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Abstract 
Motivation: Synapses are essential to neural signal transmission. Therefore, quantification of synapses and related neurites 

from images is vital to gain insights into the underlying pathways of brain functionality and diseases. Despite the wide 

availability of synapse imaging data, several issues prevent satisfactory quantification of these structures by current tools. 

First, the antibodies used for labeling synapses are not perfectly specific to synapses. These antibodies may exist in neurites 

or other cell compartments. Second, the brightness for different neurites and synapses is heterogeneous due to the variation 

of antibody concentration and synapse-intrinsic differences. Third, images often have low signal to noise ratio (SNR) due to 

constraints of experiments and availability of sensitive antibodies. The combination of these issues makes the detection of 

synapses challenging and necessitates developing a new tool to accurately and reliably quantify synapses. 
Results: We present an automatic probability-principled synapse detection algorithm and integrate it into our synapse 

quantification tool SynQuant. Derived from the theory of order statistics, our method controls the false discovery rate and 

improves the power of detecting synapses. Through extensive experiments on both synthetic and real images in the 

presence of severe antibody diffusion, high heterogeneity, and large noise, our method was demonstrated to outperform 

peer specialized synapse detection tools as well as generic spot detection methods by a large margin. Finally, we show 

SynQuant reliably uncovers statistically significant differences between disease and control conditions in a neuron-astrocyte 

co-culture based model of Down Syndrome. 

Availability: The Java source code, Fiji plug-in, and test data are available at https://github.com/yu-lab-vt/SynQuant.  

Contact: yug@vt.edu 

 

 

1 Introduction  
The synapse is a critical structure in the nervous system that enables communication and interaction between neurons. 

Cognitive function hinges on proper wiring of synaptic connections within neural circuitry. Quantification of synapses, 

including synapse detection and synapse feature extraction, is thus an indispensable component of today’s brain research. 

By measuring the properties of synaptic puncta such as density and size, as well as neurite properties like length and shape, 

under different phenotypes, researchers could gain insights into how brains function under normal and abnormal conditions. 

However, thorough and consistent analysis of synapses is a pre-requisite to this process of discovery (Lin and Anthony, 

2010; Myers, 2012; Ullian et al., 2011). 
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There are two main challenges in analyzing synapse images (Fig. 1A). First, different neurites and synapses show 

significant variations in terms of morphology and brightness. One reason for this is the inherent variation among neurons 

and neurites according to the role they play and the discrepancies in maturity. Second, localization of proteins of interest 

within synaptic puncta is not typically perfect. One possible reason is that there is actually Synapsin I at low concentrations 

present in the neurites, which will show a low level of positive staining. Another possibility is that staining procedures 

usually result in some amount of “non-specific” staining. This occurs when the antibody containing the fluorophore attaches 

to something other than the protein of interest. Besides, the bleach from the neurite channel is also a possible contributor, 

but this cannot be easily corrected by blind source separation (Supplemental Text S5). 

As a result, this diffuse, non-homogenous signal interferes with synapse detection. For example, even the signal to noise 

ratio is high for some synapses, it could be much lower for many others in the same data set. The brighter synapses are 

more likely to be picked up, but this will introduce bias to the analysis. The non-specific antibodies make it hard to identify 

synapses purely based on intensity. Some diffused signals could even be stronger than some synapses. Therefore, the 

combination of synapse-intrinsic heterogeneity, imperfect protein localization to synapses, along with potentially low SNR, 

lead to great challenges in accurately and reliably detecting, segmenting, and quantifying synapses. 

Synapse detection has been an active research topic in the recent years and quite a few methods were developed (Feng et 

al., 2012; Danielson and Sang, 2014; Schmitz et al., 2011; Simhal et al., 2017, Simhal et al., 2018). SynD (Schmitz et al., 

2011) detected synapses by filtering pixels with a single intensity threshold and separating overlapped regions using an 

averaged synapse kernel. Feng et al. (2012) proposed BGM3d to separate clustered 3D synaptic puncta using a Bayesian 

Gaussian mixture model, which also used a single threshold to segment puncta from the background. Danielson and Sang 

(2014) segmented synapses within dendrites with multiple thresholds, but their method requires users to mark dendrite 

regions manually. Recently, Simhal et al. (2017) proposed a probabilistic method for quantifying synapse and Simhal et al. 

Figure 1. (A) Synapsin I labeled channel acquired by confocal microscopy. Green dots are potential synaptic puncta. 
Two images on the left panel belong to control (top) and case (bottom) groups, respectively. (B) Flowchart of 
SynQuant. Left panel: the synapse detection algorithm. The inset figure shows the choice of neighborhood pixels 
(blue) for a region (yellow pixels). Right panel: neurite features. Top sub figure shows the Tuj1 stained neurite 
channel. The bottom one shows the local homogenous cuts on the traced neurites. The extracted puncta and 
neurite features from N images are used for statistical analysis between conditions. 
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(2018) designed an analysis framework based on it. But they did not consider either the imperfect antibody staining or the 

synapse heterogeneity issues. 

Many image analysis tools for subcellular localization and spot detection have the potential to be repurposed to detect 

synapses. Coelho et al. (2013) tried to find the puncta-like nucleus or nucleoli within a cell by segmenting cells first. 

However, puncta do not necessarily lie within the stained portion of neurites. Zhang et al. (2007) proposed Multiscale 

Variance Stabilization Transform (MS-VST) to detect spots based on isotropic undecimated wavelet transform (IUWT) 

along with a Poisson Gaussian model. But IUWT also responds strongly to edges and tends to generate a large number of 

false positives around the neurite-like signals for our data. Maximum possible h-dome (MPHD) (Rezatofighi et al., 2012) 

can handle the neurite-like region; however, the proper h value is hard to set to get good regional maxima. MS-VST and 

MPHD were shown to be the best among the unsupervised spot detection methods (Smal et al., 2010).  

We find the performance of existing algorithms is far from satisfactory, with either high rates of false positives or false 

negatives. For example, the rich patterns of synapse and non-specificity antibody reduce the performance for wavelet-based 

methods; morphology/thresholding based methods do not work well under inhomogeneous background; lack of reliable 

training data makes it hard to use supervised methods. More importantly, most of them cannot provide a rigorous statistical 

foundation to assess their output regions and thus no reliable method to distinguish true synapse from noises. Besides, the 

inhomogeneity is not considered in the quantification tools and the comparison between images under different conditions 

are not well calibrated. 

In this work, we develop a probability-principled synapse detection method that considers the signal non-specificity, 

heterogeneity, and large noise. Then we integrate it into our quantification tool (SynQuant) that extracts neurites and 

synaptic features (Fig. 1B). To address the signal non-specificity and heterogeneity, we develop a model that is adaptive to 

localized region properties. If a region is a synapse, it is expected to be brighter than its surroundings, even though in the 

same image there may be brighter non-synaptic background regions that do not surround the synapse. Here are two major 

analytical problems: (1) how to choose the neighborhood pixels for localized modeling and (2) how to evaluate the 

difference between a candidate region and its surroundings, considering some difference may be purely due to noise. The 

choice of neighborhood pixels is crucial. For example, for a region inside the neurite, pixels in the non-neurite background 

which is much darker or in the other puncta which may be brighter should not be used as neighbors. The difference cannot 

be solely evaluated based on intensities contrast, because it ignores the number of pixels participating in the comparison: 

the more pixels, the more reliable the contrast is. Further, although the conventional t-test between a group of pixels and 

their neighbors can integrate the information from intensity contrast and number of pixels, the model is severely biased. 

The operation of choosing a candidate region and its neighbors has already implied that the candidate region is brighter 

than its surroundings. 

Based on the reasoning above, SynQuant contains two key components. First, we propose to use order statistics (David and 

Nagaraja, 2003) to properly utilize the local information of puncta and fairly compare all synapse candidates. For a given 

candidate region, SynQuant integrates information from the average intensity inside the region, the average intensity of its 

neighbors, the size and ranking of all pixels in these two parts and their noise variance. The theory of order statistics 

provides a powerful tool to correct the bias introduced by the candidate choosing operation. To the best of our knowledge, 

this is the first time that the inherent bias for synapse detection has been rigorously modeled. Indeed, we suspect that 
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unawareness of the right model for the inherent bias was a major reason for the lack of rigorous statistical model in the 

field of synapse detection. Second, we propose an iterative updating strategy to identify appropriate neighbors of the 

synapse candidates for assessing their statistical significane. By this strategy, we will detect the smallest regions retaining 

statistical significance, which are more likely to be the synaptic puncta. In addition, our method uses the p-value reported 

by order statistics to control the false discovery rate, which can be pre-specified by the user. To make the software package 

comprehensive, we extract neurites by a steerable filter (Meijering et al, 2004) and cut them into roughly homogeneous 

pieces. For each neurite piece, their positions, neurite features, and corresponding synapse features are gathered.  

Experiments show that our quantification framework obtains a large accuracy gain of synapse detection on both simulated 

and real image data.  In addition, we build a regression model to study the relationship among those piece-level features 

and brain conditions or disease phenotypes. Since we gather the information based on each piece, the impact of 

inhomogeneity is modeled as a confounding factor. In addition, by removing the confounding factors, relationships between 

synapse density and disease phenotypes are reliably uncovered. 

