- chloramphenicol (Calbiochem 220551, Lot D00083225) for *Lp*, tetracycline (10
- ⁷⁷³ μg/mL tetracycline hydrochloride, MP Biomedicals 02103011, Lot 2297K) for *Ap*).
- 774

775 *pHluorin measurements*

776 Cells were grown following the procedure described above. The *Lp* pHluorin

strain was grown in MRS containing 10 μ g/mL chloramphenicol for the first 48 h

778	of growth. In addition to absorbance, fluorescence was measured every cycle
779	using monochromators at excitation (nm)/emission (nm) wavelength
780	combinations 405/509 and 475/509. Because the signal from excitation
781	wavelength 405 nm was undistinguishable from signal from medium (data not
782	shown), we also measured pHluorin signal at both excitation/emission
783	wavelength combinations for cells in PBS. Cultures (48-h-old, 250 μL) were
784	centrifuged at 10,000 x g for 1 min and resuspended in 1X PBS. Aliquots (200 μ L)
785	were transferred to a 96-well plate and fluorescence was measured using
786	monochromators at excitation (nm)/emission (nm) wavelength combinations
787	405/509 and 475/509 within 1 min of resuspension in a Synergy H1 plate reader
788	(BioTek Instruments).
789	

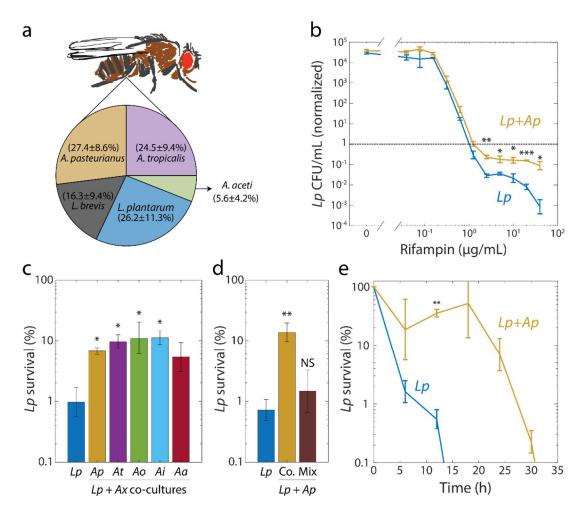
790 *Lactate measurements*

Colonies of *Lp* and acetobacters were inoculated into 3 mL MRS and grown for 48 h at 30 °C with constant shaking. Saturated cultures were diluted to OD 0.02, mixed 1:1, and grown at 30 °C with constant shaking. After mixing for 20 h and 48 h, a 700- μ L aliquot was transferred to a microcentrifuge tube and centrifuged at 10,000 x *g* for 4 min. Supernatant (600 μ L) was transferred to a new tube and centrifuged at 10,000 x *g* for 4 min. Supernatant (500 μ L) was transferred to a new tube and kept on ice for not longer than 1 h, until lactate was measured.

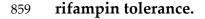
799	L- and D-lactate concentrations were measured using the EnzyChrom ${}^{\rm TM}$ L-
800	(BioAssay Systems ECLC-100, Lots BH06A30 and BI07A09) and D-lactate
801	(BioAssay Systems EDLC-100, Lots BH0420 and BI09A07) Assay Kits. Samples
802	were diluted 10- and 100-fold in water, and absorbance was measured according
803	to the manufacturer's instructions in a plate reader (Tecan M200). We also
804	included controls without lactate dehydrogenase to account for endogenous
805	activity in the supernatants.
806	
807	Ex vivo <i>experiments</i>
808	We generated germ-free flies by sterilizing dechorionated embryos. Embryos
809	oviposited on grape juice-yeast medium (20% organic grape juice, 10% active dry
810	yeast, 5% glucose, 3% agar) were harvested and washed twice with 0.6% sodium
811	hypochlorite for 2.5 min each, once with 70% ethanol for 30 s, and three times in
812	sterile water for 10 s each. Eggs were transferred into flasks with sterile glucose-
813	yeast medium (10% glucose, 5% active dry yeast, 1.2% agar, 0.42% propionic
814	acid) and were maintained at 25 °C with 60% humidity and 12 h light/dark
815	cycles. Germ-free stocks of these flies were kept for several generations and were
816	regularly checked for sterility by plating flies onto MRS and YPD media.
817	

818	To prepare flies for tolerance measurements, we took ~3-day-old germ-free flies
819	and transferred them to sterile vials with ~50 flies each. We added ~5 x 10^6 CFU
820	of Lp onto the food and let the flies equilibrate with the bacteria for 3 days. The
821	day before the experiment, flies were transferred into a clean sterile vial.
822	
823	To extract the midgut and crop, flies were washed with 70% ethanol and PBS six
824	times each. Flies were dissected under a stereo microscope in sterile PBS.
825	Dissected crops and midguts were pooled into 2 mL of sterile MRS with 200 μL
826	0.5-mm diameter sterile zirconia-silicate beads (BioSpec Products 11079105).
827	Suspended organs were homogenized in a bead beater (Mini-Beadbeater,
828	BioSpec Products) at maximum speed for 1 min. The homogenate was diluted to
829	a cell density of ~5 x 105 CFU/mL and was treated with 50 $\mu g/mL$ rifampin for 24
830	h.
831	
832	Statistical analyses
833	To determine significance of differences, we performed pairwise Student's two-
834	sided <i>t</i> -tests throughout. To decrease Type I error, we performed Bonferroni
835	corrections for each experiment. Significant differences are denoted in the
836	figures: *: <i>P</i> <0.05/ <i>n</i> , **: <i>P</i> <0.01/ <i>n</i> , ***: <i>P</i> <0.001/ <i>n</i> , where <i>n</i> is the number of
837	comparisons.

