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Abstract

Microorganisms often live in symbiotic relationship with their environment and they play a central role
in many biological processes. They form a complex system of interacting species. Within the gut micro-
biota these interaction patterns have been shown to be involved in obesity, diabetes and mental disease.
Understanding the mechanisms that govern this ecosystem is therefore an important scientific challenge.
Recently, the acquisition of large samples of microbiota data through metabarcoding or metagenomics
has become easier.

Until now correlation-based network analysis and graphical modelling have been used to identify the
putative interaction networks formed by the species of microorganisms, but these methods do not take into
account all features of microbiota data. Indeed, correlation-based network cannot distinguish between
direct and indirect correlations and simple graphical models cannot include covariates as environmental
factors that shape the microbiota abundance. Furthermore, the compositional nature of the microbiota
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data is often ignored or existing normalizations are often based on log-transformations, which is somewhat
arbitrary and therefore affects the results in unknown ways.

We have developed a novel method, called MAGMA, for detecting interactions between microbiota
that takes into account the noisy structure of the microbiota data, involving an excess of zero counts,
overdispersion, compositionality and possible covariate inclusion. The method is based on Copula Gaus-
sian graphical models whereby we model the marginals with zero-inflated negative binomial generalized
linear models. The inference is based on an efficient median imputation procedure combined with the
graphical lasso.

We show that our method beats all existing methods in recovering microbial association networks in
an extensive simulation study. Moreover, the analysis of two 16S microbial data studies with our method
reveals interesting new biology.

MAGMA is implemented as an R-package and is freely available at https://gitlab.com/arcgl/

rmagma, which also includes the scripts used to prepare the material in this paper.

1 Introduction

Microbiota are ubiquitous and play a central role in biological processes [1]. High-throughput sequencing
allows to study the composition, structure and diversity of complex microbial communities. In the wake
of technological development, there has been during the last years a multiplication of projects querying
the structure and properties of specific microbiota. Among others, some large projects targeted the
human microbiome, e.g., the MetaHIT project [2, 3] and the HMP project [4, 5, 6], planktonic and coral
ecosystems of the different oceans (TARA Oceans) project [7, 8], or the earth’s multiscale microbial
diversity (EMP) project [9, 10].

Microbiota are by nature complex systems of interconnected taxa. Interactions among microbes are an
important factor that shape the structure and properties of microbiota. From an ecological point of view,
interactions appear to structure [11], stabilize [12] and regulate the diversity [13] of microbial communities.
In the biomedical field the dysbiosis of the human gut microbiota is associated with multiple pathologies
such as obesity [14], diabetes [15] and mental illness [16]. Metagenomics opens a field of exploration of
potential associations between the microbiome and several complex diseases [17]. Global modifications
of a microbiota can also have implications for the dynamics of a bacteria of particular interest. In
epidemiology the infection of a host by a pathogen can be facilitated by some microbial species through
various interaction processes [18]. Conversely, some microbial species may have antagonistic interactions
with pathogens that could be used in biological control [19, 20].

Identifying potential microbial interactions from metagenomic data is therefore a topical scientific
challenge. Methodological developments are needed to improve this identification, taking into account
the noisy and stochastic structure of the genomic measurement process of the microbiota.

1.1 Metagenomic data characteristics

Metagenomic data from 16S rRNA sequencing consists of sequencing reads originating from thousands
of different bacterial groups obtained from hundreds to thousands of samples [21]. In order to reflect
the microbial composition and the relative frequency of each bacterial group among samples, sequencing
reads are clustered in Operating Taxonomic Units (OTU) [22], e.g., bacterial species. The number of
OTUs considered depends both on the studied microbial community and the criteria used to cluster
sequences in OTUs.

Metagenomic read counts are sparse and overdispersed. Most of OTUs are rare and occur in only a
few samples. The sequencing read data therefore have a large amount of zeros [23], which often in naive
analyses causes spurious associations [24]. Zero-inflated (ZI) distributions thus appear to be the most
appropriate to model OTU abundances. Furthermore, the abundance of an OTU, defined as the number
of reads assigned to this OTU, does not follow a usual count distribution such as a zero-inflated Poisson
distribution as typically overdispersion is observed when the OTU is present. It has been shown that ZI
negative binomial or ZI lognormal provide a good fit [25, 26].

