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Abstract	

	

In	situ	measurements	of	transcription	factor	(TF)	binding	are	confounded	by	cellular	heterogeneity	and	
represent	averaged	profiles	in	complex	tissues.	Single	cell	RNA-seq	(scRNA-seq)	is	capable	of	resolving	
different	cell	types	based	on	gene	expression	profiles,	but	no	technology	exists	to	directly	link	specific	cell	
types	to	the	binding	pattern	of	TFs	in	those	cell	types.	Here,	we	present	self-reporting	transposons	(SRTs)	
and	their	use	in	single	cell	calling	cards	(scCC),	a	novel	assay	for	simultaneously	capturing	gene	
expression	profiles	and	mapping	TF	binding	sites	in	single	cells.	First,	we	show	how	the	genomic	
locations	of	SRTs	can	be	recovered	from	mRNA.	Next,	we	demonstrate	that	SRTs	deposited	by	the	
piggyBac	transposase	can	be	used	to	map	the	genome-wide	localization	of	the	TFs	SP1,	through	a	direct	
fusion	of	the	two	proteins,	and	BRD4,	through	its	native	affinity	for	piggyBac.	We	then	present	the	scCC	
method,	which	maps	SRTs	from	scRNA-seq	libraries,	thus	enabling	concomitant	identification	of	cell	
types	and	TF	binding	sites	in	those	same	cells.	As	a	proof-of-concept,	we	show	recovery	of	cell	type-
specific	BRD4	and	SP1	binding	sites	from	cultured	cells.	Finally,	we	map	Brd4	binding	sites	in	the	mouse	
cortex	at	single	cell	resolution,	thus	establishing	a	new	technique	for	studying	TF	biology	in	situ.	
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Introduction	

	

Transcription	factors	(TFs)	regulate	gene	expression	during	the	most	critical	junctures	in	the	
specification	of	cell	fate	[1-4].	They	are	central	to	the	maintenance	of	stem	cell	pluripotency	[5,6]	and	
required	for	normal	organogenesis	during	development	[7].	Overexpression	of	certain	TFs	can	
transdifferentiate	one	cell	type	into	another	[8],	while	abolishing	TF	binding	sites	can	result	in	striking	
global	phenotypes	[9,10].	Furthermore,	the	pattern	of	TF	binding	is	often	dysregulated	during	disease	
states	[11].	A	better	understanding	of	TF	binding	during	tissue	development	and	homeostasis	would	
provide	important	insights	into	how	cellular	diversity	arises	and	is	maintained	under	normal	and	
abnormal	biological	conditions.	
	
In	the	past	few	years,	single	cell	RNA-seq	(scRNA-seq)	techniques	have	emerged	as	the	de	facto	methods	
for	characterizing	cellular	diversity	in	complex	tissues	and	organisms	[12-17].	More	recently,	multi-
modal	scRNA-seq	technologies	have	been	developed	[18-24]	that	combine	transcriptional	information	
with	other	genomic	assays.	These	technologies	are	motivated	by	the	realization	that	while	scRNA-seq	can	
describe	the	current	state	of	a	biological	system,	it	alone	cannot	explain	how	that	state	arose.	Thus,	for	a	
given	population	of	cells,	one	can	now	simultaneously	measure	transcriptome	and	genome	[18,19],	or	
methylome	[20,21],	or	chromatin	accessibility	[21,22],	or	cell-surface	markers	[23,24].	These	methods	
enable	greater	insight	into	the	regulatory	elements	driving	individual	transcriptional	programs.	
	
A	notable	lacuna	in	the	single	cell	repertoire	is	a	method	for	simultaneously	assaying	transcriptome	and	
TF	binding.	Such	a	method	would	allow	for	the	genome-wide	identification	of	TF	binding	sites	across	
multiple	cell	types	in	complex	tissues.	ChIP-seq	is	the	most	popular	technique	for	studying	TF	binding	
[25],	and	while	single	cell	ChIP-seq	has	been	previously	described	[26],	this	technique	has	only	been	
employed	to	map	highly	abundant	proteins	such	as	methylated	histones.	DamID	can	recover	TF	binding	
sites	by	identifying	nearby	exogeneously	methylated	adenines	[27,28],	but	in	single	cells	it	has	only	been	
used	to	study	laminin-associated	domains	[29,30].	Importantly,	both	methods	yield	sparse	data	and	
neither	technique	simultaneously	captures	mRNA.	Thus,	each	can	only	be	used	in	a	cell	type	specific	
manner	if	the	cell	type	is	known	a	priori	and	if	sufficient	numbers	of	cells	are	obtained	by	selection	or	
sorting	to	overcome	sparsity.	In	contrast,	single	cell	assay	for	transposase-accessible	chromatin	(scATAC-
seq)	[31]	can	be	used	to	identify	nucleosome-free	regions	that	may	be	bound	by	TFs	across	large	
numbers	of	mixed	cells.	However,	it	can	only	suggest	potential	DNA	binding	proteins	by	motif	inference.	
It	is	therefore	not	a	direct	measurement	of	TF	occupancy,	and	moreover	it	cannot	be	used	to	study	
transcriptional	regulators	that	bind	DNA	indirectly	or	non-specifically,	such	as	chromatin	remodelers.	
	
Our	lab	has	previously	developed	transposon	calling	cards	as	an	alternative	method	to	study	TF	binding	
[32-34].	This	system	relies	on	two	components:	a	fusion	between	a	TF	and	a	transposase,	and	a	
transposon	carrying	a	reporter	gene.	The	fusion	transposase	deposits	transposons	near	TF	binding	sites;	
these	insertions	are	subsequently	amplified	from	genomic	DNA	and	subjected	to	high-throughput	
sequencing.	Thus,	the	redirected	transposase	leaves	“calling	cards”	at	the	genomic	locations	it	has	visited,	
which	can	then	be	identified	later	in	time.	The	result	is	a	genome-wide	assay	of	all	binding	sites	for	that	
particular	TF.	In	mammalian	cells,	we	have	heterologously	expressed	the	piggyBac	transposase	[35]	
fused	to	the	TF	SP1	and	shown	that	the	resulting	pattern	of	insertions	reflects	SP1’s	DNA	binding	
preferences	[34].	However,	the	method	as	described	was	only	feasible	in	bulk	preparations.	
	
Here	we	present	single	cell	calling	cards	(scCC),	an	extension	of	transposon	calling	cards	that	
simultaneously	profiles	mRNA	abundance	and	TF	binding	at	single	cell	resolution.	The	key	component	of	
our	work	is	a	novel	construct	called	the	self-reporting	transposon	(SRT).	Using	SRTs,	the	genomic	
locations	of	inserted	transposons	can	be	mapped	from	either	mRNA	or	DNA,	but	the	use	of	mRNA	enables	
both	higher	efficiency	and	compatibility	with	single-cell	transcriptomics.	We	first	establish	that	TF-
directed	SRTs,	in	bulk,	retain	the	ability	to	accurately	identify	TF	binding	sites.	Next,	we	demonstrate	that	
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the	unfused	piggyBac	transposase,	through	its	native	affinity	for	the	bromodomain	TF	BRD4,	can	be	used	
to	identify	BRD4-bound	super-enhancers	(SEs).	We	then	present	the	scCC	method,	which	allows	cell-
specific	mapping	of	SRTs	from	scRNA-seq	libraries.	This	enables,	in	one	experiment,	concomitant	
assignment	of	cell	types	and	identification	of	TF	binding	sites	within	those	cells.	As	a	proof-of-concept,	we	
use	scCC	to	map	BRD4	and	SP1	sites	in	mixtures	of	cultured	human	cells.	We	conclude	by	identifying	cell	
type-specific	Brd4	binding	sites	in	vivo	in	the	postnatal	mouse	cortex.	These	results	demonstrate	that	
scCC	could	be	a	broadly	applicable	tool	for	the	study	of	specific	TF	binding	interactions	across	all	cell	
types	within	a	complex,	multi-cellular	tissue.	 	
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Results	

	

Self-reporting	transposons	can	be	mapped	from	mRNA	instead	of	genomic	DNA	
	
In	order	to	combine	scRNA-seq	with	calling	cards,	we	sought	to	develop	a	transposon	whose	genomic	
position	could	be	determined	from	mRNA.	We	created	a	piggyBac	self-reporting	transposon	(SRT)	by	
removing	the	polyadenylation	signal	from	our	standard	DNA-based	calling	card	vector	(Fig.	1A).	This	
enables	RNA	polymerase	II	(Pol	II)	to	transcribe	the	reporter	gene	contained	in	the	transposon	and	
continue	through	the	terminal	repeat	(TR)	into	the	flanking	genomic	sequence.	Thus,	SRTs	“self-report”	
their	locations	through	the	unique	genomic	sequence	found	within	the	3’	untranslated	regions	(UTRs)	of	
these	reporter	gene	transcripts.	Although	previously	published	gene-	or	enhancer-trap	transposons	
could,	in	principle,	also	capture	positional	local	information	via	RNA,	they	are	resolution-limited	to	the	
nearest	gene	or	enhancer,	respectively	[36].	In	contrast,	the	3’	UTRs	of	SRT-derived	transcripts	contain	
the	transposon-genome	junction	in	the	mRNA	sequence,	so	we	can	map	insertions	with	base	pair	
precision.	
	
SRTs	are	mapped	following	reverse	transcription	(RT)	and	PCR	amplification	of	self-reporting	
transcripts.	These	transcripts	contain	stretches	of	adenines	that	are	derived	from	either	cryptic	
polyadenylation	signals	(PAS)	or	polyadenine	tracts	encoded	in	genomic	DNA	downstream	of	the	SRT	
insertion	point	(Fig.	1B).	A	poly(T)	RT	primer	hybridizes	with	these	transcripts	and	introduces	a	
universal	priming	site	at	one	end	of	the	transcripts.	A	pair	of	nested	PCRs	with	an	intermediate	
tagmentation	[37]	step	enable	recovery	of	the	transposon-genome	junction.	After	adapter	trimming	and	
alignment,	the	5’	coordinates	of	these	reads	identify	the	genomic	locations	of	insertions	in	the	library.	
Libraries	generated	without	transposase	produce	very	few	genomically	mapped	reads	but	the	protocol	is	
highly	efficient	when	transposase	is	added	(Supp.	Fig.	1A).	
	
To	compare	transposon	recovery	between	the	new	RNA-based	protocol	and	our	standard	DNA-based	
inverse	PCR	protocol	[34],	we	transfected	HCT-116	cells	with	a	plasmid	carrying	a	piggyBac	SRT	(PB-
SRT-	Puro)	and	a	plasmid	encoding	a	fusion	of	the	TF	SP1	and	piggyBac	transposase	(SP1-PBase;	Fig.	1A).	
After	two	weeks	of	selection,	we	obtained	approximately	2,300	puromycin-resistant	clones.	We	split	
these	cells	in	half:	one	half	underwent	inverse	PCR	while	the	other	half	were	processed	with	our	new	
RNA	workflow.	With	inverse	PCR,	we	obtained	31,001	insertions	(mean	coverage:	709	reads	per	
insertion),	while	the	RNA-based	protocol	recovered	62,500	insertions	(mean	coverage:	240	reads	per	
insertion).	About	80%	of	insertions	recovered	by	DNA	calling	cards	were	also	recovered	in	the	RNA-
based	library	(25,060	insertions;	Fig.	1C),	an	overlap	comparable	to	that	between	technical	replicates	of	
RNA	recovery	(Supp.	Fig.	1B).	However,	the	RNA	protocol	recovered	a	further	37,440	insertions	that	
were	not	found	in	the	DNA-based	library.	To	determine	if	these	extra	insertions	were	genuine,	we	
analyzed	the	distribution	of	insertions	by	genetic	annotation	(Fig.	1D)	or	chromatin	state	(Supp.	Fig.	1C;	
Supp.	Table	1).	Transposons	mapped	from	either	the	DNA	or	the	RNA	libraries	showed	comparable	
distribution	into	annotated	domains	of	particular	functional	or	chromatin	states,	indicating	that	RNA	
recovery	of	transposons	appears	to	be	unbiased	with	respect	to	our	established,	DNA-based	protocol.		
	