838 Acknowledgments

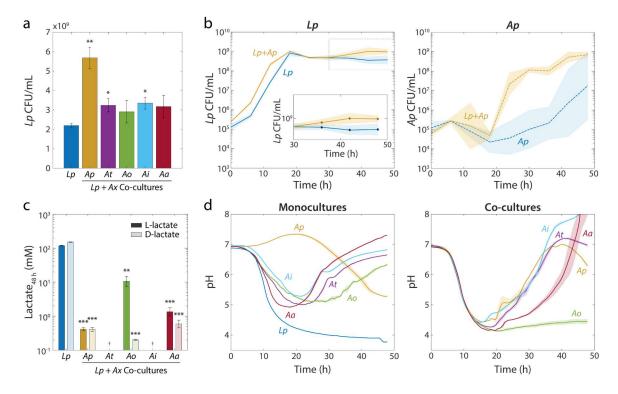

839	The authors thank Vivian Zhang for technical support, Elizabeth Skovran for
840	kindly providing the pCM62 plasmid for Acetobacter spp., and Kazunobu
841	Matsushita for providing the A. tropicalis SKU1100 control strain in the initial
842	conjugation experiments. We also thank the Huang and Ludington labs for
843	fruitful discussions. This work was supported by NIH Director's New Innovator
844	Awards DP2OD006466 (to K.C.H.), NSF CAREER Award MCB-1149328 (to
845	K.C.H.), the Allen Center for Systems Modeling of Infection (to K.C.H.), and NIH
846	Director's Early Independence Award DP5OD017851 (to W.B.L.). K.C.H. is a
847	Chan Zuckerberg Biohub Investigator. A.AD. is a Howard Hughes Medical
848	Institute International Student Research fellow and a Stanford Bio-X Bowes
849	fellow.
850	

851 Author Contributions


```
A.A.-D., K.C.H., and W.B.L designed the research. A.A.-D. and T.T. performed in
```

- 853 vitro experiments. A.A.-D. and B.O. performed ex vivo experiments. B.O., Z.T.G.,
- and Z.H. built fluorescent strains. A.A.-D. analyzed the data. A.A.-D., K.C.H.,
- and W.B.L. wrote the paper. All authors reviewed the paper before submission.

856 Figure Legends

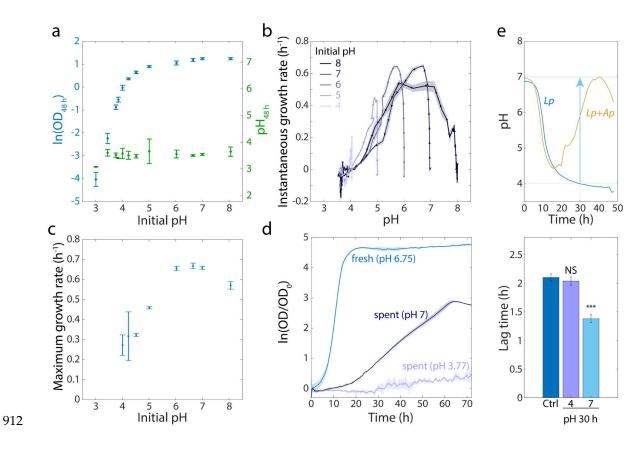

858 Figure 1: Interspecies interactions within the fruit fly gut microbiome induce

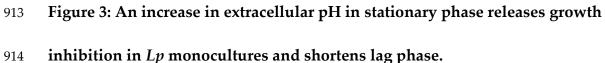
- a) Relative abundances of the dominant species in the *D. melanogaster* gut
- 861 microbiome determined from 16S rRNA sequencing. Values are mean ±
- standard deviation (S.D.), *n*=18. Mean and S.D. were weighed by the total
- 863 number of reads for each fly.

864	b)	When grown with <i>Ap</i> , <i>Lp</i> survived after 24 h at rifampin concentrations above
865		the MIC. Viable cell plating counts of Lp after growth in rifampin for 24 h
866		normalized to the counts at the start of the experiment (<i>t</i> =0). Error bars are
867		standard deviation (S.D.) for each condition, <i>n</i> =3. <i>P</i> -values are from a
868		Student's two-sided <i>t</i> -test of the difference of the co-culture from the
869		monoculture (*: <i>P</i> <4x10 ⁻³ , **: <i>P</i> <8x10 ⁻³ , ***: <i>P</i> <8x10 ⁻⁵).
870	c)	Protection of <i>Lp</i> at supra-MIC concentrations of rifampin is elicited by all
871		acetobacters tested. Normalized CFUs of Lp grown in monoculture (Lp) or in
872		co-culture with Ap , At , Ao , Ai , and Aa , and then treated with 20 µg/mL
873		rifampin for 24 h. Error bars are S.D. for each condition, <i>n</i> =3. <i>P</i> -values are
874		from a Student's two-sided <i>t</i> -test of the difference from the monoculture (*:
875		<i>P</i> <0.01).
876	d)	Ap-mediated survival of Lp at rifampin concentrations above the MIC is
877		history-dependent, requiring co-culturing before exposure as compared with
878		mixing. Normalized CFUs of <i>Lp</i> grown in monoculture, in co-culture with <i>Ap</i>
879		(Co.), or mixed with <i>Ap</i> without subsequent growth in the absence of
880		antibiotic (mix), and treated with 20 $\mu\text{g}/\text{mL}$ rifampin for 24 h. Error bars are
881		S.D. for each condition, <i>n</i> =3. <i>P</i> -values are from a Student's two-sided <i>t</i> -test of
882		the difference from the monoculture (**: $P < 5 \times 10^{-3}$, NS: not significant).