Another aspect to take into consideration is the sequencing depth of a sample, which is defined as
the sum of all OTU read counts in a sample. Sequencing depths are unequal among samples due to
experimental effects [27]. From this perspective, metagenomic sequencing read data should be considered
compositional in nature [28, 29]. For a given sample, each OTU read abundance “depends” on the other
OTU reads through the sequencing depth. various ways have been suggested for taking the sequencing
depth into account when analyzing the observed read counts for an OTU. A common way is to circumvent
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the compositional nature of the data and to make OTUs comparable by transforming and normalizing
the OTU table before further analysis. Main methods are rarefying, scaling and log ratio transformation,
but all have problematic aspects [25, 26, 30]. A typical scaling transformation method is to divide by
the marginal sum of the sample, i.e., the sequencing depth. This method leads to spurious negative
associations [31]. The centered log ratio (clr) transformation [32] and relative log expression [33] are
most commonly used to process compositional sequencing data. The microbial data is mainly composed
of zeros and the log cannot be applied without replacing zero values by a pseudo-count and is therefore
not ideal [26, 34].

The diversity of microbiota among samples furthermore depends on factors that are known to structure
the distribution of microbes such as environmental conditions, spatial and temporal scales. For instance,
age, genetics, environment and diet are all factors that affect the human gut microbiota [35]. Seasonal
changes in the microbiota of wild mice have also been observed [36]. These factors should be considered
as much as possible in the analysis by integrating them as covariates in the model to separate biological
interactions from the effects of structuring covariates.

1.2 Inference of microbial associations networks

In this paper, we take the perspective to consider microbial communities as a network of microbial
species (or OTUs) that interact with each other. These networks are formalized by graphs consisting
of vertices representing OTUs and edges representing statistical dependencies, i.e. associations, between
OTUs. Network analysis is the most common approach to explore potential microbial interactions at the
microbiota scale. There are two main ways to infer a microbial network: correlation-based networks and
graphical models [37].

On the one hand, correlation-based networks are graphs obtained from computing and thresholding all
pairwise association measures. A large number of association measures have been used in this framework,
such as correlation (e.g., Pearson, Spearman), similarity (e.g., mutual information), or dissimilarity (e.g.,
Kullback-Leibler) measures [38]. These methodologies rely on pairwise associations between occurrences
or abundances of bacterial OTUs among the microbiota. A permutation and bootstrap approach can be
used to improve the robustness of the infered network [39]. The main disadvantage of pairwise association
methods is that they are unable to distinguish between direct and indirect associations, thereby often
ending up with dense network that give little insight in the underlying functional relations.

On the other hand, graphical models have minimal bias and better power [37, 40]. Graphical models
are graphs that satisfy the Markov properties, which means that links represent conditional dependencies.
In the multivariate Gaussian case, conditional dependence is equivalent to a non-zero partial correlation.
In a such framework, the conditional dependencies can be read off from the inverse correlation matrix,
called the precision matrix. Inference of Gaussian graphical models can be performed by neighborhood
selection [41] or by lasso regularization [42]

The two main methods used for exploration of microbial interactions are SPIEC-EASI [40] and
SparCC [43]. SparCC estimates linear Pearson correlations between the log-transformed components.
The algorithm works by iteratively calculating a “basis correlation” under the assumption that the ma-
jority of pairs do not correlate [43]. SPIEC-EASI normalizes the data with the clr transformation before
applying the classical framework of Gaussian graphical models described below. Both methods use a
pseudo-counts to avoid zeros and can not take into account potential covariates.

Current network inference methods such as SPIEC-EASI and SparCC do not fully consider the
structure of metagenomic data involving sparsity, overdispersion, compositionality or covariate inclu-
sion. We therefore propose a novel inference framework involving copula Gaussian graphical models [44].
This model provides a general and integrative framework for network inference. We called our method
MAGMA for Microbial Association Graphical Model Analysis. MAGMA allows to take into account
all aspects of the data, while relying on the well-known properties of a latent Gaussian graphical model.
We implemented our method in R and provide a package called rMAGMA available on a Git repository at
https://gitlab.com/arcgl/rmagma.

2 Materials and Methods

Here we present an original way of integrating metagenomic data for the exploration of microbe-microbe
interactions. We propose a copula Gaussian graphical model combined with GLM marginal distributions.
Although full likelihood inference is possible, our MAGMA approximation is based on the estimation of
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the latent data by the median of possible values. This mapping makes it possible to manage the excess
of zeros, overdispersion, the compositional nature of the data and the inclusion of covariates.