2 Method 
We first estimate the noise model parameters and stabilize the noise variance of the image (Fig. 1B, left panel). After that, 

we choose candidate synapses by binarizing the image with multiple thresholds. Each threshold leads to some binary 

connected components, or regions (Fig. 2B). We build a tree structure where each region becomes a node.  Each region is 

assigned an initial significance using order statistics. We iteratively search for possible synaptic puncta in the tree. Once 

we find the satisfactory node, we remove it. The remaining most significant region will be selected as a new candidate 

synapse. The significance of relevant regions is updated.  The threshold to determine a synapse is controlled by the user-

specified FDR threshold. The synaptic features are extracted after post-processing. The related neurite attributes are 

collected from the neurite channel after neurite tracing and are cut into segments (Fig. 1B, right panel). The features are 

then used for statistical analysis along with the disease phenotypic information of each image. 

2.1 Noise estimation and variance stabilization 
Application of order statistics theory requires the noise statistics of the pixels in a candidate region and its neighbor. 

Conventionally, the noise is modeled as following a Gaussian distribution which simplifies subsequent computations. 

However, the photon detector introduces noise whose variance is linearly dependent on the signal intensity. We apply the 

noise model proposed by Foi et al. (2008). The variance for pixel (𝑖𝑖, 𝑗𝑗) is modelled as 

 var�𝑦𝑦𝑖𝑖 ,𝑗𝑗� = 𝑎𝑎𝑥𝑥𝑖𝑖,𝑗𝑗 + 𝑏𝑏. (1) 

Here var(𝑦𝑦)  is the pixel noise variance. 𝑥𝑥  is the underlying signal intensity, which is not observed but can be well 

approximated by the observed pixel intensity. The term 𝑎𝑎𝑥𝑥 models the Poisson type noise and the term 𝑏𝑏 models the 

additive Gaussian noise. The model can be fit based on pixel data from a single image and the resulting 𝑎𝑎 and 𝑏𝑏 are used 

in the Anscombe transform to stabilize the noise (Foi et al., 2008), so that the noise variance associated with the new values 

after the transform is independent to the intensity itself and can be approximated by a single constant 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 .    
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2.2 Synapse significance score based on order statistics 
In our adaptive tree search and updating algorithm, for each threshold, we get a set of isolated regions (nodes in the tree), 

each containing a set of pixels. These regions are potential candidates for synaptic puncta that need to be evaluated by 

statistical tests. The test for the individual region is based on the difference of this region and its neighbor pixels. A larger 

difference implies a larger possibility that this region is significantly different from the surroundings, which is a necessary 

(but not sufficient) condition for being a synapse.  For each region, a group of neighbor pixels is selected. We assume there 

are 𝑀𝑀 pixels 𝑆𝑆 = {𝑥𝑥1, … , 𝑥𝑥𝑀𝑀} in the region and 𝑁𝑁 pixels 𝑃𝑃 = {𝑥𝑥𝑀𝑀+1, … , 𝑥𝑥𝑀𝑀+𝑁𝑁} in the neighbor. We may use a t-test to 

compare these two groups. However, due to the thresholding operation, all the 𝑀𝑀 pixels must have higher intensities than 

the 𝑁𝑁 neighbors. Even if there is no true signal, positive difference always exists between the means of the two groups for 

any candidate region considered.  This positive difference is a bias and, if not corrected, will complicate the detection and 

result in a lot of false detections. Here, we are still interested in the difference between the candidate region and its neighbor 

pixels, and define the test statistic as the following, 

𝐿𝐿 =
𝑥𝑥1 + ⋯+ 𝑥𝑥𝑀𝑀

𝑀𝑀
−
𝑥𝑥𝑀𝑀+1 + ⋯+ 𝑥𝑥𝑀𝑀+𝑁𝑁

𝑁𝑁
,      (2) 

where 𝑥𝑥1 ≥ ⋯ ≥ 𝑥𝑥𝑀𝑀+1 ≥ ⋯ ≥ 𝑥𝑥𝑀𝑀+𝑁𝑁. But the statistical significance is computed based on the theory of order statistics. 

As mentioned above, due to the thresholding operation, even without a true signal, 𝐿𝐿 will be positive, and the exact value 

is determined by the noise variance, the sample size and the ratio of 𝑀𝑀 and 𝑁𝑁. The theory of order statistics provides a 

formal approach to account for the bias by calculating the mean and variance of 𝐿𝐿 under the null hypothesis that there is no 

true signal between the candidate region and its neighbor pixels. Let 𝑛𝑛 = 𝑀𝑀 + 𝑁𝑁, we can rewrite 𝐿𝐿 as in (David and 

Nagaraja, 2003): 

𝐿𝐿 =
1
𝑛𝑛
�𝐽𝐽 �

𝑖𝑖
𝑛𝑛 + 1

� 𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

.          (3)  

Here, 𝐽𝐽(𝑘𝑘) is a weight function corresponding to the coefficients for xi in Eq. (2). For 1 ≤ 𝑖𝑖 ≤ 𝑀𝑀, 𝐽𝐽(𝑖𝑖/(𝑛𝑛 + 1)) = 𝑛𝑛/𝑀𝑀, 

and for 𝑀𝑀 + 1 ≤ 𝑖𝑖 ≤ 𝑀𝑀 + 𝑁𝑁, 𝐽𝐽(𝑖𝑖/(𝑛𝑛 + 1)) = 𝑛𝑛/𝑁𝑁. We write 

𝜇𝜇(𝐽𝐽,𝐹𝐹) = ∫ 𝐽𝐽(𝑢𝑢)𝐹𝐹−1(𝑢𝑢)𝑑𝑑𝑢𝑢1
0 ,                                        (4) 

and 

 𝜎𝜎2(𝐽𝐽,𝐹𝐹) = ∬ 2𝐽𝐽(𝑢𝑢1)𝐽𝐽(𝑢𝑢2)𝑢𝑢1(1−𝑢𝑢2)
𝑓𝑓(𝐹𝐹−1(𝑢𝑢1))𝑓𝑓(𝐹𝐹−1(𝑢𝑢2))

𝑑𝑑𝑢𝑢1𝑑𝑑𝑢𝑢2.0<𝑢𝑢1<𝑢𝑢2<1
       (5) 

Then we have 𝐸𝐸(𝐿𝐿) = 𝜇𝜇(𝐽𝐽,𝐹𝐹)/√𝑛𝑛 and 𝑣𝑣𝑎𝑎𝑣𝑣(𝐿𝐿) = 𝜎𝜎2(𝐽𝐽,𝐹𝐹)/𝑛𝑛, when 𝑛𝑛 = 𝑀𝑀 + 𝑁𝑁 → ∞ (David and Nagaraja, 2003). Here 𝑓𝑓 

is the normal probability density function with zero mean and variance estimated as above. 𝐹𝐹−1 is the corresponding inverse 

normal cumulative distribution function, which depends on the stabilized noise variance 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 . The integration is computed 

by summation using all the 𝑛𝑛 samples. Then we define the order statistic score 𝑧𝑧 as a function 𝑓𝑓𝑜𝑜𝑠𝑠: 

𝑧𝑧 ≔ 𝑓𝑓𝑜𝑜𝑠𝑠(𝑆𝑆,𝑃𝑃,𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 ) = 𝐿𝐿−𝜇𝜇(𝐽𝐽,𝐹𝐹)
𝜎𝜎2(𝐽𝐽,𝐹𝐹)

,          (6) 
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where 𝑧𝑧 follows asymptotically a standard Gaussian distribution and hence can be easily used to compute the statistical 

significance of any observed value of 𝐿𝐿. 

We note that the statistical significance computed above is an accurate approximation only when the sample size is large 

enough, which may not be the case. With some typical image resolutions, one synapse may only contain about 10 or fewer 

pixels. Here we apply two corrections for the small sample size to improve the approximation. First, we notice for the 

double integration in 𝜎𝜎2(𝐽𝐽,𝐹𝐹), the integration space is a triangle defined by 0 < 𝑢𝑢1 < 𝑢𝑢2 < 1. Since we are using discrete 

samples, the boundary points will noticeably impact the integration results when the sample size is small. Therefore, half 

of the boundary points are incorporated in the integration and the other half are not. 

Second, the integration over 𝐽𝐽 is based on a uniform grid, which corresponds to the 𝑥𝑥 values. However, the boundary points 

𝑥𝑥1 and 𝑥𝑥𝑛𝑛 strongly deviate from this uniform assumption and the results will be affected when the sample size is small. We 

would like the integration to mimic the summation. Therefore, we compute the distribution of the largest (or smallest) 

sample and use the mean to get a new grid. This mean value 𝑑𝑑 is computed by 

𝑑𝑑 = 1 − 𝐹𝐹�𝐸𝐸(𝑥𝑥1)� = 1 − 𝐹𝐹(𝑛𝑛� 𝐹𝐹−1(𝑡𝑡)𝑡𝑡𝑛𝑛−1𝑑𝑑𝑡𝑡
1

0
). (7) 

Here 𝑡𝑡 should be densely sampled from 0 to 1. Then we get a new grid [𝑑𝑑, … ,𝑑𝑑 + (𝑖𝑖 − 1)(1 − 2𝑑𝑑)/(𝑛𝑛 − 1), … ,1 − 𝑑𝑑]. 