883	e)	The time to killing of <i>Lp</i> under rifampin treatment is extended in the presence
884		of an Acetobacter. Normalized CFUs of Lp grown in monoculture and co-
885		cultured with Ap , and treated with 50 µg/mL rifampin. Error bars are S.D. for
886		each condition, <i>n</i> =3. <i>P</i> -values are from a Student's two-sided <i>t</i> -test of the
887		difference from the monoculture at the corresponding timepoint (**: $P < 1 \times 10^{-3}$).
888		Values off the graph were below the limit of detection of the assay
889		

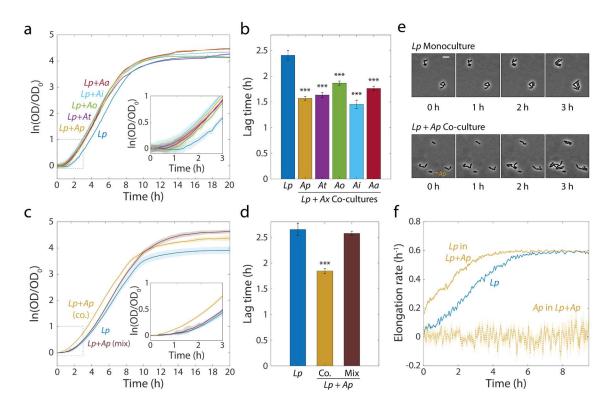
891 Figure 2: *Lp* growth during stationary phase in *Acetobacter* co-cultures is


associated with an increase in pH and a decrease in lactate concentration.


- a) Co-culturing *Lp* with *Ap*, *At*, *Ai*, or *Aa* resulted in increased *Lp* cell density
- after 48 h. Co-culturing with *Ao* did not significantly increase *Lp* cell
- density by 48 h. Error bars are standard deviation (S.D.) for each
- solution, *n*=3. *P*-values are from a Student's two-sided *t*-test of the
- difference from the monoculture (*: P < 0.01, **: $P < 2x10^{-3}$).

b) Co-culturing *Lp* with *Ap* resulted in higher *Lp* cell density in stationary

- phase, as well as faster growth and shorter lag for *Ap*. Shaded regions
- 900 indicate S.D., *n*=3. Inset: zoom-in on region inside dashed box highlighting
- 901 increase in carrying capacity in co-culture.

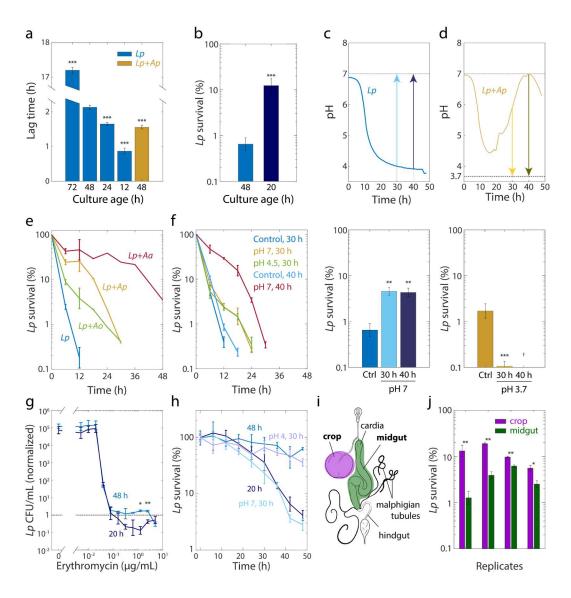

902	c)	L- and D-lactate were produced in <i>Lp</i> monocultures and consumed in co-
903		cultures. Lactate concentration was measured enzymatically from culture
904		supernatants at 48 h. Error bars are S.D. for each condition, <i>n</i> =3. <i>P</i> -values
905		are from a Student's two-sided <i>t</i> -test of the difference from the
906		monoculture (**: <i>P</i> <2x10 ⁻³ , ***: <i>P</i> <2x10 ⁻⁴).
907	d)	The increase in Lp cell density in stationary phase is associated with an
908		Acetobacter-dependent increase in pH early in stationary phase. pH was
909		measured with the pH-sensitive dye 2',7-bis-(2-carboxyethyl)-5-(and-6)-
910		carboxyfluorescein over time (Methods). Shaded regions indicate S.D.,
911		<i>n</i> =3.

915	a) <i>Lp</i> growth is inhibited by low pH. Logarithm of OD (blue) and pH
916	measured using BCECF (green) after 48 h of growth in MRS at various
917	starting pH values. Error bars are standard deviation (S.D.), <i>n</i> =4.
918	b) Instantaneous growth rate in MRS is strongly linked to pH. Each curve
919	was initialized at a different starting pH and represents 48 h of growth.
920	Arrowheads indicate direction of time. Shaded regions are S.D., <i>n</i> =4.
921	c) Maximal growth rate in MRS increases with increasing initial pH. Error
922	bars are S.D., <i>n</i> =4.