Since	piggyBac	is	known	to	preferentially	insert	near	active	chromatin	[38],	we	wondered	whether	SRT	
recovery	was	biased	towards	euchromatic	regions.	Previous	reports	have	shown	that	the	Sleeping	Beauty	
transposase	[39,40]	has	very	little	preference	for	chromatin	state	[38].	We	created	a	self-reporting	
Sleeping	Beauty	transposon	and	compared	its	genome-wide	distribution	to	that	of	SRTs	deposited	by	
wild-type	piggyBac	(Supp.	Fig.	2A-B).	Undirected	piggyBac	transposases	appeared	to	modestly	prefer	
transposing	into	promoter	and	enhancers,	which	is	consistent	with	previous	reports	[38,41]	(Supp.	Table	
1).	By	contrast,	Sleeping	Beauty	showed	largely	uniform	rates	of	insertions	across	all	chromatin	states,	
including	repressed	and	inactive	chromatin	(Supp.	Fig.	2B).	These	results	affirm	that	while	RNA-based	
recovery	is	more	efficient,	it	still	preserves	the	underlying	genomic	distributions	of	insertions.	
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Furthermore,	because	SRTs	can	be	recovered	from	virtually	any	chromatin	state,	RNA-based	calling	card	
recovery	can	be	employed	to	analyze	a	variety	of	TFs	with	broad	chromatin-binding	preferences.	
	
A	common	artifact	observed	in	DNA-based	transposon	recovery	is	a	large	fraction	of	reads	mapping	back	
to	the	donor	transposon	plasmid	instead	of	the	genome.	Although	this	can	be	mitigated	by	long	selection	
times	or	by	digestion	with	the	methyladenine-sensitive	enzyme	DpnI	[34],	these	methods	do	not	
completely	eliminate	background	and	are	not	compatible	with	all	experimental	paradigms,	in	particular	
viral	transduction.	To	reduce	this	artifact,	we	included	a	hammerhead	ribozyme	[42]	in	the	SRT	plasmid	
downstream	of	the	5’	TR.	Before	transposition,	the	ribozyme	will	cleave	the	nascent	transcript	
originating	from	the	marker	gene,	thus	preventing	RT.	Transposition	allows	the	SRT	to	escape	the	
downstream	ribozyme,	leading	to	recovery	of	the	self-reporting	transcript.	In	our	comparison	of	DNA-	
and	RNA-based	recovery,	about	15%	of	reads	from	the	SP1-PBase	DNA	library	aligned	to	the	plasmid,	
compared	to	fewer	than	1%	of	reads	from	the	RNA	library	(Supp.	Fig.	1D).	Thus,	the	inclusion	of	a	self-
cleaving	ribozyme	virtually	eliminates	recovery	of	un-excised	transposons.	
	
SP1	fused	to	piggyBac	directs	SRT	insertions	to	SP1	binding	sites	
	
We	next	sought	to	confirm	that	RNA	calling	cards,	in	bulk,	can	still	be	used	to	identify	TF	binding	sites.	We	
transfected	10-12	replicates	of	HCT-116	cells	with	plasmids	containing	the	PB-SRT-Puro	donor	
transposon	and	SP1	fused	to	either	piggyBac	(SP1-PBase)	or	a	hyperactive	variant	of	piggyBac	[43]	(SP1-
HyPBase).	As	controls,	we	also	transfected	a	similar	number	of	replicates	with	undirected	PBase	or	
HyPBase,	respectively.	We	obtained	411,287	insertions	from	SP1-PBase	and	1,523,169	insertions	from	
PBase.	Similarly,	we	obtained	2,033,229	SP1-HyPBase	insertions	and	5,779,101	insertions	from	HyPBase.		
	
Fig.	1E	and	Supp.	Fig.	4A	show	the	redirection	of	SRT	calling	cards	by	SP1-PBase	and	SP1-HyPBase,	
respectively,	to	three	representative	SP1-bound	regions	of	the	genome.	Each	circle	in	the	insertions	track	
represents	an	individual	transposition	event	whose	genomic	position	is	on	the	x-axis.	The	y-axis	is	the	
number	of	reads	supporting	each	insertion	on	a	log10	scale.	To	better	compare	transposition	rates	across	
libraries	with	different	numbers	of	insertions,	we	calculated	the	normalized	local	insertion	rate	and	
plotted	this	function	as	a	density	track.	All	three	of	the	loci	depicted	in	Fig.	1E	and	Supp.	Fig.	4A	show	a	
specific	enrichment	of	calling	card	insertions	in	the	SP1	fusion	experiments	that	is	not	observed	in	the	
undirected	control	libraries.	Next,	we	called	peaks	at	all	genomic	regions	enriched	for	SP1-directed	
transposition.	The	number	of	insertions	observed	at	significant	peaks	for	both	SP1-PBase	and	SP1-
HyPBase	was	highly	reproducible	between	biological	replicates	(R2	=	0.84	and	0.96,	respectively;	Supp.	
Fig.	3A	and	Supp.	Fig.	4B).	Furthermore,	calling	card	peaks	were	highly	enriched	for	SP1	ChIP-seq	signal	
at	their	centers,	both	on	average	(Supp.	Fig.	3B	and	Supp.	Fig.	4C)	and	in	aggregate	(Supp.	Fig.	3C	and	
Supp.	Fig.	4D).	SP1	is	known	to	preferentially	bind	near	TSSs	[44,45]	and	is	also	thought	to	play	a	role	in	
demethylating	CpG	islands	[46-48].	Therefore,	we	confirmed	that	the	SP1-directed	transposases	
preferentially	inserted	SRT	calling	cards	near	TSSs,	CpG	islands,	and	unmethylated	CpGs	at	statistically	
significant	frequencies	(p	<	10-9	in	each	instance,	G	test	of	independence;	Supp.	Fig.	3D	and	Supp.	Fig.	4E).	
Moreover,	compared	to	undirected	piggyBac,	SP1-directed	piggyBac	showed	a	striking	preference	for	
depositing	insertions	into	promoters	(Supp.	Fig.	2A-B).	Lastly,	regions	targeted	by	SP1-PBase	and	SP1-
HyPBase	were	enriched	for	the	canonical	SP1	DNA	binding	motif	(p	<	10-70	in	each	instance;	Supp.	Fig.	3E	
and	Supp.	Fig.	4F).	Taken	together,	these	results	indicate	that	SP1	can	redirect	piggyBac	SRTs	near	SP1	
binding	sites.	
	
Clustering	of	undirected	piggyBac	insertions	identifies	BRD4-bound	super-enhancers	
	
Previous	studies	have	shown	that	the	undirected	piggyBac	transposase	preferentially	inserts	transposons	
near	super-enhancers	(SEs)	[38],	a	unique	regulatory	element	that	is	thought	to	play	a	critical	role	in	
regulating	cell	identity	[49].	SEs	are	often	enriched	for	the	histone	modification	H3K27ac	as	well	as	RNA	
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polymerase	II	and	general	transcription	factors	like	the	mediator	element	MED1	and	the	bromodomain	
protein	BRD4	[49-51].	Moreover,	the	piggyBac	transposase	has	a	strong	biophysical	affinity	for	BRD4,	as	
these	proteins	can	be	co-immunoprecipitated	[41].	We	hypothesized	that,	given	the	millions	of	insertions	
we	assayed	from	the	undirected	PBase	and	HyPBase	controls	in	the	SP1-directed	experiments	(Fig.	1E,	
Supp.	Fig.	4A),	we	would	be	able	to	identify	BRD4-bound	SEs	simply	from	the	localization	of	undirected	
piggyBac	transpositions.	
	
Both	undirected	PBase	and	HyPBase	showed	non-uniform	densities	of	insertions	at	loci	bound	by	BRD4	
(Fig.	2A,	Supp.	Fig.	7).	At	statistically	significant	peaks	of	piggyBac	calling	cards,	PBase	and	HyPBase	
showed	high	reproducibility	of	normalized	insertions	between	biological	replicates	(Fig.	2B,	Supp.	Fig.	
5B).	Next,	we	calculated	the	mean	BRD4	enrichment,	as	assayed	by	ChIP-seq	[52],	across	these	peaks.	
piggyBac	peaks	showed	significantly	increased	BRD4	signal	compared	to	a	genome-wide	permutation	of	
the	peaks	(p	<	10-9	in	both	instances,	Kolmogorov-Smirnov	test;	Fig.	2C	and	Supp.	Fig.	5C).	Maximum	
BRD4	ChIP-seq	signal	was	observed	at	calling	card	peak	centers	and	decreased	symmetrically	in	both	
directions.	We	also	found	that	piggyBac	peaks	show	striking	ChIP-seq	patterns	for	several	histone	
modifications	[53,54],	in	particular	an	enrichment	for	H3K27ac	ChIP-seq	signal	(Fig.	2D,	Supp.	Fig.	5D).	
Since	bromodomains	bind	acetylated	histones,	this	observation	further	supports	the	hypothesis	that	
undirected	piggyBac	insertions	can	be	used	to	map	BRD4	binding.	These	peaks	were	also	enriched	in	
H3K4me1,	another	canonical	enhancer	mark,	and	depleted	for	H3K9me3	and	H3K27me3,	modifications	
associated	with	repressed	chromatin	[55].	Taken	together,	these	results	demonstrate	that	piggyBac	
insertion	density	is	highly	correlated	with	BRD4	binding	throughout	the	genome	and	that	regions	
enriched	for	undirected	piggyBac	insertions	share	features	common	to	enhancers.	
	
To	assess	whether	piggyBac	peaks	can	be	used	to	identify	BRD4	-bound	SEs,	we	first	created	a	reference	
list	of	Brd4-bound	super-enhancers	in	HCT-116	cells	(Fig.	2A,	Supp.	Fig.	5A)	from	BRD4	ChIP-seq	data	
[50,56].	We	then	constructed	receiver-operator	characteristic	curves.	These	are	shown	for	PBase-	and	
HyPBase-derived	BRD4	-bound	super-enhancers	in	Fig.	2E	and	Supp.	Fig.	5E.	The	high	areas	under	the	
curves	(0.98	in	each	instance)	indicate	that	we	can	robustly	call	BRD4	super-enhancers	from	piggyBac	
transpositions.	Calling	card	peaks	are	highly	specific	across	a	range	of	sensitivities.	In	addition,	calling	
card	peaks	have	high	positive	predictive	value	(AUPRC	=	0.92	in	each	instance)	across	a	broad	range	of	
sensitivities	(Fig.	2F,	Supp.	Fig.	5F).	Thus,	undirected	piggyBac	transpositions	are	an	accurate	assay	of	
BRD4	-bound	SEs.	
	
To	better	understand	the	relationship	between	SE	sensitivity	and	the	number	of	insertions	recovered,	we	
downsampled	the	data	from	the	PBase	and	HyPBase	experiments	in	half-log	increments	(Supp.	Fig.	6A-
B).	The	resulting	heatmaps	indicate	that	sensitivity	increases	with	the	total	number	of	insertions	
recovered.	Since	we	cannot	predict	how	many,	or	few,	insertions	future	experiments	will	yield,	we	also	
performed	linear	interpolation	on	the	downsampled	data.	The	resulting	contour	plots	(Supp.	Fig.	6C-D)	
indicate	the	approximate	sensitivity	of	BRD4-bound	SE	detection	in	HCT-116	cells.	These	results	suggest	
that	even	with	as	few	as	10,000	insertions,	we	can	still	obtain	sensitivities	around	50%.	
	