2.1 Model

In the classical Gaussian graphical model (GGM), we consider a centred multivariate normal Z with a
correlation matrix Θ−1,

Z ∼ N
(
0,Θ−1

)
. (1)

Computing the precision matrix Θ gives informations about partial correlations between elements of
Z [45]. Under the multivariate Gaussian assumption, the partial correlation ρij between i and j is given
by:

ρij = − Θij

ΘiiΘjj
. (2)

Non-zero elements in the precision matrix Θ correspond to the conditional dependencies and edges in the
conditional dependence graph.

The observed metagenomic count data, unfortunately, do not follow a normal distribution. Microbiota
data are represented by a matrix Y of n × p dimension, where n is the number of samples and p is the
number of OTUs. We assume that the joint distribution of observed variables Y can be transformed
from a latent multivariate normal variable Z. The copula Gaussian graphical model defines the marginal
transformations [44],

Yij = F−1ij (Φ (Zij)) , (3)

where Φ is the cumulative distribution function (cdf) of the standard normal distribution and F−1ij is the

inverse cdf of microbiota count Yij for the jth OTU and for sample i.

The Fij function is generally estimated by the empirical cdf F̂j [46, 47], but this is not appropriate here
as Fij will certainly depend on the sequencing depth of sample i and therefore cannot be constant across
samples. Instead, we assume that OTU read abundances are distributed according to a zero-inflated
negative binomial (ZINB). We introduce the original mapping function:

Fij ∼ ZINB (λij , θj , πj) , (4)

where λij is the mean of the negative binomial part for sample i and species j, θj is the dispersion
parameter and πj is the probability of the structural zeros. The mean λij is defined by the equation:

log (λij) = βj +Xi
tγj + log(σi) . (5)

βj is modelling the mean of species j, γj is the effect of covariates X on species j and σi is the library
size or sequencing depth for sample i.

With this parametric mapping function, we can model the high proportion of zeros in data by the
use of a zero-inflated distribution. We model overdispersion by the negative binomial distribution. We
model sequencing depth to take into account compositionality by an offset. And we also model the effect
of covariates, either qualitative or quantitative, on the mean of microbial abundance.

2.2 MAGMA inference

Full likelihood inference of the above model is involved. We propose here a computational approximation
of the maximum likelihood. If Y were continuous data, then observed variables could be projected into
the latent space by the inverse mapping,

Zij = Φ−1 (Fij (Yij)) . (6)

But since Yij are discrete count data, F−1ij is not injective and the projection in the latent space is

not unique. Fij is a step function and Zij can take all the values in the interval
[
Φ−1 (Fij (Yij − 1)) ,

Φ−1 (Fij (Yij))
]
.

To approximate the copula Gaussian graphical model, the nonparanormal normal score approach [48]

takes the right bound value Φ−1
(
F̂ij (Yij)

)
and winsorizes the data for the highest observed values to

avoid infinite values. The nonparanormal SKEPTIC transformations [49] use the asymptotic relationships
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between the Pearson correlation and the Spearman or Kendall rank correlations. Instead, we propose to
transform the count data using the median point of the Z distribution of reachable values,

Z̃ij = Φ−1

(
F̂ij (Yij − 1) + F̂ij (Yij)

2

)
. (7)

Z̃ij thus defined is the median of the normal distribution between Φ−1
(
F̂ij (Yij − 1)

)
and Φ−1

(
F̂ij (Yij)

)
.

With this estimation, we do not need to winsorized the data nor rely on dubious asymptotic relationships
that certainly do not hold.

For estimating the library size σi of sample i in (5), the sample sequencing depth ignores the fact
that different biological samples may express different 16S RNA repertoires [50]. We estimate the library
size using the geometric mean of pairwise ratios (GMPR) [51]. GMPR is specifically intended for com-
positional zero-inflated data as the microbiome sequencing data. For each pair of samples i and i′, the
median of count ratios of nonzero counts is computed,

rii′ = median
{j |Yij ,Yi′j 6=0}

(
Yij
Yi′j

)
. (8)

The ratio rii′ represents how much, on average, the OTU read counts of sample i are above or below
those of a sample i′. If rii′ = 2, the OTU of the sample i will have on average 2 times more read counts
than those of sample i′. To estimate the library size factor of a sample i, we then compute the geometric
mean of all the ratios rii′ involving the sample i. This is the average difference between the abundance
of an OTU found in sample i and its abundance in the other samples,

σ̂i =

(
n∏

i′=1

rii′

)1/n

. (9)

The GLM (5) is then estimated with off-sets {log(σ̂i)}i, which then allows us to calculate the quasi-normal
data Z̃ = {Z̃ij}ij according to (7).