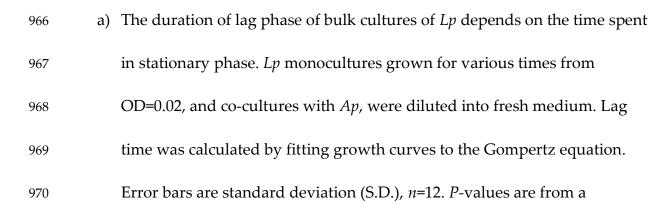
923	d) Increasing the pH of a saturated, spent <i>Lp</i> culture from 3.77 to 7 allows
924	growth, although not as much as fresh MRS. Error bars are S.D., $n = 3$.
925	e) Increasing the pH of an Lp monoculture at $t = 30$ h from 4 to 7 to mimic the
926	pH increase in <i>Lp-Ap</i> co-culture (top) leads to a shorter lag phase (bottom).
927	Lag time was calculated by fitting growth curves to the Gompertz
928	equation. Error bars are S.D., <i>n</i> =3. <i>P</i> -values are from a Student's two-sided
929	<i>t</i> -test of the difference from the control (***: $P < 5 \times 10^{-4}$, NS: not significant).
930	

931

932


Figure 4: Co-cultures of *Lp* and acetobacters undergo shorter lag phases.

933	a)	Calculating the logarithm of OD normalized by OD at <i>t</i> =0 reveals that co-
934		cultures of Lp and various acetobacters (Ax) experience more rapid
935		transitions from stationary phase to exponential growth than
936		monocultures of Lp. Shaded regions indicate standard deviation (S.D.),
937		<i>n</i> =5. Inset: zoom-in of region inside dashed box highlighting lag
938		differences.
939	b)	Co-culture lag times are significantly shorter than <i>Lp</i> monoculture lag
940		times. Lag times were obtained by fitting the growth curves in (a) to the
941		Gompertz equation. Error bars are S.D. for each condition, <i>n</i> =5. <i>P</i> -values


942		are from a Student's two-sided <i>t</i> -test of the difference from the
943		monoculture (***: <i>P</i> <2x10 ⁻⁴).
944	c)	Mixing Lp monocultures with Ap monocultures (Mix) yields growth
945		curves with a similar lag phase than those of Lp monocultures. Shaded
946		regions indicate S.D., <i>n</i> =5. Inset: zoom-in on region inside dashed box
947		highlighting lag differences.
948	d)	Mixed <i>Lp-Ap</i> cultures do not experience significantly shorter lag times
949		than Lp monocultures. Lag times were obtained by fitting the curves in (c)
950		to the Gompertz equation. Error bars are S.D. for each condition, <i>n</i> =5. <i>P</i> -
951		values are from a Student's two-sided <i>t</i> -test of the difference from the
952		
932		monoculture (***: <i>P</i> <5x10 ⁻⁴).
953	e)	Single-cell microscopy demonstrates that a decrease in the duration of lag
	e)	
953	e)	Single-cell microscopy demonstrates that a decrease in the duration of lag
953 954	e)	Single-cell microscopy demonstrates that a decrease in the duration of lag phase of <i>Lp</i> was responsible for the lag-time decrease in co-culture.
953 954 955	e)	Single-cell microscopy demonstrates that a decrease in the duration of lag phase of <i>Lp</i> was responsible for the lag-time decrease in co-culture. Representative phase microscopy images of <i>Lp</i> in monoculture and co-
953 954 955 956	e) f)	Single-cell microscopy demonstrates that a decrease in the duration of lag phase of <i>Lp</i> was responsible for the lag-time decrease in co-culture. Representative phase microscopy images of <i>Lp</i> in monoculture and co-cultured with <i>Ap</i> on an MRS agar pad. The only <i>Ap</i> cell visible in these
953 954 955 956 957		Single-cell microscopy demonstrates that a decrease in the duration of lag phase of <i>Lp</i> was responsible for the lag-time decrease in co-culture. Representative phase microscopy images of <i>Lp</i> in monoculture and co- cultured with <i>Ap</i> on an MRS agar pad. The only <i>Ap</i> cell visible in these images is indicated with an arrow. Size bar = 5 μ m.
 953 954 955 956 957 958 		Single-cell microscopy demonstrates that a decrease in the duration of lag phase of <i>Lp</i> was responsible for the lag-time decrease in co-culture. Representative phase microscopy images of <i>Lp</i> in monoculture and co- cultured with <i>Ap</i> on an MRS agar pad. The only <i>Ap</i> cell visible in these images is indicated with an arrow. Size bar = 5 μ m. The instantaneous elongation rate of single <i>Lp</i> cells increases faster in co-

 $(n_{Lp,0 h} = 465, n_{Lp,9.5 h} = 27,503)$ or a co-culture with $Ap (n_{Lp,0 h} = 448, n_{Lp,9.5 h}$

963 58,087,
$$n_{Ap,0h} = 47$$
, $n_{Ap,9.5h} = 146$).