Single	cell	calling	cards	enables	simultaneous	identification	of	cell	type	and	cell	type-specific	TF	binding	sites	
	
We	next	sought	to	recover	SRTs	from	scRNA-seq	libraries.	This	would	enable	us	to	identify	cell	types	
from	transcriptomic	clustering	and,	using	the	same	source	material,	profile	TF	binding	in	those	cell	types.	
We	adopted	the	10x	Chromium	platform	given	its	high	efficiency	of	cell	and	transcript	capture	as	well	as	
its	ease	of	use	[57].	Like	many	microfluidic	scRNA-seq	approaches	[58],	the	cell	barcode	and	unique	
molecular	index	(UMI)	are	attached	to	the	3’	ends	of	transcripts.	This	poses	a	molecular	challenge	for	
SRTs	since	the	junction	between	the	transposon	and	the	genome	may	be	many	kilobases	away,	
precluding	the	use	of	high-throughput	short	read	sequencing.	To	overcome	this	barrier,	we	developed	a	
circularization	strategy	to	physically	bring	the	cell	barcode	in	apposition	to	the	insertion	site	(Fig.	3A).	
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We	used	a	modified	version	of	the	bulk	SRT	amplification	protocol	where	we	amplified	with	primers	that	
bound	to	the	universal	priming	sequence	next	to	the	cell	barcode	and	the	terminal	sequence	of	the	
piggyBac	TR.	These	primers	were	biotinylated	and	carried	a	5’	phosphate	group.	The	PCR	products	of	this	
amplification	were	diluted	and	allowed	to	self-ligate	overnight.	They	were	then	sheared	and	captured	
with	streptavidin-coated	magnetic	beads.	The	rest	of	library	was	prepared	on-bead	and	involved	end	
repair,	A-tailing,	and	adapter	ligation.	A	final	PCR	step	added	the	required	Illumina	sequences	for	high-
throughput	sequencing.	The	standard	Illumina	read	1	primer	read	the	cell	barcode	and	UMI,	while	a	
custom	read	2	primer,	annealing	to	the	end	of	the	piggyBac	5’	TR,	read	into	the	genome.	Thus,	we	
collected	both	the	location	of	a	piggyBac	insertion	as	well	as	its	cell	of	origin.	We	call	this	method	single	
cell	calling	cards	(scCC).	
	
We	validated	the	method	by	performing	a	with	species-mixing	experiment	using	human	HCT-116	cells	
and	mouse	N2a	cells.	Cells	were	mixed	prior	to	droplet	generation	and	the	resulting	emulsion	was	
processed	through	first	strand	synthesis.	At	this	point,	half	of	the	RT	product	was	amplified	according	to	
the	standard	10x	protocol.	The	resulting	scRNA-seq	revealed	strong	species	separation	with	an	estimated	
multiplet	rate	of	3.2%	(Supp.	Fig.	8A).	The	remainder	of	the	first	strand	synthesis	was	used	for	the	scCC	
protocol.	We	restricted	our	calling	card	analysis	to	those	insertions	whose	cell	barcodes	were	observed	in	
the	scRNA-seq	library.	The	distribution	of	insertions	across	these	cells	reflected	a	continuum	from	pure	
mouse	to	pure	human	(Supp.	Fig.	8B-C).	Since	intramolecular	ligation	and	subsequent	PCR	may	introduce	
unwanted	artifacts,	such	as	mis-assignment	of	a	barcode	from	cell	type	A	to	an	insertion	site	in	cell	type	
B,	we	required	that	a	given	insertion	in	a	given	cell	must	have	at	least	two	different	UMIs	associated	with	
it.	Imposing	this	filter	improved	the	number	of	pure	mouse	and	human	cells	(Supp.	Fig.	8D),	yielding	clear	
species	separation	with	an	estimated	multiplet	rate	of	7.8%	(Fig.	3B).	This	establishes	that	our	method	
can	map	calling	card	insertions	in	single	cells.	
	
We	then	asked	whether	scCC	could	discern	cell	type-specific	TF	binding.	We	transfected	two	human	cell	
lines,	HCT-116	and	K562,	with	HyPBase	and	PB-SRT-Puro	and	mixed	them	together.	The	resulting	
scRNA-seq	libraries	clearly	identified	the	two	major	cell	populations	(Fig.	3C;	Supp.	Fig.	9A).	We	then	
prepared	scCC	libraries	from	these	cells	and	used	the	cell	barcodes	from	the	HCT-116	and	K562	clusters	
to	assign	insertions	to	the	two	different	cell	types.	We	obtained	44,214	insertions	from	12,891	HCT-116	
cells	(mean	3.4	insertions	per	cell;	mean	136	reads	per	insertion)	and	132,994	insertions	from	11,912	
K562	cells	(mean	11	insertions	per	cell;	mean	103	reads	per	insertion).	The	distribution	of	insertions	per	
cell	varied	by	cell	type	(Supp.	Fig.	9D)	and	does	not	appear	to	be	correlated	with	differences	in	total	RNA	
content	(Supp.	Fig.	9B-C).	Over	93%	and	97%	of	HCT-116	and	K562	cells,	respectively,	had	at	least	one	
insertion	event.	Using	scCC	insertion	data	alone,	we	called	peaks	and	successfully	identified	Brd4-bound	
loci	that	were	specific	to	HCT-116	cells,	shared	between	HCT-116	and	K562,	and	specific	to	K562	cells,	
respectively	(Fig.	3D).	Both	HCT-116	and	K562	peaks	showed	statistically	significant	enrichment	for	
BRD4	ChIP-seq	signal	(p	<	10-9	in	both	instances,	Kolmogorov-Smirnov	test;	Supp.	Fig.	9E-F).	From	our	
earlier	downsampling	analysis,	we	estimated	that	with	a	p-value	cutoff	of	10-9,	our	sensitivity	for	
detecting	Brd4-bound	super-enhancers	would	be	approximately	60%	(Supp.	Fig.	6D).	The	actual	
sensitivity	at	this	level	of	recovery	was	64%,	indicating	that	downsampling	analysis	can	reasonably	
estimate	the	performance	of	scCC.	In	all,	these	experiments	demonstrate	that	scCC	can	be	used	to	
deconvolve	cell	type-specific	TF	binding.	
	
Since	these	Brd4	binding	sites	were	identified	using	undirected	HyPBase,	we	also	sought	to	confirm	that	
TF-piggyBac	fusions	would	still	work	with	scCC.	We	transfected	HCT-116	cells	with	SP1-HyPBase	and	
then	performed	scRNA-seq.	We	made	scCC	libraries	from	these	experiments	and	identified	92,406	
insertions	from	30,682	cells	(mean	3	insertions	per	cell;	mean	129	reads	per	insertion).	Over	84%	of	cells	
had	at	least	one	insertion.	The	slight	reduction	in	insertions	per	cell	with	the	SP1	fusion	is	consistent	with	
previous	studies	[59],	although	the	distribution	of	insertions	recovered	per	cell	was	similar	to	that	of	the	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 1, 2019. ; https://doi.org/10.1101/538553doi: bioRxiv preprint 

https://doi.org/10.1101/538553
http://creativecommons.org/licenses/by-nc-nd/4.0/


undirected	transposase	(Supp.	Fig.	9G).	As	was	observed	in	bulk	(Supp.	Fig.	4A),	SP1-HyPBase-directed	
insertions	recovered	from	single	cells	localize	to	SP1	binding	sites	(Fig.	3E).	Finally,	we	investigated	the	
reproducibility	of	the	scCC	method.	Both	single	cell	HyPBase	and	SP1-HyPBase	showed	high	concordance	
between	biological	replicates	at	statistically	significant	peaks	(Supp.	Fig.	9H-I).	Collectively,	these	
experiments	establish	that	scCC	can	be	used	to	identify	cell	type-specific	binding	sites	of	both	
bromodomain	and	DNA-binding	TFs.	
	
Single	cell	calling	cards	deconvolves	cell	type-specific	Brd4	binding	sites	in	the	mouse	cortex	
	
To	establish	broad	utility	for	scCC,	we	sought	to	record	TF	binding	in	vivo.	Since	in	vivo	models	preclude	
puromycin	selection,	we	designed	an	SRT	carrying	the	fluorescent	reporter	tdTomato	(Fig.	4A)	and	tested	
this	reagent	in	cell	culture.	When	this	construct	was	transfected	without	transposase,	3.4%	of	cells	
register	as	tdTomato-positive,	likely	due	to	the	action	of	the	self-cleaving	ribozyme	downstream	of	the	
transposon.	However,	when	the	construct	was	co-transfected	with	PBase	or	HyPBase,	this	figure	rose	to	
33%	and	48%,	respectively,	corresponding	to	11-	and	16-fold	increases	in	signal	(Fig.	4B).	In	addition,	
cells	transfected	with	only	the	fluorescent	SRT	produced	very	few	reads	that	mapped	to	the	genome,	
while	the	overwhelming	majority	of	reads	from	cells	co-transfected	with	transposase	mapped	to	genomic	
insertions	(Supp.	Fig.	1A).	Thus,	this	new	construct,	PB-SRT-tdTomato,	allows	us	to	select	cells	carrying	
calling	card	insertions	by	fluorescence	activated	cell	sorting	(FACS).	
	

We	chose	the	mouse	cortex	for	our	in	vivo	proof-of-concept	because	it	is	a	heterogeneous	tissue	that	has	
been	the	focus	of	several	recent	single	cell	studies	[12,60-63].	We	separately	packaged	the	PB-SRT-
tdTomato	and	HyPBase	constructs	in	AAV9	viral	particles	(Cammack	et	al.,	in	preparation)	and	delivered	
mixtures	of	both	viruses	to	the	developing	mouse	cortex	via	intracranial	injections	at	P1.	After	2-4	weeks,	
we	dissected	the	cortex,	dissociated	it	to	a	single	cell	suspension,	performed	FACS	to	isolate	tdTomato-
positive	cells,	and	analyzed	these	cells	by	scRNA-seq	and	scCC	using	the	10x	Chromium	platform.	We	
collected	nine	libraries	in	total	comprising	35,950	cells	and	113,859	insertions	(Supp.	Table	2).	We	
clustered	cells	by	their	mRNA	profiles	and	used	established	marker	genes	to	classify	different	cell	types	
(Supp.	Fig.	10A-B)	[61-63].	The	two	major	cell	populations	recovered	were	neurons	and	astrocytes	(Fig.	
4C,	Supp.	Table	2),	which	is	consistent	with	the	known	tropism	of	AAV9	[64].	We	also	identified	a	
spectrum	of	differentiating	oligodendrocytes	and	trace	amounts	of	microglial,	vascular,	and	ependymal	
cells.	We	then	used	the	cell	barcodes	shared	between	the	scRNA-seq	and	scCC	libraries	to	assign	
insertions	to	specific	cell	types.	
	
To	determine	whether	scCC	could	recover	biological	differences	between	cell	types	in	vivo,	we	analyzed	
HyPBase	insertions	in	neurons	and	astrocytes,	excluding	neuroblasts	and	astrocyte-neuron	doublets.	We	
collected	90,299	insertions	in	25,158	neurons	and	17,102	insertions	over	4,727	astrocytes.	We	then	
called	peaks	on	the	insertions	within	each	cluster	and	identified	astrocyte-specific,	neuron-specific,	and	
shared	Brd4	binding	sites	(Fig.	4D).	While	Brd4	ChIP-seq	has	not	been	reported	for	the	mouse	brain,	
Brd4	is	known	to	bind	acetylated	histones,	so	we	compared	our	peak	calls	to	a	recent	cortical	H3K27ac	
dataset	[65].	Although	the	ChIP-seq	dataset	was	agglomerated	over	all	cell	types	in	the	brain,	we	
nevertheless	found	that	peaks	in	both	astrocytes	and	neurons	showed	statistically	significant	enrichment	
of	H3K27ac	(Supp.	Fig.	11A,	C;	Kolmogorov-Smirnov	p-value	<	10-9	in	each	case).	Brd4	is	also	thought	to	
mark	cell	type-specific	genes,	so	we	identified	genes	that	overlapped	or	were	near	astrocyte	or	neuron	
peaks	and	evaluated	the	specificity	of	expression	of	these	genes.	We	identified	399	genes	near	astrocyte	
peaks	and	211	genes	near	neuron	peaks.	For	each	set,	we	derived	gene	expression	values	from	bulk	RNA-
seq	data	[66]	from	purified	cell	populations	and	plotted	the	distribution	of	gene	expression	values	along	a	
continuum	from	purely	astrocytic	expression	to	purely	neuronal	expression.	Genes	near	astrocyte	peaks	
were	more	likely	to	be	specifically	expressed	in	astrocytes,	and	vice-versa	for	genes	near	neuron	peaks	
(Fig.	4E).	Gene	Ontology	enrichment	analysis	on	the	astrocyte	gene	list	included	“gliogenesis,”	and	“glial	
cell	differentiation,”	as	well	as	copper	metabolism	(Supp.	Fig.	11B),	a	known	function	of	astrocytes	[67];	
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while	the	neuronal	gene	list	was	enriched	for	terms	related	to	synapse	assembly	and	neuron	
development	(Supp.	Fig.	11D).	Overall,	we	conclude	that	scCC	can	accurately	identify	cell	type-specific	
Brd4	binding	sites	in	vivo.	
	