Finally, we propose to infer the association network from the transformed data Z̃ of the observed
variable Y . In this way, we approximately infer the copula Gaussian graphical model, taking into account
the characteristics of the microbial data to infer relevant associations between OTUs. We use graphical
lasso (glasso) inference [42] from the R huge package to estimate a sparse precision matrix. In the sparse
estimation of the precision matrix Θ, the problem is to maximize the penalized log likelihood

lpen

(
Z̃,Θ

)
= log |Θ| − trace SΘ− ρ ‖Θ‖1. (10)

S denotes the empirical covariance of the Z̃ transformed data matrix, ‖Θ‖1 is the L1 norm and ρ ∈ R+
0

is a sequence of non-negative penalty parameters.
Penalized inference of graphical models results in a collection of OTU networks associated with the

estimated precision matrix Θ̂ρ for different values of ρ. In order to infer the most parsimonious net-
work given the available data, one need to weigh the fit of the data relative to the complexity of the
data [52, 53]. To select the penalty parameter ρ, we consider three approaches: rotation information
criterion (ric) [54], stability approach for regulation selection (stars) [55] and extended Bayesian informa-
tion criterion (ebic) [56]. All these approaches are encoded in the R package huge used by MAGMA.

In summary, MAGMA inference comprises of the following steps:

1. Adjust the marginal OTU abundances to ZINB distributions according to equations (4) and (5).

2. Approximate the latent data Z according to equation (7).

3. Estimate a sparse precision matrix Θ̂ρ according to equation (10).

4. Select the penalty ρ∗ that best balances fit and complexity via ric/stars/ebic.

5. Identify the OTU network from non-zero elements of Θ̂ρ∗.
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3 Results and Discussion

We studied the efficiency of the MAGMA tool to infer a network of microbial associations. With this aim,
we first analyzed the behavior of MAGMA on simulated data in section 3.1. We measured the quality of
network inference under different conditions and compared MAGMA with other network approaches. In
section 3.2 we applied MAGMA to data from the Human Microbiome Project.

3.1 Simulation study

In this section, we first describe how we generate simulation data. We then studied six different aspects
of the MAGMA model with respect to this simulated data: (i) its consistency, i.e., whether it converges
to the true network with increasing number of samples n, (ii) its robustness, i.e., whether it is able to
deal with deviations from ZINB read counts, (iii) its ability to infer the network with varying interaction
strengths, (iv) how its ability to reconstruct the network depends on different network topologies, (v)
its ability to account for confouding by integrating a covariates, and finally, (vi) we compared MAGMA
with existing tools for the inference of microbial association networks. The ability of the procedure to
recover the simulated microbial network was measured via the area under the ROC curve (AUC) along
the ρ-path of the inferred networks.

3.1.1 Generation of realistic data sets

To measure the performance of network inference tools, we should simulate datasets of known structure
and tried to recover the associations that we simulated. SPIEC-EASI [40] proposes a simulation proce-
dure, however it is unable to reproduce variations in sequencing depth, which is considered an essential
feature [57]. Our procedure first generates an association network G with d vertices and e edges (Fig-
ure 1). The topology of the generated network can be selected to be either band, block, cluster, hub,

Simulation study

Variable parameters *

1. n

2. law

3. k

4. graph topology

5. covariate

6. inference method

Generate correlated Normal data Obtain the distribution of read 

count metagenomics data

Generate an association 

network (𝑮)

* d: vertex number

* e: edge number

* graph topology: band, block, cluster, 

hub, random, scale free 

Convert the graph (𝑮)

into a correlation matrix (𝑺)

* k: condition number of S that adjusts 

the intensity of correlations

Adjust real OTU data to a 

parametric statistical law (𝑭)

* law: ZINB (also Poisson, NB, ZIP)