2.3 Iterative detection, FDR control, and post-processing 
Our iterative detection and segmentation scheme is driven by the statistical significance of each region as computed above 

(Algorithm 1 and Fig. 2). Assuming the image is stored in 8 bits, we threshold the image with all intensity values (0 to 

255). For each threshold 𝑡𝑡ℎ𝑣𝑣 ∈ {0,1, … ,255}, we binarize the image 𝐼𝐼 and get all connected regions. Suppose we have 𝐾𝐾 

regions. The set of all such regions is denoted by 𝑉𝑉 = {𝑆𝑆1, … , 𝑆𝑆𝐾𝐾}. We may simply denote 𝑆𝑆𝑘𝑘 as 𝑘𝑘, then 𝑉𝑉 = {1, … ,𝐾𝐾}. We 

will build a tree 𝑇𝑇, whose nodes are 𝑉𝑉. We use 𝐸𝐸 to denote the edge set describing the way to connect nodes (regions) in 

𝑉𝑉. 

Now each node 𝑘𝑘 is associated with the region 𝑆𝑆𝑘𝑘, along with the threshold 𝑡𝑡𝑘𝑘 under which it is generated. Then the directed 

edge set is defined as 𝐸𝐸 ≔ {(𝑖𝑖, 𝑗𝑗)|𝑆𝑆𝑗𝑗 ⊆ 𝑆𝑆𝑖𝑖 , 𝑡𝑡𝑗𝑗 = 𝑡𝑡𝑖𝑖 + 1}, which means we link region 𝑖𝑖 to a region 𝑗𝑗 that is completely within 

it. However, not all inside regions should be linked. We link regions whose associated (more stringent) threshold is 𝑡𝑡𝑖𝑖 +

1 (Fig. 2B). This structure is similar to conjunctive Bayesian networks (Beerenwinkel et al., 2007) and shares the similar 

principle as Mattes et al. (1999).  

Each node 𝑘𝑘 is also related to a neighbor pixel set 𝑃𝑃𝑘𝑘 and a score 𝑧𝑧𝑘𝑘 from order statistics. Since the computation of order 

statistics depends on the choice of neighbor pixels, 𝑧𝑧𝑘𝑘 depends on 𝑃𝑃𝑘𝑘. Recalling Eq.6, we have 𝑧𝑧𝑘𝑘 = 𝑓𝑓𝑜𝑜𝑠𝑠(𝑆𝑆𝑘𝑘 ,𝑃𝑃𝑘𝑘 ,𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 ). On 

one hand, 𝑃𝑃𝑘𝑘 should include neighbor pixel of 𝑆𝑆𝑘𝑘 and thus will be within an ancestry node of 𝑘𝑘, which is defined by the 

tree and denoted as 𝐴𝐴𝑛𝑛(𝑘𝑘). The number of pixels in 𝑃𝑃𝑘𝑘 needs to be carefully specified. If 𝑃𝑃𝑘𝑘  is too large, many pixels far 

away from the candidate region 𝑆𝑆𝑘𝑘 will be included and thus the comparison is not restricted to the local area. If 𝑃𝑃𝑘𝑘 is too 

small, we lose the statistical power to assess the significance of the candidate region. We find that requiring 𝑃𝑃𝑘𝑘 to have a 

similar size as the candidate region 𝑆𝑆𝑘𝑘 is a good balance.  In practice, we specify the neighbor region 𝑃𝑃𝑘𝑘 by growing the 

candidate region 𝑆𝑆𝑘𝑘 layer by layer until 𝑃𝑃𝑘𝑘 is larger than 𝑆𝑆𝑘𝑘. On the other hand, not all neighbor pixels of 𝑆𝑆𝑘𝑘 should be 
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included in 𝑃𝑃𝑘𝑘 even though these pixels are close to 𝑆𝑆𝑘𝑘, because these pixels may belong to another synapse region. Yet, a 

synapse region should have a significant score. Therefore, we require 𝑃𝑃𝑘𝑘 should not include any pixel of a significant region. 

Hence, 𝑃𝑃𝑘𝑘 also depends on 𝑧𝑧𝑘𝑘 as the significance of regions is determined by 𝑧𝑧𝑘𝑘, which leads to the iterative scheme as 

described below.  

Our algorithm iteratively updates 𝑃𝑃𝑘𝑘 and 𝑧𝑧𝑘𝑘 for each node 𝑛𝑛 on tree 𝑇𝑇. We initialize the root node (k = 1, whole image) as 

the candidate region. For all other nodes, we initialize 𝑧𝑧𝑘𝑘 = 0. All the other nodes now choose neighbor pixels 𝑃𝑃𝑘𝑘 within 

the image (Fig. 2B) and do not need to avoid any pixels, because there is no significant region. Based on the choice of 𝑃𝑃𝑘𝑘, 

we update 𝑧𝑧𝑘𝑘 for all nodes (except for the root). Then we search for the most significant node 𝑘𝑘 and update 𝑃𝑃𝑘𝑘 for all the 

descendants of 𝐴𝐴𝑛𝑛(𝑘𝑘), except those that are already significant (Fig. 2C). After that, node 𝑘𝑘 is removed from the tree as a 

candidate synapse and its children will become the new root of a new tree (Fig. 2D). Again, the updated 𝑃𝑃𝑘𝑘 will give us 

new 𝑧𝑧𝑘𝑘. In later iterations, once any descendants of 𝑘𝑘 becomes a new candidate, 𝑘𝑘 is disqualified as a synapse. This drives 

the algorithm to avoid neurite-like structures (Fig. 2E-F). 

As the mean and variance of order statistics under null hypotheses are given by Eq.3 and 4, we can calculate the scores of 

all relevant regions (Ωupdt). We pick the one with the highest score and we need to determine whether we can add it to the 

list of significant regions (Ωsig). We want to keep the false discovery rate (FDR) lower than a given threshold among all 

synapses detected. The threshold (FDR level α) is a parameter specified by the user. A typical value is 0.05, which make 

the false discovery rate lower than or equal to 5%. In each iteration, we learn from the FDR control procedure whether 

Figure 2.  Joint synapse detection and segmentation by iterative tree searching and updating. (A) Illustration for an 
image with neurite (light blue) and puncta (orange). The green background and black dots are both noises from the 
perspective of synapse detection. (B) Tree structure based on thresholding. Top: the original image is the root node 
a (𝑇𝑇ℎ𝑣𝑣=0). Two branches (b and c) are the children of 𝑎𝑎 with a higher 𝑇𝑇ℎ𝑣𝑣. Repeat this process, we get other nodes 
and edges. Bottom: tree representation. Blue nodes are the roots and orange ones are the synapses to be detected. 
(C) b is the current most significant node (red solid circle). The significance of all its descendants d and h, along with 
all nodes sharing the same ancestry with 𝑏𝑏 are updated (red dashed circles). E.g., the neighborhood of d was 
originally chosen within a, but now they were chosen within b (purple boxes in 𝑎𝑎 and 𝑏𝑏). (D) 𝑑𝑑 becomes the root of 
a tree and 𝑏𝑏 is the candidate region. As 𝑓𝑓 is the most significant one now, 𝑖𝑖, 𝑗𝑗,𝑔𝑔, 𝑒𝑒 are chosen to be updated. (E) 
Now we have four trees with 𝑎𝑎,𝑑𝑑, 𝑖𝑖, 𝑗𝑗 as roots. Repeat this with node 𝑐𝑐. (F) Continue this process and we get the 
puncta. There are 5 significant synapses detected, d,e,g,i and j, respectively. Even though b, c and f are statistically 
significant regions, they are disqualified as synapses because they have children that are statistically significant. For 
the region d, it has a child h, but the region h is not statistically significant, so the region d remains as a synapse. 
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adding the newly selected region to the list of existing significant regions (Ωsig) will make the FDR lower than the threshold. 

Because overlapped regions may be correlated, we use the general case introduced by Benjamini and Yosef, (1995). Details 

are given in Supplemental Text S7. The total number of iterations depends on the number of synapses (significant regions) 

in the image and the user-specified FDR threshold. The algorithm stops when no more candidate region is determined as 

statistically significant. During the algorithm, no new region will be generated. The region marked as significant will not 

be updated later. Therefore, the maximum possible number of iterations is the number of regions from all thresholds and 

the algorithm is guaranteed to terminate. 

Several rules based on the prior knowledge of the size and relative positions of synapses are applied to post-process the 

synapse candidates found by the algorithm. For example, a synapse should not be too large or too long. Otherwise, it is 

likely to be areas with elevated background intensity, such as neurites. These characteristics can be simply measured by 

puncta’s scale, aspect ratio and filling property (Uijlings et al., 2013). The remaining candidates are reported as synaptic 

puncta. The features of those detected puncta, such as size, brightness, and position, are then extracted. 

Algorithm 1 Order statistics based iterative detection and segmentation 

1 INPUT: Tree 𝑇𝑇 = {𝑉𝑉,𝐸𝐸} with 𝐾𝐾 nodes, 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 , FDR level 𝛼𝛼, root node 1 ∈ 𝑉𝑉 

2 
INIT: Significant nodes: Ω𝑠𝑠𝑖𝑖𝑠𝑠 ← {1}. Candidate region: Ω𝑐𝑐𝑠𝑠𝑛𝑛𝑐𝑐 ← {1}. Nodes 

to update: Ω𝑢𝑢𝑢𝑢𝑐𝑐𝑠𝑠 ← {2,3, … ,𝐾𝐾}. Nodes not for neighbor pixels: Ω𝑠𝑠𝑎𝑎𝑜𝑜𝑖𝑖𝑐𝑐 ←
𝜙𝜙. Scores: 𝑍𝑍 ← {+∞,−∞, … ,−∞}. 