Finally,	we	asked	whether	scCC	could	discriminate	Brd4	binding	in	more	closely	related	cell	types.	From	
our	scRNA-seq	data	(Fig.	5B;	Supp.	Fig.	10A-B),	we	identified	upper	and	lower	layer	cortical	excitatory	
neurons	and	compared	HyPBase	scCC	data	between	them	to	identify	shared	and	specific	Brd4-bound	loci	
(Fig.	5A).	From	9,083	upper	cortical	neurons	we	obtained	30,225	insertions,	which	was	on	par	with	the	
32,434	insertions	collected	from	6,980	lower	cortical	neurons.	As	a	positive	control,	we	identified	a	
shared	Brd4	binding	site	at	the	Pou3f3	(Brn-1)	locus	(Fig.	5A,	p	<	10-9).	Pou3f3	was	broadly	expressed	in	
both	populations	(Fig.	5C)	and	has	been	used	to	label	layers	2-5	of	the	postnatal	cortex	[68,69].	We	then	
identified	differentially-bound	regions	in	each	cluster	using	insertions	from	the	other	cluster	as	a	control.	
Upper	cortical	neurons	showed	specific	Brd4	binding	at	Pou3f2	(Brn-2),	which	is	more	restricted	to	layers	
2-4	than	Pou3f3	[69,70],	while	lower	cortical	neurons	showed	Brd4	binding	at	Bcl11b	(Ctip2)	and	Foxp2,	
common	markers	of	layer	5	and	layer	6	neurons,	respectively	(Fig.	5A;	p	<	10-9	in	each	instance)	[69,71].	
The	expression	patterns	of	these	genes	mirrored	Brd4’s	binding	specificity,	with	Pou3f2’s	expression	
mostly	retained	to	the	layer	2-4	cluster	and	the	expression	of	Bcl11b	and	Foxp2	restricted	to	the	layer	5	
and	layer	6	neuron	populations	(Fig.	5C).	This	demonstrates	that	scCC	can	identify	differentially	bound	
loci	between	very	similar	cell	types.	 	
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Discussion	
	
Mapping	TF	binding	in	heterogeneous	tissues	is	a	challenging	problem	because	traditional	methods	
combine	signals	from	multiple	cell	types	into	a	single,	agglomerated	profile.	The	difficulty	is	further	
compounded	if	individual	cell	types	are	difficult	to	identify,	isolate,	or	are	rare,	precluding	their	study.	
Single	cell	RNA-seq	is	a	promising	paradigm	for	handling	such	heterogeneity.	Until	now,	it	has	been	
impossible	to	directly	study	the	actions	of	individual	TFs	and	connect	them	to	specific	cell	states.	We	have	
presented	a	new	method,	single	cell	calling	cards	(scCC),	that	enables	simultaneous	identification	of	cell	
types	and	TF	binding	sites	from	complex	mixtures	and	tissues.	This	is	an	important	addition	to	the	single	
cell	repertoire	and	fills	a	recognized	void	in	the	field	[72,73].	We	anticipate	this	technique	will	enable	
researchers	to	study	the	consequences	of	TF	binding	in	a	variety	of	ex	vivo	and	in	situ	models.	
	
A	concern	with	any	transposon-based	technique	is	the	potential	for	deleterious	interruption	of	target	
genes	leading	to	cell	death	and	thereby	false	negatives.	Previous	experiments	in	diploid	yeast	found	that	
calling	cards	are	deposited	into	promoters	of	essential	and	non-essential	genes	at	comparable	
frequencies	[33].	Since	mammalian	genomes	have	much	larger	intergenic	regions	than	yeast,	human	and	
mice	genomes	are	likely	also	able	to	tolerate	calling	card	transpositions.	Indeed,	that	we	were	able	to	
deposit	SRTs	in	the	developing	mouse	brain	into	enhancers	and	super-enhancers	suggests	a	small	
mutagenic	burden.	
	
One	of	the	limitations	of	this	technique	is	the	relatively	few	insertions	recovered	on	a	per-cell	basis,	
inflating	the	number	of	cells	that	must	be	analyzed	to	achieve	good	sensitivity.	Previous	studies	have	
reported	up	to	15-30	insertions	per	cell	for	PBase	[74-77],	and	likely	higher	for	HyPBase	[43,78].	We	
recovered	fewer	insertions	per	cell	than	this,	on	average,	in	our	experiments.	This	is	likely	due	to	the	low	
capture	rate	of	mRNA	transcripts,	which	is	common	to	all	scRNA-seq	methods	[79].	The	inclusion	of	cis-
regulatory	features	known	to	enhance	mRNA	maturation	and	stability,	such	as	the	woodchuck	hepatitis	
virus	post-transcriptional	regulatory	element	(WPRE)	may	increase	representation	of	SRTs	in	scRNA-seq	
libraries.	Furthermore,	as	the	transcript	capture	rates	of	scRNA	technologies	improve,	we	expect	the	
sensitivity	of	our	method	will	increase.	The	sensitivity	of	scCC	can	also	be	improved	by	simply	analyzing	
larger	numbers	of	cells,	such	as	with	cell	hashing	[80]	or	combinatorial	barcoding	[60].	Since	the	per-cell	
costs	for	scRNA-seq	are	exponentially	falling	[81],	we	expect	that	scCC	can	be	used	to	analyze	TF	binding	
in	even	very	rare	cell	types	in	the	near	future.	Alternatively,	SRTs	can	be	combined	with	Cre	
	
Our	scCC	experiments	employed	the	piggyBac	transposase,	but	for	some	applications,	the	use	of	other	
transposases	may	prove	advantageous.	piggyBac	inserts	almost	exclusively	into	TTAA	tetranucleotides.	
For	TFs	that	bind	GC-rich	regions	or	have	high	GC-content	motifs,	piggyBac	fusions	may	have	a	difficult	
time	finding	nearby	insertion	sites.	Sleeping	Beauty,	which	inserts	into	TA	dinucleotides,	or	Tol2,	which	
does	not	have	a	strict	insertion	site	preference	[38],	could	be	used	to	overcome	these	limitations.	
However,	the	natural	affinity	of	the	piggyBac	transposase	for	BRD4	makes	it	the	ideal	choice	for	the	study	
of	BRD4-bound	SEs,	which	play	important	regulatory	roles	in	development	and	disease	[51].	It	is	unclear	
why	piggyBac	shows	such	an	affinity.	Recent	evidence	suggests	that	SEs	form	intranuclear	liquid	phase	
condensates	and	that	SE-associated	proteins	like	MED1	and	BRD4	have	intrinsically	disordered	regions	
that	may	allow	them	to	form	these	condensates	[82].	It	may	be	that	piggyBac	has	a	similarly	disordered	
domain	that	allows	it	to	preferentially	enter	these	condensates,	thereby	enriching	SEs	with	insertions.	
	
The	defining	feature	of	the	scCC	method	is	the	self-reporting	transposon	(SRT).	While	here	we	have	
reported	the	piggyBac	and	Sleeping	Beauty	SRTs,	the	self-reporting	paradigm	should	be	generalizable	to	
any	transposon	lacking	a	polyadenylation	signal	(PAS)	in	at	least	one	terminal	repeat.	Expanding	the	
palette	of	SRTs	will	illuminate	the	genome-wide	behaviors	of	transposases	and	may	yield	further	insight	
into	chromatin	dynamics	[38].	Simultaneous	expression	of	many	TFs,	each	tagged	to	a	different	
transposase,	may	also	enable	multiplexed	studies	of	TF	binding	in	the	same	cells.	Mapping	SRTs	using	
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cellular	RNA	appears	to	be	substantially	more	efficient	than	the	DNA-based	inverse	PCR	method,	but	the	
reasons	for	this	are	somewhat	unclear.	Some	efficiency	is	likely	gained	by	eliminating	self-ligation,	as	well	
as	having	multiple	mRNA	copies	of	each	insertion	to	buffer	against	PCR	artifacts.	It	is	also	unknown	what	
fraction	of	self-reporting	transcripts	are	actually	polyadenylated	as	opposed	to	merely	containing	A-rich	
genomic	tracts.	Non-genic	PASs	prevent	anti-sense	transcription	[83],	which	suggests	that	PASs	may	be	
more	common	in	the	genome	than	previously	appreciated.	Targeted	3’-end	sequencing	[84,85]	of	SRT	
libraries	should	help	resolve	this	question,	while	long-read	sequencing	of	self-reporting	transcripts	may	
identify	non-canonical	PAS.	Finally,	SRTs	could	lead	to	new	single	cell	transposon-based	assays.	For	
example,	just	as	CRISPR/Cas9	has	been	combined	with	scRNA-seq	to	read	out	the	transcriptional	effects	
of	gene	deletion	[86,87],	SRTs	will	allow	transposon	mutagenesis	screens	to	be	read	out	by	scRNA-seq	in	
a	highly	parallel	fashion.	
	
Finally,	since	calling	card	insertions	are	genomically	integrated	and	preserved	through	mitosis,	they	
could	serve	as	a	molecular	record	of	cellular	events.	The	use	of	an	inducible	transposase	[88]	would	
enable	the	recording	and	identification	of	temporally-restricted	TF	binding	sites.	This	would	help	
uncover	the	stepwise	order	of	events	underlying	the	regulation	of	specific	genes	and	inform	cell	fate	
decision	making.	More	generally,	transposon	insertions	could	serve	as	barcodes	of	developmental	
lineage.	Single	transposition	events	have	been	used	to	delineate	relationships	during	hematopoiesis	
[89,90].	Multiplexing	several	SRTs	across	every	cell	in	an	organism	could	code	lineage	in	a	cumulative	
and	combinatorially	diverse	fashion,	generating	high-resolution	cellular	phylogenies.	
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Methods	

	
Cell	culture	

HCT-116,	N2a,	and	HEK293T	cells	were	cultured	in	Dulbecco’s	Modified	Eagle	Medium	(DMEM;	Gibco	
#11965-084)	supplemented	with	10%	fetal	bovine	serum	(FBS;	Peak	Serum	#PS-FB3)	and	1%	antibiotic-
antimycotic	(Anti-Anti;	Gibco	#15240-062).	K562	cells	were	grown	under	the	same	conditions	as	the	
HCT-116	and	N2a	except	replacing	DMEM	with	RPMI	1640	Medium	(Gibco	#11875-085).	Cells	were	
grown	at	37ºC	with	5%	carbon	dioxide	(CO2).	Puromycin	(Sigma	#P8899)	was	added	24	hours	after	
transfection	at	a	final	concentration	of	2	µg/ml.	Media	was	replenished	every	2	days.		
	
DNA-	vs	RNA-based	recovery	
	
Approximately	500,000	HCT-116	cells	were	plated	in	a	single	well	of	a	6-well	plate.	Cells	were	
transfected	with	2.5	µg	of	the	SP1-PBase	plasmid	(for	a	full	list	of	plasmids,	see	Supp.	Table	3)	and	2.5	µg	
of	the	PB-SRT-Puro	plasmid	using	Lipofectamine	3000	(Thermo	Fisher	#L3000015)	following	
manufacturer’s	instructions.	After	24	hours,	cells	were	split	and	plated	1:10	in	each	of	three	10	cm	dishes.	
Puromycin	was	then	added	and	colonies	were	allowed	to	grow	out	under	selection	for	two	weeks.	We	
obtained	approximately	2,300	colonies.	All	cells	were	pooled	together	and	split	into	two	populations:	one	
was	subjected	to	DNA	extraction,	self-ligation,	and	inverse	PCR,	as	described	previously	[34];	while	the	
other	underwent	RNA	extraction	and	SRT	library	preparation	(see	below).	
	