965 Figure 5: Tolerance to rifampin is modulated by pH.

971		Student's two-sided <i>t</i> -test of the difference with respect to the 48 h culture
972		(*** <i>P</i> <2.5x10 ⁴).
973	b)	Culturing Lp as a monoculture for a shorter time leads to higher cell
974		survival. Viable cell plating counts of Lp after growth in 20 µg/mL
975		rifampin for 24 h normalized to the counts at the start of the experiment
976		(<i>t</i> =0). Error bars are S.D. for each condition, <i>n</i> =3. <i>P</i> -values are from a
977		Student's two-sided <i>t</i> -test of the difference between the cultures (***:
978		<i>P</i> <1x10 ⁻³).
979	c)	Neutralization of pH in stationary phase in Lp monocultures is sufficient
980		to induce tolerance. Increasing the pH of an Lp monoculture at $t = 30$ h or t
981		= 40 h to 7 to mimic the pH increase in co-cultures of Lp with acetobacters
982		(upper panel) increased cell survival after treatment with 20 $\mu\text{g/mL}$
983		rifampin for 24 h (lower panel). A 48-h-old culture with no changes in pH
984		was used as a control (Ctrl.). Error bars are S.D. for each condition, <i>n</i> =3. <i>P</i> -
985		values are from a Student's two-sided <i>t</i> -test of the difference between the
986		cultures (**: <i>P</i> <5x10 ⁻³).
987	d)	Acidification of <i>Lp</i> co-cultures with <i>Ap</i> during the exponential-to-
988		stationary phase transition or in late stationary phase sensitizes Lp to
989		rifampin. Decreasing the pH of an <i>Lp</i> co-culture with <i>Ap</i> at $t = 30$ h or $t =$
990		40 h to 3.7 to mimic the pH of an Lp monoculture (upper panel) increased

991		survival after treatment with 20 μ g/mL rifampin for 24 h (lower panel).
992		Error bars are S.D. for each condition, <i>n</i> =3. <i>P</i> -values are from a Student's
993		two-sided <i>t</i> -test of the difference between the cultures (***: $P < 5 \times 10^{-4}$).
994		[†] Values below the limit of detection.
995	e)	The dynamics of killing in <i>Lp</i> co-culture with acetobacters differs
996		quantitatively according to species and from <i>Lp</i> monoculture (blue),
997		indicating that the acetobacters induce rifampin tolerance to different
998		degrees. Normalized CFU/mL of <i>Lp</i> in monoculture and in co-culture with
999		acetobacters, and treated with 50 μ g/mL rifampin. Error bars are S.D. for
1000		each condition, <i>n</i> =3.
1001	f)	The timing of the pH change in Acetobacter co-culture predicts the extent
1002		of protection against 50 μ g/mL rifampin. Neutralization of pH in <i>Lp</i>
1002 1003		of protection against 50 μ g/mL rifampin. Neutralization of pH in <i>Lp</i> monocultures at 40 h of growth (to mimic <i>Lp</i> + <i>Aa</i> co-cultures) elicits longer
1003		monocultures at 40 h of growth (to mimic <i>Lp+Aa</i> co-cultures) elicits longer
1003 1004		monocultures at 40 h of growth (to mimic <i>Lp+Aa</i> co-cultures) elicits longer protection against rifampin than neutralization at 30 h. A small increase in
1003 1004 1005		monocultures at 40 h of growth (to mimic $Lp+Aa$ co-cultures) elicits longer protection against rifampin than neutralization at 30 h. A small increase in pH (from 3.85 to 4.5) at 30 h (to mimic $Lp+Ao$ co-cultures) provides
1003 1004 1005 1006	g)	monocultures at 40 h of growth (to mimic <i>Lp+Aa</i> co-cultures) elicits longer protection against rifampin than neutralization at 30 h. A small increase in pH (from 3.85 to 4.5) at 30 h (to mimic <i>Lp+Ao</i> co-cultures) provides protection comparable to complete neutralization. Error bars are S.D. for
1003 1004 1005 1006 1007	g)	monocultures at 40 h of growth (to mimic $Lp+Aa$ co-cultures) elicits longer protection against rifampin than neutralization at 30 h. A small increase in pH (from 3.85 to 4.5) at 30 h (to mimic $Lp+Ao$ co-cultures) provides protection comparable to complete neutralization. Error bars are S.D. for each condition, <i>n</i> =3.

1011		counts of Lp after growth in erythromycin for 24 h normalized to cell
1012		counts at the start of the experiment ($t=0$). Error bars are S.D., $n = 3$. P -
1013		values are from a Student's two-sided <i>t</i> -test of the difference between the
1014		two samples at a given time point (*: $P < 4x10^{-3}$, **: $P < 8x10^{-4}$).
1015	h)	Shifting the pH of an Lp monoculture at 30 h to 4 or 7, followed by 18 h of
1016		growth before treatment with 2 $\mu\text{g/mL}$ erythromycin, mimics the survival
1017		dynamics of a 48-h-old or 20-h-old culture in stationary phase,
1018		respectively. Normalized CFU/mL of <i>Lp</i> monocultures. Error bars are S.D.
1019		for each condition, <i>n</i> =3.
1020	i)	Schematic of the fruit fly intestinal tract, a ~5 mm-long tube consisting of
1021		the foregut, midgut, and hindgut. The crop is an accessory fermentative
1022		organ within the foregut.
1023	j)	Survival of <i>Lp</i> is significantly higher in bulk cultures resuspended from
1024		the crop than in cultures resuspended from the midgut. Female, ~7-day-
1025		old, germ-free flies were colonized with Lp and left for three days in sterile
1026		food to reach equilibrium, before the crop was dissected from the midgut
1027		(Methods). After homogenization of pools of crops and midguts, the
1028		cultures were exposed to 50 $\mu\text{g/mL}$ rifampin for 24 h and viable cells were
1029		counted via CFU. Error bars are S.D. of the technical replicates for each
1030		biological replicate, $n=3$ in each biological replicate. <i>P</i> -values are from a

1031 Student's two-sided *t*-test of the difference between the two samples (*:

1032 *P*<1.25x10⁻², **: *P*<2.5x10⁻³).