4 WHILE  1 

5         FOREACH 𝑘𝑘 ∈ Ω𝑢𝑢𝑢𝑢𝑐𝑐𝑠𝑠 // update neighbourhood pixels and score 

6                 c ← 𝑎𝑎𝑣𝑣𝑔𝑔𝑎𝑎𝑎𝑎𝑥𝑥𝑐𝑐{𝑡𝑡𝑐𝑐|𝑐𝑐 ∈ 𝐴𝐴𝑛𝑛(𝑘𝑘), 𝑐𝑐 ∈ Ω𝑠𝑠𝑖𝑖𝑠𝑠}  // 𝑡𝑡𝑐𝑐: region 𝑐𝑐 threshold 

7                 𝑋𝑋 ← {𝑖𝑖|𝑖𝑖 ∈ 𝑆𝑆𝑐𝑐 , 𝑖𝑖 ∉ 𝑆𝑆𝑘𝑘,𝑘𝑘 ∈ Ω𝑠𝑠𝑎𝑎𝑜𝑜𝑖𝑖𝑐𝑐}  // 𝑆𝑆: pixels in region 𝑐𝑐 

8                 𝑃𝑃𝑘𝑘 ← {𝑖𝑖|𝑖𝑖 ∈ 𝑋𝑋,𝑑𝑑𝑖𝑖𝑑𝑑𝑡𝑡(𝑖𝑖, 𝑆𝑆𝑘𝑘 ) < 𝜖𝜖}  // pixels close enough to 𝑆𝑆𝑘𝑘 

9                 𝑧𝑧𝑘𝑘 ← 𝑓𝑓𝑜𝑜𝑠𝑠(𝑆𝑆𝑘𝑘,𝑃𝑃𝑘𝑘 ,𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 ) 

10         END 

11         𝑧𝑧𝐹𝐹𝐹𝐹𝐹𝐹 ← 𝐹𝐹𝐹𝐹𝐹𝐹_𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡𝑣𝑣𝑐𝑐𝑐𝑐(𝑍𝑍,𝛼𝛼)  // corrected z-score threshold 

12         𝑗𝑗 ← argmaxk{𝑧𝑧𝑘𝑘|𝑧𝑧𝑘𝑘 > 𝑧𝑧𝐹𝐹𝐹𝐹𝐹𝐹, 𝑘𝑘 ∉ Ω𝑠𝑠𝑖𝑖𝑠𝑠} // significant node 

13         IF 𝑗𝑗 = 𝜙𝜙  // no significant region remains, stop 

14                 BREAK 

15         END 

16         Ω𝑠𝑠𝑖𝑖𝑠𝑠 ← Ω𝑠𝑠𝑖𝑖𝑠𝑠 ∪ {𝑗𝑗} 

17         Ω𝑐𝑐𝑠𝑠𝑛𝑛𝑐𝑐 ← {𝑗𝑗} ∪ Ω𝑐𝑐𝑠𝑠𝑛𝑛𝑐𝑐\ 𝐴𝐴𝑛𝑛(𝑗𝑗)  // disqualify ancestry as candidate 

18         Ω𝑢𝑢𝑢𝑢𝑐𝑐𝑠𝑠 ←  �𝑘𝑘�𝑡𝑡𝑘𝑘 ≥ 𝑡𝑡𝑗𝑗 , 𝑘𝑘 ≠ 𝑗𝑗, 𝑘𝑘~𝑗𝑗�  // ~: undirected graph reachability 

19         Ω𝑠𝑠𝑎𝑎𝑜𝑜𝑖𝑖𝑐𝑐 ← �𝑘𝑘�𝑘𝑘 ∈ Ω𝑠𝑠𝑖𝑖𝑠𝑠, 𝑡𝑡𝑘𝑘 > 𝑡𝑡𝑗𝑗� 

20         𝑉𝑉 ← 𝑉𝑉\{𝑗𝑗} 

21         𝐸𝐸 ← 𝐸𝐸\{ {(𝑗𝑗, 𝑘𝑘)|𝑃𝑃𝑎𝑎𝑣𝑣𝑒𝑒𝑛𝑛𝑡𝑡(𝑘𝑘) = 𝑗𝑗} ∪ (𝑃𝑃𝑎𝑎𝑣𝑣𝑒𝑒𝑛𝑛𝑡𝑡(𝑗𝑗), 𝑗𝑗) } 

22 END 

23 OUTPUT: Puncta index Ω𝑐𝑐𝑠𝑠𝑛𝑛𝑐𝑐 and regions {𝑆𝑆𝑘𝑘|𝑘𝑘 ∈ Ω𝑐𝑐𝑠𝑠𝑛𝑛𝑐𝑐} 
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The iterative detection algorithm is implemented on a component tree structure (Najman et al., 2006), which makes it 

possible to create the tree in linear time instead of iterating over all threshold levels. When nodes are merged during the 

creation of the tree, features for test statistics of each node are recalculated the same way as in Ranefall et al. (2016). 

2.4 Neurite quantification and statistical analysis 
We use a steerable filter (Meijering et al, 2004) to trace the neurites. Unlike SynD (Schmitz et al., 2011), we relax the 

restriction that neurite must proceed from the soma to reduce false negatives for images with a large field of view. Details 

are given in Supplemental Text S11. This relaxation is desirable because such an image contains many neurons and some 

somas are not necessarily captured in it. Each detected neurite is cut into pieces. The intensity inside one piece is relatively 

homogeneous by cutting at branch points. Features including position, length, scale and mean intensity for those pieces are 

extracted. 

Each neurite piece has a set of synaptic puncta located on it or near it. In addition, as we discussed before, quite a few 

features of those puncta can be extracted. Therefore, we can build a model which uses each neurite piece along with those 

puncta on or near it as an input sample. This is a local feature analysis which is more informative than aggregating the 

feature across images. Also, for each image, we know the phenotype related to it, such as disease or normal conditions. 

Putting all these together, we can analyze the image with local synapse, neurite, and phenotypic features and discern the 

underlying associations. 

3 Results 
We first tested SynQuant on both simulation and real data and compared it with four representative methods: SynD 

(Schmitz  et al., 2011), MS-VST (Zhang et al., 2007), MPHD (Rezatofighi et al., 2012) and FDA (Smal et al., 2010). More 

comparison can be found in the supplementary information. Then, experiments were performed to measure the influence 

of Down syndrome on synaptic density while taking all confounding factors (extracted features) into consideration. We 

implemented the algorithm in Java as a Fiji plugin (Schindelin, Johannes, et al., 2012).  

3.1 Synapse detection and segmentation on simulation data 
We evaluated the performance by true positive rate (TPR) - modified false positive rate (FPR*) curve and its associated F-

score. TPR is defined as TP/(TP+FN) and FPR* as FP/(TP+FN), where TP is the true positive, FP is the false positive, and 

FN is the false negative. FPR* is commonly used in spot detection problems since we cannot get true negative.  

In spot detection problems, true positives (TP) are defined as those instances where the distance between the center of 

ground truth location and the detected spot is less than a threshold (Smal et al., 2010). This is not sufficient here since we 

need an accurate estimation of both puncta position and region to quantify their features. Hence, we use Intersection-over-

Union (IoU) to infer TP, which is widely used in object detection problems. If the overlap of ground truth and the detected 

region is larger than 50% of their union, the detected punctum is viewed as a TP. IoU is more suitable when we want to 

jointly evaluate the detection and segmentation performance. The F score is 2 × precision × recall/(precision + recall). 

The precision and recall are also defined by setting a 50% threshold on IoU. 
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Our simulation data consists of both synapse and neurite like signals to mimic realistic data (Supplemental Text S3). We 

simulated neurite-like signals by putting the segments of traced branches in the Tuj1 labeled channel in a real data set into 

the blank simulation image. After that, the image was smoothed by Gaussian filter. Then synapses are randomly cast on 

Figure 3.  Simulation data and results. (A) Six synthetic images. Synapse is shown as puncta with various sizes, 
brightness, and shapes. The signal to noise ratio (SNR) ranges from 1.8 dB to 2.5 dB (bottom right of each subplot), 
which is typical in microscopy images. Contrasts between synapses and neurites decrease from the left column to 
the right one. Noise variance increases from top row to bottom row. Since we have different contrast, the resulting 
SNR is different for different columns. (B) TPR-FPR* curve of five methods on simulation data. For images with low 
noise level (a-c), the parameters’ impact on SynQuant is not obvious. Comparing with the other four methods, 
SynQuant always has many times less FPR* with the same TPR. (C) Maximum F-score comparison on the six images. 
SynQuant outperforms other methods on all the six images. 
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the simulated dendrite with various shapes (either roughly circle or eclipse but always less than a 7 × 7 patch). The synapse 

intensity is assumed to be greater than the corresponding dendrite. Therefore, the contrast between synapse and its 

surrounding pixels is controlled by this intensity difference. Finally, Poisson-Gaussian noise was added. Examples of 

simulation data are given in Fig. 3A. We generate extra synthetic data sets and use the extracted features and ground truth 

labels to train the FDA model. 