𝜆, 𝜃: mean and dispersion

𝜎: sequencing depth

* covariate: consideration of a covariate

Real OTU data to mimic

Generate realistic OTU data

𝒀𝒈𝒆𝒏 = 𝑭−𝟏(𝚽(𝒁𝒈𝒆𝒏))

Generate a multivariate normal 

(𝒁𝒈𝒆𝒏)

with the given correlation structure 𝑺

𝒁𝒈𝒆𝒏~𝑵(𝟎, 𝑺)

* n: number of samples generated

Infer the association network from 

𝒀𝒈𝒆𝒏

* inference method: 

- MAGMA (MAGMA R library)

- SparCC (SpiecEasi R library)

- SPIEC-EASI (SpiecEasi R library)

- CoNet (CoNetinR R library)

Measure the quality of edge 

recovery

Criteria: Area under the ROC curve (AUC)

DATA GENERATION

Figure 1: Workflow of the generation of realistic data for the inference benchmarking.

random or scale free as defined in [40]. We associate the simulated graph with an inverse correlation
matrix fixing the condition number of the matrix k regulating the strength of correlations. We then
generate multivariate normal data with the obtained correlation structure.

Then we need to transform the latent normal data into the observed read count data. To mimic
the structure of real data, we relied on the 16S data of the microbiome of Puerto Rico honey bees
obtained by MG Dominguez-Bello [58, study ID 1064]. We filtered the data, keeping the 80 OTUs with a
prevalence greater than 15% and 286 samples with a sequencing depth greater than 100 reads. The average
sequencing depth was 19,000. The data has been fitted according to some parametric distribution, e.g.,
the ZINB used in our network inference, but also other distributions: Poisson, zero-inflated Poisson and
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negative binomial. Using the copula transformation, we project the multivariate normal data into read
counts using the selected marginal distributions combined with the logarithmic link function involving
covariates and an offset.

3.1.2 Effect of the sample size

Data were simulated with different number of samples n. We then inferred the association network and
measured the quality of edge recovery as shown in Figure 2A. As the number of samples increases, the
AUC increases and tends to one. Asymptotically, the method correctly recovers all the simulated links.
The approximation of the copula Gaussian graphical model made by MAGMA allowed to recover the
network with hundreds of samples. With 200 simulated OTUs, 200 to 300 of samples are sufficient recover
almost the entire network correctly.

0
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Figure 2: Effect of varying parameters on the quality of network inference. Boxplots of the AUC criterion
according to: (A) the number of simulated samples n varying from 30 to 1000; (B) the distributions of the
simulated data (Poisson, Zero-inflated Poisson, Negative Binomial and Zero-inflated Negative Binomial);
(C) the condition number of the simulated correlation matrix k varying from 1 to 100; (D) the structure
of simulated graph (band, block, cluster, hub, random and scale free). If they did not vary, the parameters
were fixed at: n = 100, k = 10, random graph structure (Erdos-Renyi), marginal count data simulated
according to a ZINB. We considered 20 simulation iterations for networks of size 200 with an average
degree of 2.

3.1.3 Effect of the distribution of read counts

To measure the flexibility of our method to model misspecification, we varied the distribution of the
simulated data. The results are shown in Figure 2B. Zero-inflated Poisson, negative binomial and zero-
inflated negative binomial all performed roughly similar, suggesting that MAGMA is quite robust to
model misspecification, as it assumes underlying ZINB data. It is striking that dependence networks
with underlying Poisson distributed read count data were able to be reconstructed significantly better
(average AUC > 0.95), suggesting that the zero-inflation and, particularly, over-dispersion makes network
reconstruction more difficult (average AUC ≈ 0.85).

3.1.4 Effect of the strength of partial correlations

The strength of the simulated correlations was modelled by the condition number of correlation matrix
of the simulated data. A low condition number corresponds to small values of the coefficients of the
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correlation matrix and this will produce weak links. The results are shown in Figure 2C. With a condition
number of 1, its lowest possible value, the correlations have no strength and the results obtained were
the same as a random draw with an average AUC of 0.5. The AUC increases rapidly with an increasing
condition number. For k = 4, we found an AUC at 0.72 and for k = 10 the AUC was already at 0.85.