References

1034		
1035	1	Thulin, E., Sundqvist, M. & Andersson, D. I. Amdinocillin (Mecillinam)
1036		resistance mutations in clinical isolates and laboratory-selected mutants of
1037		Escherichia coli. Antimicrob Agents Chemother 59, 1718-1727,
1038		doi:10.1128/AAC.04819-14 (2015).
1039	2	Dethlefsen, L., Huse, S., Sogin, M. L. & Relman, D. A. The pervasive
1040		effects of an antibiotic on the human gut microbiota, as revealed by deep
1041		16S rRNA sequencing. <i>PLoS Biol</i> 6 , e280, doi:10.1371/journal.pbio.0060280
1042		(2008).
1043	3	Jernberg, C., Lofmark, S., Edlund, C. & Jansson, J. K. Long-term ecological
1044		impacts of antibiotic administration on the human intestinal microbiota.
1045		<i>ISME J</i> 1 , 56-66, doi:10.1038/ismej.2007.3 (2007).
1046	4	Santajit, S. & Indrawattana, N. Mechanisms of Antimicrobial Resistance in
1047		ESKAPE Pathogens. Biomed Res Int 2016, 2475067,
1048		doi:10.1155/2016/2475067 (2016).
1049	5	Brauner, A., Fridman, O., Gefen, O. & Balaban, N. Q. Distinguishing
1050		between resistance, tolerance and persistence to antibiotic treatment. <i>Nat</i>
1051		<i>Rev Microbiol</i> 14 , 320-330, doi:10.1038/nrmicro.2016.34 (2016).
1052	6	Nicoloff, H. & Andersson, D. I. Indirect resistance to several classes of
1053		antibiotics in cocultures with resistant bacteria expressing antibiotic-
1054		modifying or -degrading enzymes. J Antimicrob Chemother 71, 100-110,
1055		doi:10.1093/jac/dkv312 (2016).
1056	7	Sanchez-Vizuete, P., Orgaz, B., Aymerich, S., Le Coq, D. & Briandet, R.
1057		Pathogens protection against the action of disinfectants in multispecies
1058		biofilms. Front Microbiol 6, 705, doi:10.3389/fmicb.2015.00705 (2015).
1059	8	de Vos, M. G. J., Zagorski, M., McNally, A. & Bollenbach, T. Interaction
1060		networks, ecological stability, and collective antibiotic tolerance in
1061		polymicrobial infections. Proc Natl Acad Sci U S A 114, 10666-10671,
1062		doi:10.1073/pnas.1713372114 (2017).
1063	9	Adamowicz, E. M., Flynn, J., Hunter, R. C. & Harcombe, W. R. Cross-
1064		feeding modulates antibiotic tolerance in bacterial communities. ISME J,
1065		doi:10.1038/s41396-018-0212-z (2018).
1066	10	Radlinski, L. et al. Pseudomonas aeruginosa exoproducts determine
1067		antibiotic efficacy against Staphylococcus aureus. PLoS Biol 15, e2003981,
1068		doi:10.1371/journal.pbio.2003981 (2017).
1069	11	Sorg, R. A. <i>et al.</i> Collective Resistance in Microbial Communities by
1070		Intracellular Antibiotic Deactivation. <i>PLoS Biol</i> 14 , e2000631,
1071		doi:10.1371/journal.pbio.2000631 (2016).

1072	12	Ratzke, C. & Gore, J. Modifying and reacting to the environmental pH can
1072	14	drive bacterial interactions. <i>PLoS Biol</i> 16 , e2004248,
1073		doi:10.1371/journal.pbio.2004248 (2018).
1075	13	Gould, A. L. <i>et al.</i> Microbiome interactions shape host fitness. <i>Proc Natl</i>
1076	10	<i>Acad Sci U S A,</i> doi:10.1073/pnas.1809349115 (2018).
1077	14	Wong, C. N., Ng, P. & Douglas, A. E. Low-diversity bacterial community
1078	11	in the gut of the fruitfly Drosophila melanogaster. <i>Environ Microbiol</i> 13 ,
1079		1889-1900, doi:10.1111/j.1462-2920.2011.02511.x (2011).
1080	15	Makarova, K. <i>et al.</i> Comparative genomics of the lactic acid bacteria. <i>Proc</i>
1081	10	Natl Acad Sci U S A 103 , 15611-15616, doi:10.1073/pnas.0607117103 (2006).
1082	16	Yamada, Y., Hoshino, K. & Ishikawa, T. The phylogeny of acetic acid
1083		bacteria based on the partial sequences of 16S ribosomal RNA: the
1084		elevation of the subgenus Gluconoacetobacter to the generic level. <i>Biosci</i>
1085		Biotechnol Biochem 61, 1244-1251, doi:10.1271/bbb.61.1244 (1997).
1086	17	Walsh, C. & Wencewicz, T. A. Antibiotics : challenges, mechanisms,
1087		opportunities. (ASM Press, 2016).
1088	18	James-Kracke, M. R. Quick and accurate method to convert BCECF
1089		fluorescence to pHi: calibration in three different types of cell
1090		preparations. J Cell Physiol 151 , 596-603, doi:10.1002/jcp.1041510320 (1992).
1091	19	Martinez, K. A., 2nd et al. Cytoplasmic pH response to acid stress in
1092		individual cells of Escherichia coli and Bacillus subtilis observed by
1093		fluorescence ratio imaging microscopy. Applied and environmental
1094		microbiology 78 , 3706-3714, doi:10.1128/AEM.00354-12 (2012).
1095	20	Rud, I., Jensen, P. R., Naterstad, K. & Axelsson, L. A synthetic promoter
1096		library for constitutive gene expression in Lactobacillus plantarum.
1097		<i>Microbiology</i> 152 , 1011-1019, doi:10.1099/mic.0.28599-0 (2006).
1098	21	Levin-Reisman, I. et al. Automated imaging with ScanLag reveals
1099		previously undetectable bacterial growth phenotypes. Nat Methods 7, 737-
1100		739, doi:10.1038/nmeth.1485 (2010).
1101	22	Buchon, N. et al. Morphological and molecular characterization of adult
1102		midgut compartmentalization in Drosophila. Cell Rep 3, 1725-1738,
1103		doi:10.1016/j.celrep.2013.04.001 (2013).
1104	23	Strand, M. & Micchelli, C. A. Quiescent gastric stem cells maintain the
1105		adult Drosophila stomach. Proc Natl Acad Sci U S A 108, 17696-17701,
1106		doi:10.1073/pnas.1109794108 (2011).
1107	24	Obadia, B. et al. Probabilistic Invasion Underlies Natural Gut Microbiome
1108		Stability. <i>Curr Biol</i> 27 , 1999-2006 e1998, doi:10.1016/j.cub.2017.05.034
1109	e -	(2017).
1110	25	Boris, S. & Barbes, C. Role played by lactobacilli in controlling the
1111		population of vaginal pathogens. <i>Microbes Infect</i> 2 , 543-546 (2000).