We compared the TPR-FPR* curves of these methods with different simulation parameters (Fig. 3B). SynQuant 

consistently outperforms peer methods. As our metric is based on IoU, too small or too large detected puncta will both lead 

to false positive. This makes the curves no longer monotonic. The maximum F-score from each of the six synthetic images 

with different methods is shown in Fig. 3C. For MS-VST and MPHD, the maximum F-scores were obtained by changing 

the signal threshold in the output signal map. For FDA, the output is a binary classification map and performance is 

evaluated with a threshold on size. For SynQuant, we changed the FDR significance level to test its performances. We 

found SynQuant performs best for all the six images with a large margin. The precision-recall curves are given in the 

Supplemental Text S8.  

The simulation with pure noise (no synapses) shows t-test based score of regions is biased while order-statistics based 

method control the false positives (Supplemental Text S1). The order statistics are derived using vectors, but they are valid 

when applied to images by comparing the null distributions (Supplemental Text S6). Besides, we found a combination of 

the algorithms could be used, but it may not improve the results (Supplemental Text S9). Comparisons using location 

accuracy only is given in Supplemental Text S10. 

3.2 Synapse detection on real data 
We applied SynQuant and three unsupervised methods to images from a neuron-astrocyte co-culture. Supervised methods 

like FDA were not compared, because they require manual annotation of synapses which is time-consuming and may 

introduce bias. The image includes three channels, the nucleus channel (blue) is stained with Hoescht, the synapse channel 

(green) is labeled by Synapsin I and the neurite channel (red) is labeled with Tuj1. Here we utilize the green channel to 

detect putative pre-synaptic puncta. The red channel was used for neurite tracing and feature extraction. 

The detection and segmentation results are shown in Fig. 4A. The puncta are drawn in red and overlapped with the green 

channel. The neurite mask (red channel) is used to filter out some puncta but it is not used in the detection. Under default 

settings, SynQuant detected 783 puncta with FDR level of 0.2. Compared with MS-VST, SynD, and MPHD, SynQuant 

produced less false positives and false negatives. SynD reported many more false positives and MPHD has higher false 

negatives. MS-VST performed better than SynD and MPHD, but still missed many puncta even under the optimal choice 

of threshold (see red circles, Fig. 4A). Since the features (used in Eq. 6) for p-value calculation are accumulative, the tree 

structure shown in Fig.2 can be built efficiently with adaptive local thresholding (Ranefall et al. 2016). Updating the nodes’ 

order statistics scores consumes most of the time.  

Generally, SynQuant takes ~20 seconds to detect and segment synapses on an image whose resolution is 512 × 512 pixels. 

All experiments are performed on a workstation with Xeon E5-2630 CPU. Besides, the accuracy of noise variance 

estimation is discussed in Supplemental Text S2. Results for the comparison to Simhal et al. (2017) on real data is given in 

Supplemental Text S12. It does not model the non-specificity and cannot distinguish synapses on or near neurites. 
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3.3 Synapse quantification 
Conventionally, synapse density is defined as the number of synapses per unit length of the neurite. This is biased in an 

inhomogeneous image and does not utilize other neurite and synapse features. In this experiment, we consider the synapse 

and neurite features on the segment level. From the synapse channel, synapse features like mean intensity, size and position 

are extracted. Neurite tracing results from the neurite channel are shown in Fig. 4B. Neurites are then cut into pieces by 

their branch points and end points. In one image, we get hundreds of pieces and each of them is approximately homogenous 

inside. Each synapse is assigned to a corresponding neurite piece based on the distance. 

We apply Poisson regression to investigate the relationship between disease status and synapse density using five groups 

of samples (Table 1). We use the neurite features as confounding factors. DS1 and DS2 are from co-culture samples 

containing two isogenic Down syndrome (DS) astroglial lines. DS1 astrocytes exhibit trisomy of chromosome 21, the 

defining hallmark of Down Syndrome. In contrast, the DS2 line, while derived in a manner similar to the DS1 line, instead 

exhibits disomy of chromosome 21. The DS2 line is thus expected to be more similar genetically to cells derived from non-

DS sources. HA is a co-culture sample with human prenatal primary astrocytes. NO are samples from neuron monocultures. 

The control group is neurons co-cultured with astrocytes differentiated from normal induced pluripotent stem cells (iPSCs). 

Since we use binary coding for these four groups in the regression model, the control group is the baseline and is not shown 

in Table 1. Length, scale, and intensity are neurite features. First, we only used neurite length as a confounding factor 

(Table 1, column 2 and 3). We found that the NO, HA, and DS2 groups all show significant influence on synapse density. 

Then we used all three neurite features as confounding factors (Table 1, column 4 and 5). Under these analyses, only HA 

Figure 4.  Performance on real data (A) Performance comparison of four methods on real data. The detected 
synapses are marked as red and overlapped on the green Syn-1 channel. MS-VST performs better than MPHD and 
SynD. Compared with SynQuant, MS-VST still has many puncta (red circles) missed. MS-VST can recall missing 
puncta by setting a lower threshold to its output score map, but generate a large number of false positives as well. 
(B) Neurite tracing results. Top: neurite channel. Bottom: traced neurite. 
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and NO groups had significant coefficients and DS1 and DS2 did not have an obvious impact on synapse density. From 

the comparison in Table 1, we can see that quantification of synaptic density based only on synapse number and neurite 

length is prone to assigning a higher degree of statistical significance to all the different phenotypes. The same conclusion 

can be obtained when we use the size of synapses as a dependent variable (Supplemental Text S4). 

The lack of astrocytes in NO group clearly shows the big impact of astrocytes on the formation of synapses (Boehler et al. 

2007). Astrocytes in HA group plays important role in synapse formation as well (Reemst et al. 2016, Clarke et al. 2013), 

but these cells are less mature than the astrocytes in the control group. Therefore, it reduces the synapse density compared 

with the control group, but the reduction is less severe than the NO group. DS2 group is actually similar to non-DS groups, 

and it is expected to show no significant impact on synapse density once the confounding factors are controlled. The 

significant association with neurite length is expected as longer neurite is likely to harbor more synapses, however, the 

length only cannot account for all neurite heterogeneity. Previous studies have revealed diminished synapse formation and 

reduced dendritic ramification in infants with DS (Becker et al. 1991; Garner et al. 2012) and lower density of excitatory 

synapse also were observed in mouse models of DS (Kurt et al. 2004). However, currently, no studies have been able to 

give a measurement of synaptic density in human brains with DS. As shown here, without proper consideration of 

confounding factors, biased quantifications can result in misguided conclusions. 

4 Discussion 
We have presented a new automatic synapse quantification framework (SynQuant) for segmentation and quantification of 

heterogeneous and noisy images of synapses and dendrites. Most existing spot and synapse detection methods fail under 

these conditions and the widely used (blind) linear un-mixing approaches work poorly and introduce artifacts. SynQuant is 

able to detect and segment synaptic puncta accurately. It can extract comprehensive features from both synapses and 

neurites and analyzes their relationships. Some extra functions supported are given in Supplemental Text S12. 

The superior performance of SynQuant comes from the effective utilization of the local region-neighbor information. 

Enjoying the same principle as Hariharan et al. (2014), the probability principled iterative detection and segmentation 

algorithm uses the tree structure of regions to choose the correct neighborhood pixels. Order statistics provide an unbiased 

score to indicate the likelihood of each candidate region is a true synapse. The choice of neighborhood pixels and the 

computation of order statistics are iterated until no statistically significant regions can be found in the tree structure. 

Table 1.  Poisson regression using Down syndrome phenotypes and three neurite features as predictors and 
synapse puncta density as the response 

Features 
Neurite length only All neurite features 

Estimated 
Coefficients P-value Estimated 

Coefficients P-value 

Length 0.248 0 0.173 1.62e-34 
Scale N/A N/A 0.079 9.43e-09 
Intensity N/A N/A 0.263 1.45e-152 
DS1 0.044 0.235 -0.058 0.115 
DS2 0.156 4.43e-06 -0.060 0.086 
HA -0.366 1.60e-25 -0.287 3.96e-16 
NO -0.748 1.16e-69 -0.655 1.26e-53 
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Compared with existing spot detection methods, SynQuant is able to extract accurate segmentation results, which allows 

access to important features for synapse studies. The main parameter needed for SynQuant is the FDR level to be controlled 

and the algorithm reports the P-value for each region detected. 

Incorporated with properties extracted from the neurite channel, effects of cell types and disease phenotypes on synapse 

density can be revealed. With a large field of view, the number of neurons involved is large. As a result, different neurons 

and their corresponding neurites and synapses are at different development stages due to cell type and other stochastic 

effects. As such, these neurites and synapses must be treated locally and we should not aggregate the features in the image. 

In SynQuant we use the segmented neurite pieces as a sample in the regression analysis. Thus, the relationships we found 

are more comprehensive by including these local confounding factors and can more reliably reveal the relationship between 

disease and synapse features. 

As we have the neurite channel as a reference, it is possible to either subtract the neurite-like background in synapse channel 

or use un-mixing techniques to separate these two channels (Neher et al., 2009; Zimmermann, 2005). However, the non-

linear relationship between two channels makes blind un-mixing inapplicable (Supplemental Text S5). 