3.1.5 Effect of network topologies

As Figure 2D shows, network topology has, perhaps surprisingly, a significant impact on network recon-
struction quality. Simulations were done for different kind of graph structures. The band graph has the
best reconstruction properties (average AUC > 0.95). On the other end, the recovery of a scale free
or a hub network was difficult (average AUC ∈ (0.55, 0.65)). It seems that high-degree nodes pose a
problem with network inference. This is a common issue also with other methods [40]. The reason why
the band topology can be easily reconstructed may be because it has the lowest maximum node degree
of all topologies. The results for the block, cluster and random networks were good with an AUC above
0.85.

3.1.6 Consideration of a covariate

In order to check the capacity of our method to account for confounding in the dependence network, we
used MAGMA with the inclusion of a quantitative covariate. We generated read count data by adding a
covariate effect with different levels of strength. The coefficients of the covariate, γj in (5), for all OTUs
were sampled from a normal distribution with variance equal to 0, 1, 2 or 4. The mean of γ is taken to be
zero, as it is just an offset, confounded with the sampling effort. The values of the unit specif covariate
are sampled from a standard normal distribution.

We compare the effect of including and ignoring the covariate effect across different levels of confound-
ing. As Figure 3 shows, when there is in fact no confounding, using MAGMA containing an irrelevant
covariate does not result in more errors than using MAGMA without the covariate. The addition of an
irrelevant covariate effect to the method does not have a negative impact on the AUC. As the strength
of the confounding increases, MAGMA that accounts for this confounding has an increasing advantage
in recovering the network structure over applying MAGMA that ignores the covariate. We conclude that
careful modelling of the read count distribution Fij is particularly relevant: the inference quality of the
association network relative to the agnostic MAGMA increases when the covariate effect is gets stronger.

0
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0 1 2 4
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Variance of the coefficient of the simulated covariate

Model without covariate Model with covariate

Figure 3: The network recovery ability (AUC) as a function of the confounding covariate strength γ
for the agnostic MAGMA method vs. the MAGMA method with covariate effect. We considered 20
simulation iterations for networks of size 200 with an average degree of 2, number of samples n = 100,
conditioning number k = 10, graph structure was random, read count data were simulated according to
a ZINB.

3.1.7 Comparison with other association network approaches

We compare the existing methods regarding the presence or absence of structure among samples due
to a covariate. As shown in Figure 4, MAGMA showed better performances than the three reference
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methods in reconstructing microbial interactions, namely SparCC, CoNet and SPIEC-EASI. The networks
recovered by CoNet are derived from the calculation of Spearman correlation p-values by permutation
and bootstrap. In our simulations, this did not have an added value compared to the networks obtained
from Spearman correlations thresholding. The Pearson correlation network and the graphical lasso model
on raw data did not work well without data normalization: linear correlations should not be calculated
from raw read count data. The graphical lasso with nonparanormal SKEPTIC transformation had a
higher AUC than that obtained with SparCC and SPIEC-EASI; yet this non-parametric transformation
is typically not used for the study of microbiota data. In the presence of a covariate, the performance of
all competing methods degraded significantly and the AUC dropped. Under our simulations, MAGMA
inference yielded the best performance. We therefore conclude that it is essential to take into account
the potential covariates with structural effects on the microbiota.
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Figure 4: Comparison of inference methods considering a covariate effect. Boxplots of the AUC criterion
for different network inference methods. We considered 20 simulation iterations for networks of size 200
with an average degree of 2, number of samples n = 300, condition number k = 5, graph structure
was random and read count data were simulated according to a ZINB. The quantitative covariate pa-
rameter γ was drawn from a N(0, 2), when covariate was effective. CoNet designates network obtained
from Spearman correlation p-values by 100 iterations of permutation and bootstrap. For SparCC, the
correlation threshold parameter was equal to 0.3 and 100 iterations were done in the outer loop and 20
in the inner loop. raw Glasso, npn SKEPTIC, SPIEC-EASI, and MAGMA were network obtained by
graphical lasso inference from raw data, nonparanormal SKEPTIC transformation, clr transformation
and MAGMA transformation respectively. For Pearson, Spearman and SparCC networks, we computed
the path of inferred networks by thresholding the correlations. For CoNet, we thresholded the p-values.
For the graphical lasso, we varied the regularization parameter.