In	vitro	bulk	calling	card	experiments	
	
We	cotransfected	10-12	replicates	of	HCT-116	cells	with	5	µg	of	PB-SRT-Puro	plasmid	and	5	µg	PBase	
plasmid	via	Neon	electroporation	(Thermo	Fisher	#MPK10025).	Each	replicate	contained	2x106	cells.	As	
a	negative	control,	we	transfected	one	replicate	of	HCT-116	cells	with	5	µg	PB-SRT-Puro	plasmid	only.	We	
used	the	following	settings–pulse	voltage:	1,530	V;	pulse	width:	20	ms;	pulse	number:	1.	Each	replicate	
was	allowed	to	recover	in	a	single	well	of	a	6-well	plate	for	24	hours	before	being	split	1:1	into	a	10	cm	
dish	and	adding	puromycin.	Cells	were	grown	under	selection	for	one	week,	by	which	time	almost	all	
negative	control	transfectants	were	dead.	We	used	the	same	experimental	setup	for	experiments	with	
PB-SRT-Puro	and	each	of	SP1-PBase,	HyPBase,	and	SP1-HyPBase	plasmids,	as	well	as	with	SB-SRT-Puro	
and	SB100X	plasmids.	Each	replicate	was	cultured	independently	under	aforementioned	media	
conditions.	After	7	days,	we	dissociated	each	replicate	with	trypsin-EDTA	(Sigma	#T4049)	and	created	
single	cell	suspensions	in	phosphate-buffered	saline	(PBS;	Gibco	#14190-136).	Aliquots	of	each	replicate	
were	cryopreserved	in	cell	culture	media	(see	above)	supplemented	with	5%	DMSO.	The	remaining	cells	
were	pelleted	by	centrifugation	at	300g	for	5	minutes.	Cell	pellets	were	either	processed	immediately	or	
kept	at	-80ºC	in	RNAProtect	Cell	Reagent	(QIAGEN	#	76526).	
	
Isolation	of	bulk	RNA	and	reverse	transcription	
	
Total	RNA	was	isolated	from	each	replicate	using	the	RNEasy	Plus	Mini	Kit	(QIAGEN	#74134)	following	
manufacturer’s	instructions.	Briefly,	cell	pellets	were	resuspended	in	600	µl	of	Buffer	RLT	Plus	with	1%	
β-mercaptoethanol	(Gibco	#21985-023).	Cells	were	homogenzied	by	vortexing.	RNA	was	bound	on	gDNA	
Eliminator	spin	columns	and	treated	with	DNase	(QIAGEN	#79254)	while	on	the	column.	After	washing,	
RNA	was	eluted	in	40	µl	RNase-free	H2O.	RNA	was	quantitated	on	a	NanoDrop	ND-1000	
spectrophotometer	(Thermo	Fisher).	
	
We	performed	first	strand	on	each	replicate	with	Maxima	H	Minus	Reverse	Transcriptase	(Thermo	Fisher	
#EP0752).	We	mixed	2	µg	of	total	RNA	with	1	µl	10	mM	dNTPs	(Clontech	#639125)	and	1	µl	of	50	µM	
SMART_dT18VN	primer	(for	a	complete	list	of	primer	sequences,	see	Supp.	Table	4),	brought	the	total	
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volume	up	to	14	µl,	and	incubated	it	at	65ºC	for	5	minutes.	After	transferring	to	ice	and	letting	rest	for	1	
minute,	we	added	4	µl	5X	Maxima	RT	Buffer,	1	µl	RNaseOUT	(Thermo	Fisher	#10777019),	and	1	µl	of	1:1	
Maxima	H	Minus	Reverse	Transcriptase	diluted	in	1x	RT	Buffer	(100	U).	The	solution	was	mixed	by	
pipetting	and	incubated	at	50ºC	for	1	hour	followed	by	heat	inactivation	at	85ºC	for	10	minutes.	Finally,	
we	digested	with	1	µl	RNaseH	(NEB	#M0297S)	at	37ºC	for	30	minutes.	cDNA	was	stored	at	-20ºC.	
	
Amplification	of	self-reporting	transcripts	from	bulk	RNA	
	
The	PCR	conditions	for	amplifying	self-reporting	transcripts	(i.e.	transcripts	derived	from	self-reporting	
transposons)	involved	mixing	1	µl	cDNA	template	with	12.5	µl	Kapa	HiFi	HotStart	ReadyMix	(Kapa	
Biosystems	#KK2601),	0.5	µl	25	µM	SMART	primer,	and	either	1	µl	of	25	µM	SRT_PAC_F1	primer	(in	the	
case	of	puromycin	selection)	or	0.5	µl	of	25	µM	SRT_tdTomato_F1	primer	(in	the	case	of	tdTomato	
screening).	The	mixture	was	brought	up	to	25	µl	with	ddH2O.	Thermocycling	parameters	were	as	follows:	
95ºC	for	3	minutes;	20	cycles	of:	98ºC	for	20	seconds–65ºC	for	30	seconds–72ºC	for	5	minutes;	72ºC	for	
10	minutes;	hold	at	4ºC	forever.	As	a	control,	cDNA	quality	can	be	assessed	with	exon-spanning	primers	
for	β-actin	(see	Supp.	Table	4	for	examples	of	human	primers	[91])	under	the	same	thermocycling	
settings.	
	
PCR	products	were	purified	using	AMPure	XP	beads	(Beckman	Coulter	#A63880).	12	µl	of	resuspended	
beads	were	added	to	the	25	µl	PCR	product	and	mixed	homogenously	by	pipetting.	After	a	5-minute	
incubation	at	room	temperature,	the	solution	was	placed	on	a	magnetic	rack	for	2	minutes.	The	
supernatant	was	aspirated	and	discarded.	The	pellet	was	washed	twice	with	200	µl	of	70%	ethanol	
(incubated	for	30	seconds	each	time),	discarding	the	supernatant	each	time.	The	pellet	was	left	to	dry	at	
room	temperature	for	2	minutes.	To	elute,	we	added	20	µl	ddH2O	to	the	pellet,	resuspended	by	pipetting,	
incubated	at	room	temperature	for	2	minutes,	and	placed	on	a	magnetic	rack	for	one	minute.	Once	clear,	
the	solution	was	transferred	to	a	clean	1.5	ml	tube.	DNA	concentration	was	measured	on	the	Qubit	3.0	
Fluorometer	(Thermo	Fisher	#Q33216)	using	the	dsDNA	High	Sensitivity	Assay	Kit	(Thermo	Fisher	
#Q32851).	
	
Generation	of	bulk	RNA	calling	card	libraries	
	
Calling	card	libraries	from	bulk	RNA	were	generated	using	the	Nextera	XT	DNA	Library	Preparation	Kit	
(Illumina	#FC-131-1024).	One	nanogram	of	PCR	product	was	resuspended	in	5	µl	ddH2O.	To	this	mixture	
we	added	10	µl	Tagment	DNA	(TD)	Buffer	and	5	µl	Amplicon	Tagment	Mix	(ATM).	After	pipetting	to	mix,	
we	incubated	the	solution	in	a	thermocycler	preheated	to	55ºC.	The	tagmentation	reaction	was	halted	by	
adding	5	µl	Neutralization	Tagment	(NT)	Buffer	and	was	kept	at	room	temperature	for	5	minutes.	The	
final	PCR	was	set	up	by	adding	15	µl	Nextera	PCR	Mix	(NPM),	8	µl	ddH2O,	1	µl	of	10	µM	transposon	
primer	(e.g.	OM-PB-NNN)	and	1	µl	Nextera	N7	indexed	primer.	The	transposon	primer	anneals	to	the	end	
of	the	transposon	terminal	repeat–piggyBac,	in	the	case	of	OM-PB	primers,	or	Sleeping	Beauty,	in	the	case	
of	OM-SB	primers–and	contains	a	3	base	pair	barcode	sequence.	Every	N7	primer	contains	a	unique	index	
sequence	that	is	demultiplexed	by	the	sequencer.	Each	replicate	was	assigned	a	unique	combination	of	
barcoded	transposon	primer	and	indexed	N7	primer,	enabling	precise	identification	of	each	library’s	
sequencing	reads.	
	
The	final	PCR	was	run	under	the	following	conditions:	95ºC	for	30	seconds;	13	cycles	of:	95ºC	for	10	
seconds–50ºC	for	30	seconds–72ºC	for	30	seconds;	72ºC	for	5	minutes;	hold	at	4ºC	forever.	After	PCR,	the	
final	library	was	purified	using	30	µl	(0.6x)	AMPure	XP	beads,	as	described	above.	The	library	was	eluted	
in	11	µl	ddH2O	and	quantitated	on	an	Agilent	TapeStation	4200	System	using	the	High	Sensitivity	D1000	
ScreenTape	(Agilent	#5067-5584	and	#5067-5585).	
	
Sequencing	and	analysis	of	bulk	RNA	calling	card	libraries	
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Multiple	calling	card	libraries	were	pooled	together	for	sequencing	on	the	Illumina	HiSeq	2500	platform.	
To	increase	the	complexity	of	the	library,	PhiX	was	added	at	a	final	loading	concentration	of	50%.	Reads	
were	demultiplexed	by	the	N7	index	sequences	added	during	the	final	PCR.	Read	1	began	with	the	3	base	
pair	barcode	followed	by	the	end	of	the	transposon	terminal	repeat,	culminating	with	the	insertion	site	
motif	(TTAA	in	the	case	of	piggyBac;	TA	in	the	case	of	Sleeping	Beauty)	before	entering	the	genome.	
piggyBac	reads	were	checked	for	exact	matches	to	the	barcode,	transposon	sequence,	and	insertion	site	
at	the	beginning	of	reads	before	being	hard	trimmed	using	cutadapt	[92]	with	the	following	settings:	-g	
“^NNNTTTACGCAGACTATCTTTCTAGGGTTAA”	--minimum-length	1	--discard-untrimmed	-e	0	--no-
indels,	where	NNN	is	replaced	with	the	primer	barcode.	Sleeping	Beauty	libraries	were	trimmed	with	the	
following	settings:	-g	“^NNNTAAGTGTATGTAAACTTCCGACTTCAACTGTA”	--minimum-length	1	--discard-
untrimmed	-e	0	--no-indels.	Reads	passing	this	filter	were	then	trimmed	of	any	trailing	Nextera	adapter	
sequence,	again	using	cutadapt	and	the	following	settings:	-a	
"CTGTCTCTTATACACATCTCCGAGCCCACGAGACTNNNNNNNNNNTCTCGTATGCCGTCTTCTGCTTG"	--
minimum-length	1.	The	remaining	reads	were	aligned	to	the	human	genome	(build	hg38)	with	Novoalign	
3	(Novocraft	Technologies)	and	the	following	settings:	-n	40	-o	SAM	-o	SoftClip.	Aligned	reads	were	
validated	by	confirming	that	they	mapped	adjacent	to	the	insertion	site	motif.	Successful	reads	were	then	
converted	to	calling	card	format	(.ccf;	see	http://wiki.wubrowse.org/Calling_card)	and	visualized	on	the	
WashU	Epigenome	Browser	v46	(http://epigenomegateway.wustl.edu/legacy/).	
	
In	vitro	single	cell	calling	card	experiments	
	
N2a	and	K562	cells	were	cultured	and	transfected	identically	as	HCT-116	cells,	with	the	following	
exceptions:	K562	cells	were	grown	in	RPMI	1640	Medium	(Gibco	#11875-085);	for	K562	cells,	Neon	
electroporation	settings	were–pulse	voltage:	1,450	V;	pulse	width:	10	ms;	pulse	number:	3;	for	N2a	cells,	
Neon	electroporation	settings	were–pulse	voltage:	1,050	V;	pulse	width:	30	ms;	pulse	number:	2.	For	N2a	
cells,	one	replicate	(2x106	cells)	was	transfected	with	5	µg	PB-SRT-Puro	and	5	µg	HyPBase,	while	another	
replicate	was	transfected	with	5	µg	PB-SRT-Puro	only.	For	K562	cells,	4	replicates	received	both	plasmids	
and	one	received	the	SRT	alone.	After	1	week	of	selection,	N2a	or	K562	cells	were	mixed	with	transfected	
HCT-116	cells	and	then	underwent	single	cell	RNA-seq	library	preparation.	For	the	species	mixing	
experiment,	cells	were	classified	as	either	human	or	mouse	if	at	least	80%	of	self-reporting	transcripts	in	
that	cell	mapped	to	the	human	or	mouse	genome,	respectively.	
	