SynQuant makes it possible to use antibodies that are not so specific. Most peer methods require a highly specific antibody. 

In some experiments, this is possible, as shown in peer methods, but this is not feasible in many experiment setups. In fact, 

to study synapse heterogeneity, the requirement of antibody specificity is even higher, which may limit the freedom to 

design experiments. 

SynQuant can be extended to analyze 3D data. In addition, using both the pre-synaptic puncta and post-synaptic puncta, 

we can further improve the performance. Finally, SynQuant is a general framework to analyze images with a high level of 

non-specificity, we can adapt and apply it to bio-medical images beyond synapse staining, such as particle detection for the 

particle tracking problem. 
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Supplementary material to “SynQuant: An 
Automatic Tool to Quantify Synapses from 
Microscopy Images” 

S1. Synapse detection and segmentation on pure noise simulation 
We compare Student’s t-test with SynQuant (with order statistics) when evaluating the significance between a region and 

its neighborhood pixels (Supplemental Table 1). We first simulated an image of size 1024×1024 where all pixels have the 

same intensity. Then additive Gaussian noise with zeros mean and unit variance is introduced.  The threshold varied from 

1.2 to 1.8 with step size 0.2. Ideally, no synapse should be detected. First, we assume the noise variance is known. We 

count the total number of regions given by the thresholds and the number of candidates that are significant under the FDR 

level of 0.05. Totally we get 2574 candidates. SynQuant only reported 12 significant candidates while t-test generated 1310 

false positives. So, t-test produces an inflated false positive in thresholding-based methods (Supplemental Table 1). We 

also observed that the control of the false positives for our method is conservative due to the correlation of scores between 

overlapped regions. Then we repeated the experiment with a poorly estimated noise variance (0.5 vs true 1.0). Then both 

tests generated many false positives. This confirms the importance of noise variance estimation in evaluating the 

significance level for order statistics. 

 
Supplemental Table 1.  The false positive rate on data with pure noise 

 

  

Noise variance used t-test Order Statistics 

True noise variance 0.543 0.0047 

0.5 (a poor estimate) 0.539 0.424 
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S2. The accuracy of noise variance estimation  
The noise of microscopy images consists of two parts: photon noise and camera readout noise. Therefore, it can be modeled 

by a Mixed-Poisson-Gaussian process (Zhang et al., 2007). The accuracy for the noise variance estimation is essential for 

the remaining steps in our algorithm. Usually, the Poisson part plays a more important role. Therefore, we first show the 

noise variance estimation accuracy on our microscopy images. 

The model is fitted through the algorithm designed by Foi et al. (2008), though we do not consider the clipping and 

saturation effects. The outcome is a linear relationship between mean intensity and noise variance. Ground truth is obtained 

as follows. The image of one sample in the experiment is repeatedly taken for ten times under the identical conditions. Each 

pixel is observed 10 times. Then we can calculate the noise variance for each pixel and plot the relationship between its 

mean intensity and variance (curve ‘gt’ in Supplemental Figure 1).  

From every single image, we estimated the noise and compared them with the ground truth. The comparison is shown in 

Supplemental Figure 1. It’s clear that the estimated noise model is quite similar to the true value. Note that the linear 

regression line ‘gts’ in the figure is biased by the pixels with large means and variances. There are a relatively small amount 

of such pixels and are less reliable. On contrary, the results from single image estimation (line 1 to 10) are closer to the 

ground truth (curve ‘gt’). 

 

  

Supplemental Figure 1.  Noise variance estimation results. Line 1-10 are 10 noise models estimated from 10 single 
images. gt and gts are the ground truth from 10 images and the linear regression result, respectively. 
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S3. Simulation data generation 
The simulation data is generated with four steps. To fully simulate the conditions of neurite, we first extract the neurite 

from real data (neurite extraction method will be introduced in Supplemental Text S11). Based on the results of extraction, 

we cut them into small pieces (see Figure 1B in the main body). Pixels in each piece are viewed roughly homogeneous. 

The second step is generating neurite pieces on our simulation image at the same positions, with scales and brightness 

similar to the ones on the real image. For each neurite piece, we use a Gaussian kernel to smooth it. The third step is to cast 

synapses on each neurite piece. The number of synapses is based on the relationship between neurite features and synapse 

numbers obtained from real data. The synapse intensity is decided by the summation of three values: intensity of the neurite 

it falls on, a contrast parameter and a random noise value. The contrast parameter is used to define average contrast across 

the image between synapses and neurites they fall on. The random value is generated by multiplying the contrast parameter 

with a standard Gaussian random variable. Finally, Mixed-Poisson-Gaussian noise is added to the image.  

We generate our simulation data in three scenarios as is shown in Supplemental Figure 2. Each scenario contains two 

images in one column with the same average intensity contrast between neurite and synapse. But their noise variances are 

different. Across the three scenarios, the contrast varies. With these three scenarios, it is easy for us the compare the 

robustness of algorithms under different noise variance and intensity contrast. Detail of parameters is also illustrated in the 

figures. 

 

 

 

 

 

Supplemental Figure 2.  The three scenarios of our simulation data. From left to right the contrast are decreased. 
From up to bottom, the noise variance is increased. The unit for SNR is dB. 
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S4. Relation test on synapse scale 
Our algorithm does not separate overlapped synapses, because synapses seldom overlap in our data. It may be unfair to 

consider synapses with varies sizes equally under such condition. Here we use synapse’s scale rather than the number as a 

dependent variable for the relationship test. The results are shown in Supplemental Table 2. 

The results are consistent with those in the main paper. If we do not consider the confounding factors like neurite scale and 

intensity, the phenotype DS2 will show a significant effect on the synapse scale. 

 

Supplemental Table 2.  Poisson regression using Down syndrome phenotypes and three neurite features as 
predictors and synapse puncta scale as a response 

Features 
Neurite length only All neurite features 

Estimated 
Coefficients P-value Estimated 

Coefficients P-value 

Length 1.392 0 0.596 1.77e-12 
Scale N/A N/A 0.934 1.36e-27 
Intensity N/A N/A 1.022 3.45e-140 
DS1 0.210 0.072 -0.136 0.241 
DS2 0.677 8.59e-10 0.111 0.318 
HA -0.916 5.95e-21 -0.651 2.55e-11 
NO -1.437 7.68e-44 -1.091 4.13e-26 
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S5. Blind source separation for neurite-like signal removing 
As we have access to both the synapse channel (green channel) and the neurite channel (red channel), we attempted to use 

the neurite channel to remove the neurite-like background in the synapse channel. This procedure is like blind source 

separation (BSS). Under the assumption that the neurite channel is mostly pure, whose signal mainly from true neurite, the 

synapse channel can be viewed as a mixed signal from the known neurite channel and unknown pure synapse signal. If we 

could extract the pure synapse signal, the difficulty of synapse detection and segmentation problem should be decreased. 

For any two pixels 𝑖𝑖 and 𝑗𝑗, the values in neurite channels are 𝑦𝑦𝑖𝑖  and 𝑦𝑦𝑗𝑗. The values in synapse channels are 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗. If we 

assume signals in neurite channel go into the synapse channel, we will have 𝑦𝑦𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑖𝑖  and 𝑦𝑦𝑗𝑗 = 𝑎𝑎𝑗𝑗𝑥𝑥𝑗𝑗 + 𝑏𝑏𝑗𝑗. In order 

for blind source separation to work, we require 𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑗𝑗 and 𝑏𝑏𝑖𝑖 = 𝑏𝑏𝑗𝑗. In this is true for any pixels, we say the relationship 

between these two channels are homogeneous. Otherwise, if 𝑎𝑎𝑖𝑖 ≠ 𝑎𝑎𝑗𝑗 for different pixels, the relationship is inhomogeneous 

and the blind source separation is not a valid choice. 

Here we first show the inhomogeneous relationships using the real data. Then we list several BSS attempts based on 

regression and non-negative matrix factorization (NMF). Both the analysis and experiment results show that the synapse 

channel is not simply a linear combination of synapse and neurite signals and thus making the separation difficult to achieve.  

Inhomogeneity of relationships between two channels 
If 𝑦𝑦 is the intensity of one pixel in the synapse channel, and the 𝑥𝑥 is the intensity for the same pixel in the neurite channel, 

their relationship is given by a regression model 

 𝑦𝑦 = 𝛼𝛼𝑥𝑥 + 𝑏𝑏. (S1) 

Here 𝛼𝛼 is a random variable. We assume it follows Gaussian distribution 𝑁𝑁(𝜇𝜇,𝜎𝜎2).  

To study whether the relationship between these two channels is homogenous, we cut the neurite into small (homogeneous) 

pieces. The idea is that we study the relationship piece by piece. If the relationship is homogeneous, the results from 

difference neurite pieces should be similar. 