1112	26	Brauner, A., Shoresh, N., Fridman, O. & Balaban, N. Q. An Experimental
1113		Framework for Quantifying Bacterial Tolerance. <i>Biophys J</i> 112 , 2664-2671,
1114		doi:10.1016/j.bpj.2017.05.014 (2017).
1115	27	Fridman, O., Goldberg, A., Ronin, I., Shoresh, N. & Balaban, N. Q.
1116		Optimization of lag time underlies antibiotic tolerance in evolved bacterial
1117		populations. Nature 513 , 418-421, doi:10.1038/nature13469 (2014).
1118	28	Levin-Reisman, I. <i>et al.</i> Antibiotic tolerance facilitates the evolution of
1119		resistance. <i>Science</i> 355 , 826-830, doi:10.1126/science.aaj2191 (2017).
1120	29	Rotem, E. et al. Regulation of phenotypic variability by a threshold-based
1121		mechanism underlies bacterial persistence. Proc Natl Acad Sci U S A 107,
1122		12541-12546, doi:10.1073/pnas.1004333107 (2010).
1123	30	Mouery, K., Rader, B. A., Gaynor, E. C. & Guillemin, K. The stringent
1124		response is required for Helicobacter pylori survival of stationary phase,
1125		exposure to acid, and aerobic shock. J Bacteriol 188, 5494-5500,
1126		doi:10.1128/JB.00366-06 (2006).
1127	31	Abranches, J. et al. The molecular alarmone (p)ppGpp mediates stress
1128		responses, vancomycin tolerance, and virulence in Enterococcus faecalis. J
1129		Bacteriol 191, 2248-2256, doi:10.1128/JB.01726-08 (2009).
1130	32	Peters, K. et al. The Redundancy of Peptidoglycan Carboxypeptidases
1131		Ensures Robust Cell Shape Maintenance in Escherichia coli. MBio 7,
1132		doi:10.1128/mBio.00819-16 (2016).
1133	33	Choi, J. & Groisman, E. A. Acidic pH sensing in the bacterial cytoplasm is
1134		required for Salmonella virulence. Mol Microbiol 101, 1024-1038,
1135		doi:10.1111/mmi.13439 (2016).
1136	34	Olsen, K. N. et al. Noninvasive measurement of bacterial intracellular pH
1137		on a single-cell level with green fluorescent protein and fluorescence ratio
1138		imaging microscopy. Applied and environmental microbiology 68, 4145-4147
1139		(2002).
1140	35	Chakraborty, S., Mizusaki, H. & Kenney, L. J. A FRET-based DNA
1141		biosensor tracks OmpR-dependent acidification of Salmonella during
1142		macrophage infection. PLoS Biol 13, e1002116,
1143		doi:10.1371/journal.pbio.1002116 (2015).
1144	36	Ricke, S. C. Perspectives on the use of organic acids and short chain fatty
1145		acids as antimicrobials. <i>Poult Sci</i> 82, 632-639, doi:10.1093/ps/82.4.632
1146		(2003).
1147	37	Krulwich, T. A., Sachs, G. & Padan, E. Molecular aspects of bacterial pH
1148		sensing and homeostasis. Nat Rev Microbiol 9, 330-343,
1149		doi:10.1038/nrmicro2549 (2011).