Single	cell	RNA-seq	library	preparation	
	
Single	cell	RNA-seq	libraries	were	prepared	using	10x	Genomics’	Chromium	Single	Cell	3’	Library	and	Gel	
Bead	Kit	(v2	chemistry;	#120267).	Each	replicate	was	targeted	for	recovery	of	6,000	cells.	Library	
preparation	followed	a	modified	version	of	the	manufacturer’s	protocol.	We	prepared	the	Single	Cell	
Master	Mix	without	RT	Primer,	replacing	it	with	an	equivalent	volume	of	Low	TE	Buffer.	GEM	generation	
and	GEM-RT	incubation	proceeded	as	instructed.	At	the	end	of	Post	GEM-RT	cleanup,	we	added	36.5	µl	
Elution	Solution	I	and	transferred	36	µl	of	the	eluted	sample	to	a	new	tube	(instead	of	35.5	µl	and	35	µl,	
respectively).	The	eluate	was	split	into	two	18	µl	aliquots	and	kept	at	–20ºC	until	ready	for	further	
processing.	One	fraction	was	kept	for	single	cell	calling	cards	library	preparation	(see	next	section),	while	
the	other	half	was	further	processed	into	a	single	cell	RNA-seq	library.	
	
We	then	added	the	RT	Primer	sequence	to	the	products	in	the	scRNA-seq	aliquot.	We	created	an	RT	
master	mix	by	adding	20	µl	of	Maxima	5X	RT	Buffer,	20	µl	of	20%	w/v	Ficoll	PM-400	(GE	Healthcare	
#17030010),	10	µl	of	10	mM	dNTPs	(Clontech	#639125),	2.5	µl	RNase	Inhibitor	(Lucigen),	and	2.5	µl	of	
100	µM	10x_TSO.	To	this	solution	we	added	18	µl	of	the	first	RT	product	and	22	µl	of	ddH2O.	Finally,	we	
added	5	µl	Maxima	H	Minus	Reverse	Transcriptase,	mixed	by	flicking,	and	centrifuged	briefly.	This	
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reaction	was	incubated	at	25ºC	for	30	minutes	followed	by	50ºC	for	90	minutes	and	heat	inactivated	at	
85ºC	for	5	minutes.	
	
The	solution	was	purified	using	DynaBeads	MyOne	Silane	(Thermo	Fisher	#37002D)	following	10x	
Genomics’	instructions,	beginning	at	“Post	GEM-RT	Cleanup	–	Silane	DynaBeads”	step	D.	The	remainder	
of	the	single	cell	RNA-seq	protocol,	including	purification,	amplification,	fragmentation,	and	final	library	
amplification,	followed	manufacturer’s	instructions.	
	
Single	cell	calling	cards	library	preparation	
	
To	amplify	self-reporting	transcripts	from	single	cell	RNA-seq	libraries,	we	took	9	µl	of	RT	product	(the	
other	half	was	kept	in	reserve)	and	added	it	to	25	µl	Kapa	HiFi	HotStart	ReadyMix	and	15	µl	ddH2O.	We	
then	prepared	a	PCR	primer	cocktail	comprising	5	µl	of	100	µM	Bio_Illumina_Seq1_scCC_10X_3xPT	
primer,	5	µl	of	100	µM	Bio_Long_PB_LTR_3xPT,	and	10	µl	of	10	mM	Tris-HCl,	0.1	mM	EDTA	buffer	(IDT	
#11-05-01-13).	One	µl	of	this	cocktail	was	added	to	the	PCR	mixture	and	placed	in	a	thermocycler	
(Eppendorf	MasterCycler	Pro).	Thermocycling	settings	were	as	follows:	98ºC	for	3	minutes;	20-22	cycles	
of	98ºC	for	20	seconds–67ºC	for	30	seconds–72ºC	for	5	minutes;	72ºC	for	10	minutes;	4ºC	forever.	PCR	
purification	was	performed	with	30	µl	AMPure	XP	beads	(0.6x	ratio)	as	described	previously.	The	
resulting	library	was	quantitated	on	an	Agilent	TapeStation	4200	System	using	the	High	Sensitivity	
D5000	ScreenTape	(Agilent	#5067-5592	and	#5067-5593).	
	
Single	cell	calling	card	library	preparation	was	performed	using	the	Nextera	Mate	Pair	Sample	Prep	Kit	
(Illumina	#FC-132-1001)	with	modifications	to	the	manufacturer’s	protocol.	The	library	was	circularized	
by	bringing	300	fmol	(approximately	200	ng)	of	DNA	up	to	a	final	volume	of	268	µl	with	ddH2O,	then	
adding	30	µl	Circularization	Buffer	10x	and	2	µl	Circularization	Ligase	(final	concentration:	1	nM).	This	
reaction	was	incubated	overnight	(12-16	hours)	at	30ºC.	After	removal	of	linear	DNA	(following	
manufacturer’s	instructions),	we	sheared	the	library	on	a	Covaris	E220	Focused-ultrasonicator	with	the	
following	settings–peak	power	intensity:	200;	duty	factor:	20%;	cycles	per	burst:	200;	time:	40	seconds;	
temperature:	6ºC.	
	
The	library	preparation	proceeded	per	manufacturer’s	instructions	until	adapter	ligation.	We	designed	
custom	adapters	(Supp.	Table	4)	so	that	the	standard	Illumina	sequencing	primers	would	not	interfere	
with	our	library.	Adapters	were	prepared	by	combining	4.5	µl	of	100	µM	scCC_P5_adapter,	4.5	µl	of	100	
µM	scCC_P7_adapter,	and	1	µl	of	NEBuffer	2	(NEB	#B7002S),	then	heating	in	a	thermocycler	at	95ºC	for	5	
minutes,	then	holding	at	70ºC	for	15	minutes,	then	ramping	down	at	1%	until	it	reached	25ºC,	holding	at	
the	temperature	for	5	minutes,	before	keeping	at	4ºC	forever.	One	µl	of	this	custom	adapter	mix	was	used	
in	place	of	the	manufacturer’s	recommended	DNA	Adapter	Index.	The	ligation	product	was	cleaned	per	
manufacturer’s	instructions.	For	the	final	PCR,	the	master	mix	was	created	by	combining	20	µl	Enhanced	
PCR	Mix	with	28	µl	of	ddH2O	and	1	µl	each	of	25	µM	scCC_P5_primer	and	25	µM	scCC_P7_primer).	This	
was	then	added	to	the	streptavidin	bead-bound	DNA	and	amplified	under	the	following	conditions:	98ºC	
for	30	seconds;	15	cycles	of:	98ºC	for	10	seconds–60ºC	for	30	seconds–72ºC	for	2	minutes;	72ºC	for	5	
minutes;	4ºC	forever.	All	of	the	PCR	supernatant	was	transferred	to	a	new	tube	and	purified	with	35	µl	
(0.7x)	AMPure	XP	beads	following	manufacturer’s	instructions.	The	final	library	was	eluted	in	25	µl	
Elution	Buffer	(QIAGEN	#19086)	and	quantitated	on	an	Agilent	TapeStation	4200	System	using	the	High	
Sensitivity	D1000	ScreenTape.	
	
Sequencing	and	analysis	of	scRNA-seq	libraries	
	
scRNA-seq	libraries	were	sequenced	on	either	Illumina	HiSeq	2500	or	NovaSeq	S1	machines.	Reads	were	
analyzed	using	10x	Genomics’	cellranger	2.1.0	with	the	following	settings:	--expect-cells=6000	--
chemistry=SC3Pv2	--localcores=16	--localmem=30.	The	digital	gene	expression	matrices	from	10x	were	
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then	further	processed	with	scanpy	1.3.7	[93]	for	identification	of	highly	variable	genes,	dimensionality	
reduction,	and	Louvain	clustering.	The	species-mixing	analysis	was	analyzed	using	Drop-seq_tools	1.11	
[58].	
	
Sequencing	and	analysis	of	scCC	libraries	
	
scCC	libraries	were	sequenced	on	Illumina	NextSeq	500	machines	(v2	Reagent	Cartridges)	with	50%	
PhiX.	We	used	the	standard	Illumina	primers	for	read	1	and	index	2	(BP10	and	BP14,	respectively),	and	
custom	primers	for	read	2	and	index	1	(Supp.	Table	4).	Read	1	sequenced	the	cell	barcode	and	unique	
molecular	index	of	each	self-reporting	transcript.	Read	2	began	with	GGTTAA	(end	of	the	piggyBac	
terminal	repeat	and	insertion	site	motif)	before	continuing	into	the	genome.	Reads	containing	this	exact	
hexamer	were	trimmed	using	cutadapt	with	the	following	settings:	-g	"^GGTTAA"	--minimum-length	1	--
discard-untrimmed	-e	0	--no-indels.	Reads	passing	this	filter	were	then	trimmed	of	any	trailing	P7	
adapter	sequence,	again	using	cutadapt	and	with	the	following	settings:	-a	
"AGAGACTGGCAAGTACACGTCGCACTCACCATGANNNNNNNNNATCTCGTATGCCGTCTTCTGCTTG"	--
minimum-length	1.	Reads	passing	these	filters	were	aligned	using	10x	Genomics’	cellranger	with	the	
following	settings:	--expect-cells=6000	--nosecondary	--chemistry=SC3Pv2	--localcores=16	--
localmem=30.	This	workflow	also	managed	barcode	validation	and	collapsing	of	UMIs.	Aligned	reads	
were	validated	by	verifying	that	they	mapped	adjacent	to	TTAA	tetramers.	Reads	were	then	converted	to	
calling	card	format	(.ccf,	see	above).	Finally,	to	minimize	the	presence	of	intermolecular	artifacts,	we	
required	that	each	insertion	must	have	been	tagged	by	at	least	two	different	UMIs.	We	used	the	set	of	
validated	cell	barcodes	from	each	scRNA-seq	library	to	demultiplex	library-specific	barcoded	insertions	
from	the	scCC	data.	This	approach	requires	no	shared	cell	barcodes	between	scCC	(and	scRNA-seq)	
libraries.	As	a	result,	we	excluded	insertions	from	non-unique	cell	barcodes,	which	represented	a	very	
small	number	of	total	cells	lost	(<	1%	per	multiplexed	library).	
	
Peak	calling	
	
We	called	peaks	in	calling	card	data	using	Bayesian	blocks	[94],	a	noise-tolerant	algorithm	for	segmenting	
discrete,	one-dimensional	data,	using	the	astroML	0.3	implementation	[95].	Bayesian	blocks	segments	the	
genome	into	non-overlapping	blocks	where	the	density	of	calling	card	insertions	is	uniform.	By	
comparing	the	segmentation	against	a	background	model,	we	were	able	to	use	Poisson	statistics	to	assess	
whether	a	given	block	shows	statistically	significant	enrichment	for	insertions.	Let	! = {$%, $', … $)}	
represent	the	set	of	blocks	found	by	performing	Bayesian	block	segmentation	on	all	insertions	from	a	TF-
directed	experiment	(e.g.	SP1-PBase).	For	each	block	$+ ,	let	,+ 	be	the	number	of	insertions	in	that	block	in	
the	TF-directed	experiment.	Similarly,	let	-+.	be	the	number	of	insertions	in	that	block	in	the	undirected	
experiment	(e.g.	PBase)	normalized	to	the	total	number	of	insertions	found	in	the	TF-directed	
experiment.	Then,	for	each	block	we	calculated	the	Poisson	p-value	of	observing	at	least	,+ 	insertions	
assuming	a	Poisson	distribution	with	expectation	-+.:	/(1 ≥ ,+|4 = -+

.).	We	accepted	all	blocks	that	were	
significant	beyond	a	particular	p-value	threshold.	
	