3.2 Microbial data illustration: Human Microbiome Project

In this section, we present the analysis of the 16S variable region V3-5 data from the Human Microbiome
Project (HMP) [4, 5]. The study collected microbiomes of healthy individual at various body sites. The
data was retrieved on the qiita data platform [58, study ID 1928]. This study brings together a total of
6,000 samples from 18 different the human body sites. A total of 10,000 microbial species occupy the
human ecosystem. We first studied a stool microbiota sample, comparing MAGMA with SparCC and
SPIEC-EASI. Second, we analyzed the stool and saliva microbiota in a single study in order to show the
usefulness of the covariate implementation in the MAGMA method.
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3.2.1 Inference of gut microbiota network

Among other roles, the gut microbiota is involved in nutrient metabolism and in the prevention of colo-
nization by pathogenic micro-organisms. Getting insight into the functioning of this microbial ecosystem
is therefore a critical scientific issue. Stool HMP data contains 388 samples and 10,730 OTUs, with
most OTUs being rare. We filter out OTUs present in less than 25% of the samples and remove the
samples whose sequencing depth is less than 500 reads on the remaining OTUs. These samples show
large stochastic variability and in a properly weighted analysis would not add much information. After
this preprocessing we obtain an OTU table with 360 samples and 306 OTUs.

Figure 5A show the stool network obtained by MAGMA, SparCC and SPIEC-EASI. With the stars
selection from the huge R package, MAGMA and SPIEC-EASI selected a little over 2000 edges (2356
for MAGMA, 2332 for SPIEC-EASI). For comparative purposes each network is shown with the same
amount of 2000 edges. Figure 5B shows the network node degree distributions as well as the Venn
diagrams of the inferred links. SparCC network has the wides distribution with high degree nodes for
both positive and negative association links. Regarding positive links, the SPIEC-EASI network has
more nodes characterized by low degrees than the other methods.

The three networks show a strong antagonism between the groups of the Firmicutes and Bacteroidetes
phila. MAGMA network showed the most tempered opposition between this two groups and has fewer
negative links (100) than the other networks (486 for SparCC and 533 for SPIEC-EASI). Less than half
of the negative links recovered by SparCC and SPIEC-EASI were identical, raising questions about their
veracity. The MAGMA stool network has more positive links: 25% and 30% more than SparCC and
SPIEC-EASI respectively. Relative to this, only 33% of positive links recovered by MAGMA differed
from those found by these two methods. Compared to other tools, MAGMA seems to identify a coherent
network with sensible biological structure, and it showed a good reproducibility of results compared to
the other methods.
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Figure 5: Stool microbiota network. (A) Stool microbial association network obtained from three meth-
ods MAGMA, SPIEC-EASI and SparCC. Nodes are OTUs. Black and gray links represent negative
and positive associations, respectively. (B) positive and negative associations obtained from the three
networks: smoothed histograms of node degrees and Venn diagrams representing the overlap of inferred
links between the different methods.

3.2.2 Microbial network body site variation

To illustrate MAGMA’s ability to account for confounding or, put differently, to analyze information
across heterogeneous samples, we pool two different sets of HMP microbiota and introduce a covariate.
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We group gut microbiota data and salivary microbiota data and introduce a, probably marked, “body
site” effect. Again, we filter out OTUs present in less than 25% of the samples and remove samples with
sequencing depth of less than 500 reads on the remaining OTUs. This results in an OTU table with 665
samples and 245 OTUs.

Figure 6 shows the two networks we obtain with and without integration of the body site covariate
in MAGMA. In the network without covariate (Figure 6A), two sets of OTUs were stand out. A first
group with Firmicutes and Bacteroidetes phyla corresponds to intestinal microbiota and a second group
corresponds to salivary microbiota. The OTUs of the same group are positively associated with each other,
while two OTUs of different groups are negatively related. In the network with covariate (Figure 6B),
there were again two groups of OTUs. This time the spurious negative links between the two groups
disappear, because the difference in frequency of OTUs between body sites has been taken into account
by means of the body site covariate, which allows to find real functional interactions between the various
OTUs. This includes various positive associations between the two groups of OTUs. In fact, there are
no common negative links between network A and B. Negative correlations due to the average body site
effect are shifted to 0 when normalizing by considering the covariate (Figure 6C). Positive correlations
due to OTU co-presence in a specific microbiota are centered when including the covariate. Taking into
account the body site in MAGMA makes it possible to obtain a consensual network.
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Figure 6: Association network of stool and saliva microbiota pooled data. (A) Stool and saliva microbial
association network without body site covariate. (B) Stool and saliva microbial association network
including body site factor. Regularization parameters for the two networks were determined with stars
selection. (C) Correlations of MAGMA without including body site covariate versus correlations of
MAGMA including body site effect. Correlations were computed from Pearson correlations of MAGMA
transformed data (normalization defined by equation (7)).