Assume we have 𝑀𝑀 pieces. Also, assume 𝑦𝑦𝑖𝑖 is the intensity of any pixel in piece 𝑖𝑖 in synapse channel and 𝑥𝑥𝑖𝑖 is the intensity 

for the same pixel in the neurite channel. We have a new regression model 

 𝑦𝑦𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑖𝑖 (S2) 

For piece 𝑖𝑖, 𝛼𝛼𝑖𝑖 consists of three components 

       𝛼𝛼𝑖𝑖 = 𝜇𝜇 + 𝑛𝑛𝑖𝑖 + 𝑒𝑒𝑖𝑖 . (S3) 

Here 𝑒𝑒𝑖𝑖 is the noise caused by sample size (pixel number) in piece 𝑖𝑖 and 𝑛𝑛𝑖𝑖 is the term related to the position or other factors.  

Consider all pieces, we have the regression model for coefficient 𝛼𝛼 

 𝛼𝛼 = 𝜇𝜇 + 𝑛𝑛 + 𝑒𝑒. (S4) 

If the relationship between these two channels are homogeneous, 𝑛𝑛 is zero and thus all 𝛼𝛼 are determined by 𝜇𝜇 and 𝑒𝑒  
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 𝛼𝛼 = 𝜇𝜇 + 𝑒𝑒. (S5) 

Under the homogeneous condition, across piece variance 𝑣𝑣𝑎𝑎𝑣𝑣(𝛼𝛼)  should be equal to within piece variance 𝑣𝑣𝑎𝑎𝑣𝑣(𝑒𝑒) , 

otherwise, 𝑣𝑣𝑎𝑎𝑣𝑣(𝑛𝑛) is non-zero. By calculating 𝑣𝑣𝑎𝑎𝑣𝑣(𝛼𝛼) and 𝑣𝑣𝑎𝑎𝑣𝑣(𝑒𝑒) with real data, we can find whether the relationship 

between these two channels are homogeneous.  

We stabilize synapse and neurite channels to make the noise variance un-related to intensity. Then in neurite channel, we 

cut neurite into small homogeneous pieces and remove those whose skeleton is less than 10 pixels. The pixels inside one 

piece in these two channels should be linearly related as is illustrated in Equation (S2). For each 𝛼𝛼𝑖𝑖, 𝑣𝑣𝑎𝑎𝑣𝑣(𝛼𝛼𝑖𝑖) = 𝜎𝜎𝑖𝑖2 is got 

from the linear regression. Taking the average of {𝜎𝜎12 …𝜎𝜎𝑀𝑀2 }, we obtain 𝑣𝑣𝑎𝑎𝑣𝑣(𝑒𝑒). With {𝛼𝛼1, … ,𝛼𝛼𝑀𝑀}, we can estimate the 

sample variance 𝑣𝑣𝑎𝑎𝑣𝑣(𝛼𝛼).  

Using the two channels shown in Figure 1(B) in the main body, we get that 𝑣𝑣𝑎𝑎𝑣𝑣(𝛼𝛼)=0.064 and 𝑣𝑣𝑎𝑎𝑣𝑣(𝑒𝑒)=0.015, which means 

𝑣𝑣𝑎𝑎𝑣𝑣(𝑛𝑛) is not zero (0.049) and the relationship between these two channels are inhomogeneous. By Chi-Square test, the 

p-value of 𝑣𝑣𝑎𝑎𝑣𝑣 (𝛼𝛼)=0.015 is 0, which means it’s almost impossible to happen. 

Linear regression 
Here we test the relationship of neurite in these two channels. To reduce the influences of synapse signal, we remove most 

puncta before the test. Then linear regression is applied to the remaining pixels of the two channels. We subtract neurite 

channel based on the regression results, as shown in the bottom two figures of Supplemental Figure 3. Though it seems 

most neurite-like signals have been removed from observation, the remaining artifacts introduce more interference. The 

real data is manually labeled and then MSVST (Zhang et al., 2007), MPHD (Rezatofighi et al., 2012), and SynQuant are 

applied on the synapse channel. Results comparison is shown in Supplemental Table 3. The “Original” row shows results 

on the raw data and the other two rows show the results of these algorithms on the data after linear regression. FDA (Smal 

et al., 2010) needs training data and not applicable to a single image. SynD (Schmitz et al., 2011) detects synapse based on 

neurite position and thus also not applicable if no neurite exist. From the results, we can see that linear regression does not 

really help increase synapse detection accuracy. Also, we tried Lowess regression and segmented regression on the real 

data too, the results look similar to that of linear regression and introduce artifacts as well. 

Non-negative matrix factorization (NMF) 
NMF is a famous blind source separation technique. For our problem, we assume the synapse and neurite the channels are 

both composed of pure synapse and neurite signal. To apply NMF, we use the synapse and the neurite channels to form a 

2 by 𝑁𝑁 matrix V, where 𝑁𝑁 is the number of pixels in each channel. In practice, for each channel, all horizontal rows of 

pixels are concatenated into a 1-D (column) vector and then be transformed into a 1-D (row) vector. These two vectors 

form the 2 by 𝑁𝑁 matrix V. By NMF, V is factorized into a 2 by 2 matrix W and 2 by 𝑁𝑁 matrix H. The two vectors in H 

should represent pure synapse and neurite signals. Results of NMF are shown in the right-up figure in Supplemental Figure 

3. Because 𝑁𝑁 >> 2, the un-mixing results are un-reliable. It’s obvious that the synapse signal extracted from NMF is as 

noise as before.  
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Supplemental Figure 3.  Results of BSS trials. The top-left is the original synapse channel. Top-right is the result got 
from NMF. It’s obvious that NMF fails to handle most of the neurite-like signals. The bottom-left and bottom-right 
are results of linear regression with and without bias term. These two results are similar and looks like that most 
neurite-like signal has been removed. Our following experiments shows that this process introduces un-seen 
artifacts which does not truly help for detection. 
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Supplemental Table 3.  F-score comparison on real data 

 

 

 

 

  

 MSVST MPHD SynQuant 
Original 0.375 0.393 0.744 
y=k*x 0.369 0.312 0.526 
y=k*x+b 0.402 0.408 0.544 
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S6. Distribution from 1D and 2D null hypothesis 
The distribution of the NULL hypothesis in our method is obtained by order statistics. In order statistic theory, if x is a 

random vector where each element follows I.I.D. Gaussian distribution, its test statistic (see Equation (2) in the main paper) 

follows a Gaussian distribution determined by M and N (see Equation (2) in the main paper). Here we test on images, where 

the signal is in 2D instead of 1D. 

We generate an image that contains only Gaussian noises. Then all puncta whose intensities are larger than their 

surrounding pixels are chosen. Based on these puncta, we can draw the distribution of their test statistics. Supplemental 

Figure 4 shows this distribution, along with the distribution theoretically generated from 1D derivation. For simplicity, here 

we only show the distribution with 30 pixels (15 pixels with higher intensities vs. 15 neighboring pixels with smaller 

intensities). It’s shown that for images, the order statistics derivation is also applicable. 
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Supplemental Figure 4.  Distributions of null hypothesis on image. The left one is the distribution got from one image 
with pure noises. The right is distribution got theoretically by generating random vectors. It’s shown that order 
statistics is also applicable when confronted image data. 
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S7. FDR control 
The FDR control offers a looser restriction over Bonferroni correction. We conduct FDR control in each iteration by testing 

whether all the un-selected nodes (regions) fail to meet the significance request. Otherwise, we pick up the most significant 

remaining one and continue to the next iteration until no such region exists. For example, as shown in Figure 2 (E) in the 

main paper, we have two candidate synapse puncta b and f. The next node with the highest significance value is c. Then 

FDR control will be conducted on all the nodes including b and f to see under such condition whether c is still significant. 

If so, set c as a candidate synapse punctum. Otherwise, stop and report all candidate synapse puncta we detected. Because 

for each iteration, the significance (order statistics score) of some nodes may change, FDR control is needed in each 

iteration. As overlapped regions may be highly correlated, for FDR control, we use the general case introduced by 

Benjamini and Yosef, (1995). 
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S8. Precision-recall curves for simulation 
Here we give the complete precision-recall curves of SynQuant compared with the other four methods of synapse detection 

and segmentation (Supplemental Figure 5-7). From these curves, SynQuant always outperforms other algorithms by a large 

margin. With these curves, we calculate the maximum F-scores, which is shown in Figure 3 in the main paper. All the 

experiments are done on the six simulated images shown in Supplemental Figure 2 and the results are shown in the same 

order of the three scenarios there. 

 

 

 

 

 

 

Supplemental Figure 5.  Precision-recall curves for the algorithms in scenario 1. The left figure comes from image 
with lower noise. Because we use the IoU measurement, changing the parameters of algorithms may not lead to 
monotonic curves. From these two figures, it is obvious that SynQuant will not degrade when the noise variance is 
increased. For the image lower noise (left), SynQuant is not sensitive to parameter settings as is shown in the left 
figure. 
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Supplemental Figure 6.  Precision-recall curves for the algorithms in scenario 2. Compared with results of 
scenario 1 in Supplemental Figure 5, we can see that other than SynQuant and SynD, all the other methods’ 
precisions decrease. That’s because the contrast between synapse and neurite is lower in this scenario. SynD is 
not largely influenced, but the performances are still far from satisfactory. 