For	bulk	analysis	of	SP1-PBase	and	SP1-HyPBase	insertions,	we	added	a	pseudocount	of	0.1	to	all	blocks	
and	used	p-value	cutoffs	of	10-6	and	10-22,	respectively.	For	single	cell	analysis	of	SP1-HyPBase	insertions,	
we	added	a	pseudocount	of	1	to	all	blocks	and	used	a	p-value	cutoff	of	10-9.	All	three	of	these	values	were	
beyond	a	Bonferroni-corrected	6	of	0.05.	We	polished	peak	calls	by	merging	statistically-significant	
blocks	that	were	within	250	bases	of	each	other	and	by	aligning	block	edges	to	coincide	with	TTAAs.	
	
To	identify	BRD4	binding	sites	from	undirected	piggyBac	insertions,	we	segmented	those	insertions	using	
Bayesian	blocks.	For	each	block	$+ ,	we	let	,+ 	denote	the	number	of	undirected	insertions	in	that	block.	We	
also	calculated	,+.,	the	expected	number	of	insertions	in	block	$+ 	assuming	piggyBac	insertions	were	
distributed	uniformly	across	the	genome.	We	did	this	by	dividing	the	total	number	of	mappable	TTAAs	in	
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the	genome	by	the	total	number	of	undirected	insertions,	then	multiplying	this	value	by	the	number	of	
mappable	TTAAs	in	block	$+ .	Then,	for	each	block	we	calculated	the	Poisson	p-value	/(1 ≥ ,+|4 = ,+

.).	We	
accepted	all	blocks	that	were	significant	beyond	a	particular	p-value	threshold.	Finally,	we	merged	
statistically-significant	blocks	that	were	within	12,500	bases	of	each	other	[50,56].	
	
For	the	bulk	PBase	and	HyPBase	analysis,	we	used	p-value	cutoffs	of	10-30	and	10-62,	respectively.	For	
both	in	vitro	and	in	vivo	single	cell	HyPBase	analyses,	we	used	a	p-value	cutoff	of	10-9.	To	call	
differentially-bound	loci	between	upper	and	lower	cortical	layer	neurons,	we	used	the	same	framework	
as	described	above	for	SP1	but	did	reciprocal	enrichment	analyses	where	the	upper	layer	insertions	were	
used	as	the	“experiment”	track	and	the	lower	layer	insertions	were	used	as	the	“control”	track,	and	vice-
versa.	Here	again	we	used	a	p-value	cutoff	of	10-9.	
	
SP1	binding	analysis	in	HCT-116	cells	
	
We	compared	our	SP1	peak	calls	to	a	publicly-available	ChIP-seq	dataset	[53]	as	well	as	an	input	control	
file	(Supp.	Table	5).	See	below	for	more	details	on	aligning	and	analyzing	ChIP-seq	data.	We	collated	a	list	
of	unique	TSSs	by	taking	the	5’-most	coordinates	of	RefSeq	Curated	genes	in	the	hg38	build	(UCSC	
Genome	Browser).	A	list	of	CpG	islands	in	HCT-116	cells	and	their	methylation	statuses	were	derived	
from	previously-published	Methyl-seq	data	[96].	We	used	the	liftOver	tool	(UCSC)	to	convert	coordinates	
from	hg18	to	hg38.	We	tested	for	enrichment	in	SP1-directed	insertions	at	TSSs,	CpG	islands,	and	
unmethylated	CpGs	witht	the	G	test	of	independence.	For	motif	discovery	we	used	MEME-ChIP	4.11.2	[97]	
with	a	dinucleotide	shuffled	control	and	the	following	settings:	-dna	-nmeme	600	-seed	0	-ccut	250	-
meme-mod	zoops	-meme-minw	4	-meme-nmotifs	5.	
	
BRD4	sensitivity,	specificity,	and	precision	analysis	in	HCT-116	cells	
	
We	used	a	published	BRD4	ChIP-seq	dataset	[52]	to	identify	BRD4-bound	super-enhancers	in	HCT-116	
cells,	following	previously-described	methods	[50,51].	We	first	called	peaks	using	MACS	1.4.1	[98]	at	p-<	
10-9,	then	fed	this	list	into	ROSE	0.1	(http://younglab.wi.mit.edu/super_enhancer_code.html).	We	then	
discarded	artifactual	loci	less	than	2,000	bp	in	size,	yielding	a	final	list	of	162	super-enhancers.	To	
evaluate	sensitivity,	we	used	bedtools	2.27.1	[99]	to	ask	what	fraction	of	piggyBac	peaks,	at	various	p-
value	thresholds,	overlapped	the	set	of	BRD4-bound	super-enhancers.	To	measure	specificity,	we	created	
a	list	of	regions	predicted	to	be	insignificantly	enriched	(p	>	0.1)	for	BRD4	ChIP-seq	signal.	We	then	
sampled	bases	from	this	region	such	that	the	distribution	of	peak	sizes	was	identical	to	that	of	the	162	
super-enhancers.	We	sampled	to	642x	coverage,	sufficient	to	cover	each	base	with	one	peak,	on	average.	
We	then	asked	what	fraction	of	our	piggyBac	peaks	overlapped	these	negative	peaks	and	subtracted	that	
value	from	1	to	obtain	specificity.	Finally,	we	calculated	precision,	or	positive	predictive	value,	by	
dividing	the	total	number	of	detected	super-enhancer	peaks	by	the	sum	of	the	super-enhancer	peaks	and	
the	false	positive	peaks.	
	
Downsampling	and	replication	analysis	
	
When	performing	downsampling	analyses	on	calling	card	insertions,	we	randomly	sampled	insertions	
without	replacement	and	in	proportion	the	number	of	reads	supporting	each	insertion.	Peaks	were	called	
on	the	downsampled	insertions	at	a	range	of	p-value	cutoffs.	Linear	interpolation	was	performed	using	
numpy	1.15	and	visualized	using	matplotlib	3.0.	Replication	was	assessed	by	splitting	calling	card	
insertions	into	two,	approximately	equal,	files	based	on	their	barcode	sequences.	Each	new	file	was	
treated	as	a	single	biological	experiment.	For	each	peak	called	from	the	joint	set	of	all	insertions,	we	
plotted	the	number	of	normalized	insertions	(insertions	per	million	mapped	insertions,	or	IPM)	in	one	
replicate	on	the	x-axis	and	the	other	replicate	on	y-axis.		
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ChIP-seq	and	chromatin	state	analyses	
	
We	aligned	raw	reads	using	Novoalign	with	the	following	settings	for	single-end	datasets:	-o	SAM	-o	
SoftClip,	while	paired-end	datasets	were	mapped	with	the	additional	flag	-i	PE	200-500.	To	calculate	and	
visualize	the	fold	enrichment	in	ChIP-seq	signal	at	calling	card	peaks,	we	used	deeptools	3.0.1	[100].	We	
tested	for	significant	mean	enrichment	in	BRD4	ChIP-seq	signal	at	piggyBac	peaks	over	randomly	
shuffled	control	peaks	with	the	Kolmogorov-Smirnov	test.	Chromatin	state	analysis	was	performed	using	
ChromHMM	1.15	as	previously	described	[101].	For	each	chromatin	state,	we	plotted	the	mean	and	
standard	deviation	of	the	rate	of	normalized	insertions	per	kilobase	(IPM/kb).	
	
SRT-tdTomato	fluorescence	validation	
	
To	test	the	fluorescence	properties	of	the	SRT-tdTomato	construct,	we	transfected	K562	cells	as	
previously	described	with	either	1	µg	of	PUC19	plasmid;	0.5	µg	of	PB-SRT-tdTomato	plasmid	and	0.5	µg	
PUC19;	0.5	µg	of	PB-SRT-tdTomato	and	0.5	µg	PBase	plasmid;	and	0.5	µg	of	PB-SRT-tdTomato	and	0.5	µg	
HyPBase	plasmid.	Cells	were	allowed	to	expand	for	8	days,	after	which	fluorescence	activity	was	assayed	
on	an	Attune	NxT	Flow	Cytometer	(Thermo	Fisher)	with	an	excitation	wavelength	of	561	nm.	Flow	
cytometery	data	were	visualized	using	FlowCal	1.2.0	[102].	We	also	performed	bulk	RNA	calling	cards	on	
HEK293T	cells	transfected	with	SRT-tdTomato	with	or	without	HyPBase	plasmid.	While	these	cells	were	
not	sorted	based	on	fluorescence	activity,	the	SRT	library	from	cells	transfected	with	both	SRT	and	
transposase	were	more	complex	and	contained	many	more	insertions	than	the	library	from	cells	
receiving	SRT	alone	(Supp.	Fig.	1A).	
	
In	vivo	single	cell	calling	cards	experiments	
	
All	mouse	experiments	were	done	following	procedures	described	in	Cammack	et	al.	(in	preparation).	In	
brief,	we	cloned	the	PB-SRT-tdTomato	and	HyPBase	constructs	into	AAV	vectors.	The	Hope	Center	Viral	
Vectors	Core	at	Washington	University	in	St.	Louis	packaged	each	construct	in	AAV9	capsids.	Titers	for	
each	virus	ranged	between	1.1x1013	and	2.2x1013	viral	genomes/ml.	We	mixed	equal	volumes	of	each	
virus	and	performed	intracranial	cortical	injections	of	the	mixture	into	newborn	wild-type	C57BL/6J	
pups	(P0-2).	As	a	gating	control,	we	injected	one	litter-matched	animal	with	AAV9-PB-SRT-tdTomato	
only.	After	2	to	4	weeks,	we	sacrificed	mice	and	dissected	the	cortex	(8	libraries)	or	hippocampus	(1	
library).	All	animal	practices	and	procedures	were	approved	by	the	Washington	University	in	St.	Louis	
Institutional	Animal	Care	and	Use	Committee	(IACUC)	in	accordance	with	National	Institutes	of	Health	
(NIH)	guidelines.	
	
Tissues	were	dissociated	to	single	suspensions	following	a	modification	of	previously	published	methods	
[103,104].	We	incubated	samples	in	a	papain	solution	containing	Hibernate-A	(Gibco	#A1247501)	with	
5%	v/v	trehalose	(Sigma-Aldrich	#T9531),	1x	B-27	Supplement	(Gibco	#17504044),	0.7	mM	EDTA	
(Corning	#36-034-Cl),	70	µM	2-mercaptoethanol	(Gibco	#21985023),	and	2.8	mg/ml	papain	
(Worthington	Chemical	Corporation	#LS003118).	After	incubation	at	37ºC,	cells	were	treated	with	
DNaseI	(Worthington	Chemical	Corporation	#NC9924263),	triturated	through	increasingly	narrow	fire-
polished	pipettes,	and	passed	through	a	40-micron	filter	prewetted	with	resuspension	solution:	
Hibernate-A	containing	5%	v/v	trehalose,	0.5%	Ovomucoid	Trypsin	Inhibitor	(Worthington	Chemical	
Corporation	#NC9931428),	0.5%	Bovine	Serum	Albumin	(BSA;	Sigma-Aldrich	#A9418),	33	µg/ml	
DNaseI,	and	1x	B-27	Supplement.	The	filter	was	washed	with	6	ml	of	resuspension	solution.	The	resulting	
suspension	was	centrifuged	for	4	minutes	at	250	g.	The	supernatant	was	discarded.	The	pellet	was	then	
resuspended	in	2	ml	of	resuspension	solution	and	resuspended	by	gentle	pipetting.	
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We	eliminated	subcellular	debris	using	gradient	centrifugation.	We	first	prepared	a	working	solution	of	
30%	w/v	OptiPrep	Density	Gradient	Medium	(Sigma-Aldrich	#D1556)	mixed	with	an	equal	volume	of	1x	
Hank’s	Balanced	Salt	Solution	(HBSS;	Gibco	#14185052)	with	0.5%	BSA.	We	then	prepared	solutions	of	
densities	1.057,	1.043,	1.036,	and	1.029	g/ml	using	by	combining	the	working	solution	with	resuspension	
solution	at	ratios	of	0.33:0.67,	0.23:0.77,	0.18:0.82,	and	0.13:0.87,	respectively.	1	ml	aliquots	of	each	
solution	were	layered	in	a	15	ml	conical	tube	beginning	with	the	densest	solution	on	the	bottom.	The	cell	
suspension	was	added	last	to	the	tube	and	centrifuged	for	20	minutes	at	800	g	at	12ºC.	The	top	layer	was	
then	aspirated	and	purified	cells	were	isolated	from	the	remaining	layers.	These	cells	were	then	
resuspended	in	FACS	buffer:	1x	HBSS,	2	mM	MgCl2	(Sigma-Aldrich	#M4880),	2	mM	MgSO4	(Sigma-Aldrich	
#M2643),	1.25	mM	CaCl2	(Sigma-Aldrich	#C7902),	1	mM	D-glucose	(Sigma-Aldrich	#G7021),	0.02%	BSA,	
and	5%	v/v	trehalose.	Cells	were	centrifuged	for	4	minutes	at	250	g,	the	supernatant	was	discarded,	and	
the	pellet	was	resuspended	in	FACS	buffer	by	gentle	pipetting.	
	