1150	20	Maggi N. Daggualuggi C. D. Pallatta D. & Sangi D. Difampigin a navy
1150	38	Maggi, N., Pasqualucci, C. R., Ballotta, R. & Sensi, P. Rifampicin: a new
1151		orally active rifamycin. <i>Chemotherapy</i> 11 , 285-292, doi:10.1159/000220462
1152	20	(1966). McEarland I. W. et al. Occartitative structure estivity relationships are en a
1153	39	McFarland, J. W. <i>et al.</i> Quantitative structure-activity relationships among
1154		macrolide antibacterial agents: in vitro and in vivo potency against
1155		Pasteurella multocida. <i>J Med Chem</i> 40 , 1340-1346, doi:10.1021/jm960436i
1156	10	(1997).
1157	40	Jacobson, A. <i>et al.</i> A Gut Commensal-Produced Metabolite Mediates
1158		Colonization Resistance to Salmonella Infection. <i>Cell Host Microbe</i> 24 , 296-
1159		307 e297, doi:10.1016/j.chom.2018.07.002 (2018).
1160	41	Komora, N., Bruschi, C., Magalhaes, R., Ferreira, V. & Teixeira, P. Survival
1161		of Listeria monocytogenes with different antibiotic resistance patterns to
1162		food-associated stresses. Int J Food Microbiol 245, 79-87,
1163		doi:10.1016/j.ijfoodmicro.2017.01.013 (2017).
1164	42	McMahon, M. A., Xu, J., Moore, J. E., Blair, I. S. & McDowell, D. A.
1165		Environmental stress and antibiotic resistance in food-related pathogens.
1166		Applied and environmental microbiology 73, 211-217, doi:10.1128/AEM.00578-
1167		06 (2007).
1168	43	O'Sullivan, E. & Condon, S. Intracellular pH is a major factor in the
1169		induction of tolerance to acid and other stresses in Lactococcus lactis.
1170		Applied and environmental microbiology 63 , 4210-4215 (1997).
1171	44	Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science
1172		336 , 1262-1267, doi:10.1126/science.1223813 (2012).
1173	45	Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut
1174		bacteria. Nature 555, 623-628, doi:10.1038/nature25979 (2018).
1175	46	Beppler, C. et al. When more is less: Emergent suppressive interactions in
1176		three-drug combinations. BMC Microbiol 17, 107, doi:10.1186/s12866-017-
1177		1017-3 (2017).
1178	47	Fadrosh, D. W. et al. An improved dual-indexing approach for
1179		multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform.
1180		Microbiome 2, 6, doi:10.1186/2049-2618-2-6 (2014).
1181	48	Koch, M. A. et al. Maternal IgG and IgA Antibodies Dampen Mucosal T
1182		Helper Cell Responses in Early Life. <i>Cell</i> 165 , 827-841,
1183		doi:10.1016/j.cell.2016.04.055 (2016).
1184	49	Hildebrand, F., Tadeo, R., Voigt, A. Y., Bork, P. & Raes, J. LotuS: an
1185		efficient and user-friendly OTU processing pipeline. <i>Microbiome</i> 2 , 30,
1186		doi:10.1186/2049-2618-2-30 (2014).
1187	50	Salter, S. J. <i>et al.</i> Reagent and laboratory contamination can critically
1188	-	impact sequence-based microbiome analyses. BMC Biol 12 , 87,
1189		doi:10.1186/s12915-014-0087-z (2014).
~		

1190	51	Moens, F., Lefeber, T. & De Vuyst, L. Oxidation of metabolites highlights
1191		the microbial interactions and role of Acetobacter pasteurianus during
1192		cocoa bean fermentation. Applied and environmental microbiology 80 , 1848-
1193		1857, doi:10.1128/AEM.03344-13 (2014).
1194	52	Zwietering, M. H., Jongenburger, I., Rombouts, F. M. & van 't Riet, K.
1195		Modeling of the bacterial growth curve. Applied and environmental
1196		microbiology 56 , 1875-1881 (1990).
1197	53	Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer
1198		Control of Microscopes Using µManager. (John Wiley & Sons, Inc., 2010).
1199	54	Ursell, T. et al. Rapid, precise quantification of bacterial cellular
1200		dimensions across a genomic-scale knockout library. BMC biology 15, 17
1201		(2017).
1202	55	Stylianidou, S., Brennan, C., Nissen, S. B., Kuwada, N. J. & Wiggins, P. A.
1203		SuperSegger: robust image segmentation, analysis and lineage tracking of
1204		bacterial cells. <i>Mol Microbiol</i> 102 , 690-700, doi:10.1111/mmi.13486 (2016).
1205	56	Marx, C. J. & Lidstrom, M. E. Development of improved versatile broad-
1206		host-range vectors for use in methylotrophs and other Gram-negative
1207		bacteria. <i>Microbiology</i> 147 , 2065-2075, doi:10.1099/00221287-147-8-2065
1208		(2001).
1209	57	Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several
1210		hundred kilobases. Nature Methods 6, 343-345, doi:10.1038/nmeth.1318
1211		(2009).
1212	58	Deeraksa, A. et al. Characterization and spontaneous mutation of a novel
1213		gene, polE, involved in pellicle formation in Acetobacter tropicalis
1214		SKU1100. <i>Microbiology</i> 151 , 4111-4120, doi:10.1099/mic.0.28350-0 (2005).
1215	59	Spath, K., Heinl, S., Egger, E. & Grabherr, R. Lactobacillus plantarum and
1216		Lactobacillus buchneri as expression systems: evaluation of different origins
1217		of replication for the design of suitable shuttle vectors. <i>Mol Biotechnol</i> 52 ,
1218		40-48 (2012).
1219	60	Spath, K., Heinl, S. & Grabherr, R. "Direct cloning in Lactobacillus
1220		plantarum: electroporation with non-methylated plasmid DNA enhances
1221		transformation efficiency and makes shuttle vectors obsolete". Microb Cell
1222		<i>Fact</i> 11 , 141, doi:10.1186/1475-2859-11-141 (2012).
1223		