Supplemental Figure 7.  Precision-recall curves for the algorithms in scenario 3. Compared with the former two 
scenarios, this scenario is the hardest to handle. Other than SynQuant, all other methods cannot get good 
performances. In spite of this, SynQuant still gets high precisions and recalls. 
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S9. Combine MS-VST and SynQuant 
We are interested to see whether we can improve our performance by combining two methods. As MS-VST gives the 

probability of each pixel to be puncta, we seek to apply SynQuant on this probability map. Under such condition, most 

interference from the reference neurite channel has already been removed. However, because a large number of false 

positives in the probability map generated by MS-VST, we do not observe a clear improvement. Sometimes it is even worse 

than directly applying SynQuant on the original data. 

Supplemental Figure 8-9 show the precision-recall and TPR-FPR* curves of SynQuant, MS-VST, and the joint method. 

Obviously, though MSVST and SynQuant perform best among the methods compared in the main paper, their combination 

fails to increase the accuracy. 

 

 

 

 

 

 

 

Supplemental Figure 6.  The precision-recall curves of MSVST combined with SynQuant. Every two sub-
figures in one column represent the results of images in one scenario. Scenario 1 to 3 are from left to 
right. Because SynQuant handles neurite signals well, even though MSVST removes most neurite-like 
signals, there is no obvious improvement on final results. 
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Supplemental Figure 7.  The TPR-FPR* curves of MSVST combined with SynQuant. The sub-figures are in the 
same order as Supplemental Figure 8. The results are consistent with Supplemental Figure 8. Besides, if 
some true synapses are missed by MSVST, the final results would be even worse than directly apply 
SynQuant on the original data. 
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S10. Comparisons based on a location-based criterion 
For the problem of spot detection, people sometimes care more about position accuracy rather than the pixel overlapping 

rate, which also measures the segmentation accuracy. Therefore, most spot detection algorithms (Zhang et al., 2007; 

Rezatofighi et al., 2012; Smal et al., 2010) use center distance between detected spots and ground truth to judge positive 

and negative. Here we also listed the comparisons based on that criterion. The precision-recall and TPR-FPR* curves are 

shown in Supplemental Figure 10-11. From these curves, we could tell that the performances are consistent with those 

under IoU measurement. However, this measurement only considers center distances between detected puncta and ground 

truth and does not consider overlapping ratio, which is quite unreliable in the synapse detection and segmentation problem. 

Under such condition, a large number of small points generated by noises around ground truth would be considered as true 

positives. What’s more, the number of positive puncta detected would be much larger than reality. Such results are less 

useful in real application. 

 

 

 

 

 

Supplemental Figure 8.  Precision-recall curves for the algorithm under new criteria which was used by 
most spot detection methods. SynQuant still outperforms other methods. This kind of measurement only 
consider center distances between detected puncta and ground truth with no overlap ratio, which is 
unreliable in measuring the segmentation accuracy. 
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Supplemental Figure 9.  TPR-FPR* curves for the algorithm under the new criterion. Under such condition, a 
large number of small points generated by noises around ground truth will be consider as true positives. 
What’s more, the number of detected puncta would be much larger than reality. 
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S11. Neurite segmentation 
For synapse quantification, it is important to collect synapse properties along with features from neurites. However, the 

neurite related features obtained from existing tools are not sufficient.  For example, existing synapse quantification tools 

only utilize the length of neurite, with no other confounding factors in calculating synapse density. However, this density 

could be influenced by spatial inhomogeneous factors like neurite scale or sizes (Glynn et al., 2011; Klintsova and 

Greenough, 1999). When we test the relationship between synapse density and related disease phenotypes, if we do not 

consider such spatial related confounding factors of neurites, the conclusion might be unreliable. Therefore, analyzing the 

properties of neurites in details will help the study of the physiology and pathology of synapses. 

Similar to SynD (Schmitz et al. 2011), we use a steerable filter (Meijering et al. 2004) to trace the neurite. The filter is 

based on the second-order derivatives of a Gaussian kernel: 

 𝑓𝑓𝑖𝑖𝑗𝑗 = −�𝑓𝑓 ∗ 𝐺𝐺𝑖𝑖𝑗𝑗�,       𝐺𝐺𝑖𝑖𝑗𝑗 = 𝜕𝜕2𝐺𝐺
𝜕𝜕𝑖𝑖𝜕𝜕𝑗𝑗

. (S6) 

Here * denotes convolution and index i and j are either x or y directions and f is the image. For each pixel, we get the 

Hessian matrix 

 𝐻𝐻𝑓𝑓(𝑡𝑡) = �
𝑓𝑓𝑥𝑥𝑥𝑥 𝑓𝑓𝑥𝑥𝑥𝑥
𝑓𝑓𝑥𝑥𝑥𝑥 𝑓𝑓𝑥𝑥𝑥𝑥

�. (S7) 

Here 𝑓𝑓𝑥𝑥𝑥𝑥 = 𝑓𝑓𝑥𝑥𝑥𝑥. The probability that pixel 𝑡𝑡 belongs to a neurite is obtained from the eigenvalues and eigenvectors of this 

matrix. The cost for pixel q to be added to a neurite where pixel p is already on it is 

 𝐶𝐶(𝑝𝑝, 𝑞𝑞) =  𝛾𝛾 𝐶𝐶𝜆𝜆(𝑞𝑞) + (1 − 𝛾𝛾)𝐶𝐶𝑎𝑎(𝑝𝑝, 𝑞𝑞), (S8) 

where 𝛾𝛾 ∈ [0,1] is a user-defined weight. In default we set it to be 0.5, so we have no preference for each term. 𝐶𝐶𝜆𝜆(𝑞𝑞) and 

𝐶𝐶𝑎𝑎(𝑝𝑝, 𝑞𝑞) are two normalized cost components. The former one is the cost of pixel q to be added to any neurite. Here 

 
𝐶𝐶𝜆𝜆(𝑞𝑞) =  1 − 𝜌𝜌(𝑞𝑞),  

𝜌𝜌(𝑞𝑞) = �𝜆𝜆(𝑞𝑞)/𝜆𝜆𝑚𝑚𝑠𝑠𝑥𝑥 𝜆𝜆 > 0
0 𝜆𝜆 ≤ 0. 

(S9) 

𝜆𝜆𝑚𝑚𝑠𝑠𝑥𝑥  is the maximum of the largest eigenvalues obtained from the Hessian matrices of all pixels. 𝜆𝜆(𝑞𝑞) is the largest 

eigenvalue of pixel q’s hessian matrix. The latter one is the direction cost if we add pixel q to a neurite where pixel p is on 

it. It is defined as 

 𝐶𝐶𝑎𝑎(𝑝𝑝, 𝑞𝑞) =
1
2
��1 − 𝜔𝜔(𝑝𝑝, 𝑞𝑞) + �1 − 𝜔𝜔(𝑞𝑞, 𝑝𝑝)�. (S10) 

𝜔𝜔(𝑝𝑝, 𝑞𝑞)  =  |𝑣𝑣(𝑝𝑝) ⋅  𝑑𝑑(𝑝𝑝, 𝑞𝑞)|, which is the unit “link vector” from pixel p to q. 𝑑𝑑(𝑝𝑝, 𝑞𝑞) = (𝑞𝑞 − 𝑝𝑝)/||𝑞𝑞 − 𝑝𝑝|| and v(q) is the 

normalized eigen vector of p. By taking the absolute value, this cost component ignores direction and only consider 

orientation similarity. 

With Equation (S8), we can extract neurites from seed points by measuring if the cost is less than a threshold (0.9 in our 

implementation). Although neurite must grow from the soma in the SynD algorithm, this restriction is relaxed in our 
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experiments to avoid false negatives caused by missing somas. In our experiments, every unchecked point would be tested 

as a seed to find whether it belongs to a nearby neurite. 

The detected neurite is cut by branch points and end points for further analysis. We assume the intensities of pixels in each 

piece is similar. Each piece corresponds to one or more synapses that stay on it. Concerning both synapse features and 

related neurite features, a comprehensive quantification of the synapse can be conducted. 
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S12. Results of probabilistic synapse detection (Simhal AK, 2017) 
We use the code from https://github.com/aksimhal/probabilistic-synapse-detection. We modified the ‘sample_runme’ 

configuration file to use only one channel. We set blobSize = 2, search_win = 2 and edge_win = 8. This method cannot 

distinguish neurites and synapses (Supplemental Figure 12). Therefore, it can not be used in the presence of antibody non-

specificity. 

 

Supplemental Figure 10.  Left: raw image with Synapsin labeling. Right: red channel shows detection results from 
Simhal, AK., et al 2017. Green channel shows the raw image. Majority of the neurites are detected as synapses. 
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S13. Other functions supported by SynQuant 

Synaptic sites detection 
Because researchers often want to compare locations of pre-synaptic and post-synaptic puncta (i.e. indicating the positions 

of synaptic sites), SynQuant allows users to simultaneously input two synapse channels (one for pre-synapse and another 

for post-synapse) and automatically reports the puncta’s overlapping regions, which can be viewed as possible synaptic 

sites. 

Synaptic sites quantification 
Synaptic sites correspond to axon terminals, which are essential for neuron communication. It is meaningful to quantify 

synaptic sites and uncover the effects of some properties related to its density. Based on the synaptic sites detection results 

and dendrite extraction results, SynQuant could automatically finish this job with the three input channels (channels for 

pre-synapse, post-synapse and dendrite). The pipeline is similar to that of synapse quantification, but the dependent variable 

in the regression test needs to be changed from the number of synapses on one dendrite piece to the number of synaptic 

sites on one dendrite piece. 
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