Cells	were	then	sorted	based	on	fluorescence	activity.	As	a	gating	control,	we	analyzed	cells	from	cortices	
injected	with	AAV9-PB-SRT-tdTomato	only.	We	then	collected	cells	from	brains	transfected	with	AAV9-
PB-SRT-tdTomato	and	AAV9-HyPBase	whose	fluorescence	values	exceed	the	gate.	After	sorting,	cells	
were	centrifuged	for	3	minutes	at	250	g.	The	supernatant	was	discarded	and	cells	were	resuspended	in	
FACS	buffer	at	a	concentration	appropriate	for	10x	Chromium	3’	scRNA-seq	library	preparation.	
	
In	vivo	single	cell	calling	cards	analysis	and	validation	
	
Single	cell	RNA-seq	and	single	cell	calling	card	libraries	were	prepared,	sequenced,	and	analyzed	as	
described	above.	Cell	types	were	assigned	based	on	the	expression	of	key	marker	genes	and	cross-
referenced	with	recent	cortical	scRNA-seq	datasets	[60-63].	Brd4-bound	peak	calls	were	validated	by	
comparing	to	a	previously	published	cortical	H3K27ac	ChIP-seq	dataset	[65]	(Supp.	Table	5).	Read	
alignment	and	statistical	analysis	were	performed	as	described	above.	
	
The	specificity	of	Brd4-bound	gene	expression	in	astrocytes	and	neurons	was	analyzed	by	first	
identifying	all	genes	within	10,000	bases	of	astrocyte	and	neuronal	Brd4	peaks.	Although	assigning	an	
enhancer	to	its	target	gene	is	a	difficult	problem,	using	the	nearest	gene	is	common	practice	[105].	To	
control	for	sensitivity	of	gene	detection,	we	downsampled	the	neuron	insertions	to	the	same	number	of	
astrocyte	insertions,	then	called	peaks	and	identified	nearby	genes	in	this	subset.	We	used	gene	
expression	data	from	a	bulk	RNA-seq	dataset	[66]	to	compute	the	specificity	of	gene	expression	between	
astrocytes	and	neurons.	We	first	discarded	genes	whose	expression	were	not	measured,	and	then	set	the	
value	for	genes	with	0.1	FPKM	to	zero	(to	better	distinguish	non-expressed	genes).	Finally,	for	each	gene	
7+ ,	we	calculated	the	specificity	as	

89:;<=>:?@ABC(DE)

89:;<=>:?@ABC(DE)FG?H;<)@ABC(DE)
.	Thus,	a	value	of	0	denotes	a	gene	

purely	expressed	in	neurons,	a	value	of	0.5	for	a	gene	equally	expressed	in	both	cell	types,	and	a	value	of	
1	for	a	gene	purely	expressed	in	astrocytes.	We	plotted	distributions	of	gene	expression	specificity	for	the	
set	of	astrocyte-bound	genes	and	the	downsampled	astrocyte-bound	genes.	Gene	Ontology	analysis	was	
performed	on	the	same	sets	of	genes	using	PANTHER	14.0	[106]	on	the	“GO	biological	process	complete”	
database.	Fisher’s	exact	test	was	used	to	compute	p-values,	which	were	then	subject	to	Bonferroni	
correction.	
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Figure	1:	Self-reporting	transposons	(SRTs)	are	mapped	more	efficiently	from	RNA	over	DNA	and,	

when	directed	SP1-PBase,	identify	SP1	binding	sites.	(A)	Schematic	of	a	self-reporting	piggyBac	
transposon	with	puromycin	marker	(PB-SRT-Puro)	and	undirected	(PBase)	and	SP1-directed	(SP1-
PBase)	piggyBac	transposases.	SRTs	are	constructed	by	removing	the	polyadenylation	signal	sequence	
between	the	end	of	the	marker	gene	and	the	5’	terminal	repeat	(TR).	A	self-cleaving	ribozyme	(Rz)	on	the	
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delivery	vector,	downstream	of	the	SRT,	prevents	recovery	of	plasmid	transposons.	(B)	SRTs	are	mapped	
by	reverse	transcribing	RNA	with	a	poly(T)	primer	followed	by	a	series	of	nested	PCRs	and	tagmentation.	
This	final	library	is	enriched	for	the	junction	between	the	transposon	and	the	genome.	(C)	RNA-based	
recovery	of	SP1-directed	SRTs	in	HCT-116	cells	is	more	efficient	than	DNA-based	recovery.	The	RNA	
protocol	recovers	80%	of	the	same	insertions	as	the	DNA	protocol	and	recovers	twice	as	many	insertions	
overall.	(D)	The	distribution	of	insertions	with	respect	gene	annotation	is	identical	between	transposons	
recovered	by	DNA	and	by	RNA.	(E)	Insertions	deposited	by	SP1-PBase	show	pronounced	and	specific	
clustering	at	SP1	ChIP-seq	peaks	over	insertions	left	by	undirected	PBase.	In	the	calling	card	track,	each	
circle	represents	an	independent	insertion.	Genomic	position	is	on	the	x-axis	and	the	number	of	reads	
supporting	that	insertion	is	on	the	y-axis	on	a	log10-transformed	scale.	The	density	tracks	show	the	local	
density	of	insertions	in	each	experiment,	normalized	for	library	size.	
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Figure	2:	Undirected	piggyBac	(PBase)	insertions	mark	BRD4-bound	super-enhancers.	(A)	Undirected	PBase	insertions	are	
distributed	non-randomly,	with	increased	density	overlapping	BRD4-bound	chromatin	and	H3K27	acetylated	histones.	Also	shown	are	
BRD4-bound	super-enhancers	(SEs).	(B)	PBase	peak	calls	are	highly	replicable,	with	biological	replicates	showing	high	concordance	of	
normalized	insertions	at	peaks.	(C)	PBase	peaks	show	central	enrichment	for	BRD4	ChIP-seq	signal.	These	findings	are	statistically	
significant	when	compared	to	a	genome-wide	permutation	of	PBase	peaks	(p	<	10-9,	KS	test).	(D)	PBase	peaks	are	centrally	enriched	for	the	
histone	modifications	H3K27ac	and	H3K4me1,	marks	associated	with	enhancers.	These	same	peaks	show	mild	depletion	for	H3K9me	and	
H3K27me,	marks	canonically	associated	with	repressed	chromatin.	(E)	Receiver-operator	characteristic	curve	for	SE	detection	using	PBase	
insertions.	(F)	Precision-recall	curve	for	SE	detection	using	PBase	insertions.	IPM:	insertions	per	million	mapped	insertions;	AUROC:	area	
under	receiver-operator	curve;	AUPRC:	area	under	precision-recall	curve;	KS:	Kolmogorov-Smirnov;	FC:	fold	change.	
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Figure	3:	Single	cell	calling	cards	(scCC)	maps	BRD4	binding	and	SP1	in	single	cells.	(A)	Schematic	
of	the	scCC	library	preparation	strategy	from	scRNA-seq	libraries.	Self-reporting	transcripts	are	amplified	
using	biotinylated	primers	and	circularized,	which	brings	the	cell	barcode	and	unique	molecular	index	
(UMI)	in	close	proximity	to	the	transposon-genome	junction.	Circularized	molecules	are	sheared,	
captured	with	streptavidin,	and	Illumina	adapters	are	ligated.	Custom	sequencing	yields	the	cell	barcode	
and	UMI	with	read	1	and	the	genomic	insertion	site	with	read	2.	(B)	Barnyard	plot	of	HCT-116	and	N2a	
cells	transfected	with	SRTs	shows	clean	segregation	of	cell	types.	Most	cells	were	assigned	either	human	
insertions	or	mouse	insertions,	with	a	minority	(7.8%)	containing	insertions	from	both	species.	(C)	
Human	HCT-116	and	K562	cells	were	transfected	with	PB-SRT-Puro	and	HyPBase	and	subsequently	
subjected	to	scRNA-seq.	Two	clear	cell	types	emerge	revealing	each	constituent	cell	population.	(D)	scCC	
deconvolves	HyPBase	insertions	from	HCT-116	and	K562	cells,	identifying	shared	and	specific	BRD4	
binding	sites.	(E)	scCC	on	HCT-116	cells	transfected	with	SP1-HyPBase	identifies	SP1	binding	sites.	(F)	
SP1-HyPBase	peaks	from	scCC	data	show	strong	central	enrichment	for	SP1	ChIP-seq	signal.	
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Figure	4:	Single	cell	calling	cards	deconvolves	Brd4-bound	loci	in	the	mouse	cortex.	(A)	Schematic	of	PB-SRT-tdTomato,	an	SRT	
compatible	with	in	vivo	experiments.	The	pre-transposition	tdTomato	transcript	(left)	is	degraded	by	the	downstream	ribozyme	(Rz),	
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leading	to	low	fluorescence	intensity.	After	transposition	into	the	genome,	the	self-reporting	transcript	is	stabilized	and	results	in	a	bright	
signal.	(B)	Validation	of	PB-SRT-tdTomato	in	K562	cells.	Cells	transfected	with	both	SRT	and	transposase	(either	PBase	or	HyPBase)	show	
bimodal	fluorescence	enabling	sorting	for	cells	with	insertions.	(C)	scRNA-seq	analysis	of	mouse	cortex	libraries	transduced	with	PB-SRT-
tdTomato	and	HyPBase	reveals	multiple	cell	types,	including	astrocytes	(n	=	4,727)	and	neurons	(n	=	25,158).	(D)	scCC	analysis	of	HyPBase	
insertions	in	astrocytes	and	neurons	identify	shared	and	specific	Brd4	binding	sites.	Whole	cortex	H3K27ac	ChIP-seq	shown	for	comparison.	
(E)	Gene	expression	specificity	of	genes	overlapping	astrocyte	or	sensitivity-matched	neuron	peaks.	Expression	values	were	taken	from	bulk	
RNA-seq.	Specificity	for	each	gene	was	calculated	by	dividing	the	expression	of	the	gene	in	astrocytes	by	the	sum	of	the	expression	values	in	
astrocytes	and	neurons.	Horizontal	lines	indicated	medians	of	the	distributions.	
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Figure	5:	Single	cell	calling	cards	deconvolves	Brd4	binding	in	cortical	excitatory	neurons	and	identifies	known	layer	markers.	(A)	
scCC	analysis	of	HyPBase	insertions	in	upper	(layer	2-4)	or	lower	(layer	5-6)	cortical	excitatory	neurons	identifies	shared	and	specific	Brd4	
binding	sites.	Whole	cortex	H3K27ac	ChIP-seq	shown	for	comparison.	(B)	Layer	2-4	(n	=	9,083)	and	layer	5-6	(n	=	6,980)	cortical	excitatory	
neurons	highlighted	among	the	scRNA-seq	clusters.	(C)	Gene	expression	patterns	of	the	four	genes	from	(A)	mirrors	the	cell	type-specificity	
of	Brd4	binding.	
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