4 Conclusion

We have introduced a network model that responds to the methodological challenges arising from sequenc-
ing read count data: excess of zeros, over-dispersion, compositionality and the presence of covariates. To
meet these challenges, the network inference method we propose takes advantage of a GLM-inspired
parametric mapping function, while being based on the well-known Gaussian graphical model. MAGMA
offers a normalization approach based on the theory of copulas. Moreover, it takes into account variable
sequencing depth estimating the library size effect by the geometric mean of pairwise ratios.

In the simulation studies we show that the approximations made during the transformation of the
data rapidly converge towards the correct solution when the number of samples and the strength of the
correlations increase. The ZINB law we propose is flexible and can deal easily with moderate amount of
model misspecification. The integration of covariates improves the quality of the inference in presence of
structural factors affecting the OTU read counts. Finally, MAGMA performs better than other available
competitors in a wide variety of situations.

We have applied MAGMA to infer an intestinal microbial network from a HMP data, allowing for
heterogeneous samples. The resulting network shows a consensual interactions that are not affected by
wildly different OTU counts for various body sites. All this shows that MAGMA is a practical tool for
inferring microbial functional networks from metagenomic sequence read count data.
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[19] Boris Jakuschkin, Virgil Fievet, Löıc Schwaller, Thomas Fort, Cécile Robin, and Corinne Vacher.
Deciphering the Pathobiome: Intra- and Interkingdom Interactions Involving the Pathogen Erysiphe
alphitoides. Microbial Ecology, 2016.

[20] R. Poudel, A. Jumpponen, D. C. Schlatter, T. C. Paulitz, B. B. McSpadden Gardener, L. L. Kinkel,
and K. A. Garrett. Microbiome Networks: A Systems Framework for Identifying Candidate Microbial
Assemblages for Disease Management. Phytopathology, 106(10):1083–1096, oct 2016.

[21] Miklós Bálint, Mohammad Bahram, A. Murat Eren, Karoline Faust, Jed A. Fuhrman, et al. Millions
of reads, thousands of taxa: microbial community structure and associations analyzed via marker
genes. FEMS Microbiology Reviews, 40(5):686–700, sep 2016.

[22] Jolinda Pollock, Laura Glendinning, Trong Wisedchanwet, and Mick Watson. The Madness of
Microbiome: Attempting To Find Consensus “Best Practice” for 16S Microbiome Studies. Applied
and Environmental Microbiology, 84(7):e02627–17, feb 2018.

[23] Abhishek Kaul, Siddhartha Mandal, Ori Davidov, and Shyamal D. Peddada. Analysis of Microbiome
Data in the Presence of Excess Zeros. Frontiers in Microbiology, 8(NOV):1–10, nov 2017.

[24] Sophie Weiss, Will Van Treuren, Catherine Lozupone, Karoline Faust, Jonathan Friedman, et al.
Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. The
ISME Journal, 10(7):1669–1681, jul 2016.

[25] Paul J. McMurdie and Susan Holmes. Waste Not, Want Not: Why Rarefying Microbiome Data Is
Inadmissible. PLoS Computational Biology, 10(4):e1003531, apr 2014.

[26] Sophie Weiss, Zhenjiang Zech Xu, Shyamal Peddada, Amnon Amir, Kyle Bittinger, et al. Normaliza-
tion and microbial differential abundance strategies depend upon data characteristics. Microbiome,
5(1):27, dec 2017.

[27] David Sims, Ian Sudbery, Nicholas E. Ilott, Andreas Heger, and Chris P. Ponting. Sequencing depth
and coverage: key considerations in genomic analyses. Nature Reviews Genetics, 15(2):121–132,
2014.

[28] Gregory B. Gloor, Jean M. Macklaim, Vera Pawlowsky-Glahn, and Juan J. Egozcue. Microbiome
Datasets Are Compositional: And This Is Not Optional. Frontiers in Microbiology, 8(November):1–6,
2017.

[29] Thomas P Quinn, Ionas Erb, Mark F Richardson, and Tamsyn M Crowley. Understanding sequencing
data as compositions: an outlook and review. Bioinformatics, 34(March):2870–2878, 2018.
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