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Abstract  
Coronary artery disease (CAD) represents one of the leading causes of morbidity 
and mortality worldwide. Given the healthcare risks and societal impacts associated 
with CAD, their clinical management would benefit from improved prevention and 
prediction tools. Polygenic risk scores (PRS) based on an individual’s genome 
sequence are emerging as potentially powerful biomarkers to predict the risk to 
develop CAD. Two recently derived genome-wide PRS have shown high specificity 
and sensitivity to identify CAD cases in European-ancestry participants from the UK 
Biobank. However, validation of the PRS predictive power and transferability in other 
populations is now required to support their clinical utility. We calculated both PRS 
(GPSCAD and metaGRSCAD) in French-Canadian individuals from three cohorts 
totaling 3639 prevalent CAD cases and 7382 controls, and tested their power to 
predict prevalent, incident and recurrent CAD. We also estimated the impact of the 
founder French-Canadian familial hypercholesterolemia deletion (LDLR delta > 15kb 
deletion) on CAD risk in one of these cohorts and used this estimate to calibrate the 
impact of the PRS. Our results confirm the ability of both PRS to predict prevalent 
CAD comparable to the original reports (area under the curve (AUC) = 0.72-0.84). 
Furthermore, the PRS identified about 6-7% of individuals at CAD risk similar to 
carriers of the LDLR delta > 15kb mutation, consistent with previous estimates. 
However, the PRS did not perform as well in predicting incident (AUC= 0.56 - 0.60) 
or recurrent (AUC= 0.56 - 0.60) CAD. This result suggests that additional work is 
warranted to better understand how ascertainment biases and study design impact 
PRS for CAD. Collectively, our results confirm that novel, genome-wide PRS are 
able to predict CAD in French-Canadians; with further improvements, this is likely to 
pave the way towards more targeted strategies to predict and prevent CAD-related 
adverse events.  
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Introduction 
Genome-wide association studies (GWAS) have shed light on the polygenic 
architecture of human quantitative traits such as height and blood pressure, as well 
as common diseases such as type 2 diabetes and coronary artery disease (CAD) 1–4. 
These studies have shown that complex human phenotypes are controlled by 
hundreds of genetic variants, each with small effect size. Although individually they 
contribute to a small fraction of the phenotypic variation, together they account for a 
relatively large fraction of the heritability 5. This observation has raised the possibility 
to use genetic variants distributed across the genome to calculate polygenic risk 
scores (PRS) and use them to predict the risk to develop diseases 6. The availability 
of large human genetic datasets, such as the UK Biobank, now allows for calibration 
and validation of genome-wide PRS in >100,000 individuals. 
 
CAD remains one of the main causes of morbidity and mortality worldwide 7. GWAS 
have already identified >100 loci associated with CAD, mostly in populations of 
European ancestry 2,8. Early prediction would benefit prevention, optimal 
management, and treatment strategies for CAD. Although CAD has high heritability 
(50-60%) 9,10, genetic testing is not readily used in the clinic, except in the context of 
Mendelian disease such as familial hypercholesterolemia (FH). Two recently 
developed genome-wide PRS for CAD by Khera et al. (GPSCAD) and Inouye et al. 
(metaGRSCAD) suggest that genetic risk prediction for CAD is ready to be applied in 
the clinical setting 11,12. Khera and colleagues utilized the LDpred algorithm to model 
linkage disequilibrium and variant effect sizes from a CAD GWAS in the UK Biobank 
to create GPSCAD,  which includes >6 million genetic variants throughout the genome 
11,13. In contrast, Inouye and colleagues created a PRS termed metaGRSCAD with 
>1.7 million variants, themselves explaining 26% of CAD heritability, using a meta-
analysis of association results from three large CAD GWAS 2,14,15. The conclusions 
from both studies were encouraging. Khera et al. showed that GPSCAD can identify a 
significant portion of individuals in the general population with a polygenic CAD risk 
as high as those who carry mutations that cause FH 11. For Inouye et al., the CAD 
risk estimated with metaGRSCAD was higher than the risk conferred by any single 
traditional risk factors such as smoking or hypertension 12. 
 
Although these results are promising, the introduction of CAD PRS in clinical practice 
is likely to encounter resistance 16–18. In particular, whether PRS are sufficiently 
accurate to justify on their own early interventions – including pharmaceutical 
treatments – is an important debate. For this reason, it is critical to validate PRS in 
additional populations (GPSCAD and metaGRSCAD were only tested in European-
ancestry participants from the UK Biobank) and determine whether ascertainment 
biases and/or study design impact their clinical utility. Here, we validated these two 
novel CAD PRS in individuals of French-Canadian descent recruited from 
population- and hospital-based cohorts. We evaluated the performance of these 
polygenic predictors on prevalent, incident, and recurrent CAD. Finally, we used 
whole-genome sequence data to identify participants that carry a known FH 
mutation, and compared its impact on CAD risk with that due to the inheritance of 
millions of weak effects common variants.  
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Results 
 
Genome-wide PRS for prevalent CAD in French Canadians  
Using both models (GPSCAD and metaGRSCAD), we calculated PRS in French 
Canadians from three studies: two hospital-based cohorts from the Montreal Heart 
Institute (MHI) Biobank (phase 1, n=1,964; phase 2, n=3,309) 19,20, and 5,762 
participants from CARTaGENE, a public health research platform in the Province of 
Quebec, Canada 21. We present demographics and baseline clinical information for 
all participants in Table 1. Following DNA genotyping and variant imputation 
(Methods), most variants used to calculate GPSCAD and metaGRSCAD were present 
in our datasets (missingness range: 0.09-6.96%, Table S1), suggesting that our 
study design can accurately capture the previously proposed CAD polygenic models. 
Both PRS were strongly correlated with each other in the French-Canadian datasets 
(Pearson’s r>0.73, p-value<2.2x10-16) (Figure 1). We tested the association between 
the CAD PRS and prevalent CAD status in all three cohorts. The distributions of both 
GPSCAD and metaGRSCAD were shifted towards higher values in CAD cases when 
compared to controls (Figure 2). Combining results across the three cohorts, we 
found that one standard deviation increase in GPSCAD or metaGRSCAD was 
associated with increased odds of CAD of 1.63 (p-value = 7.5x10-50) and 1.74 (p-
value = 8.5x10-62), respectively (Table 2). In terms of prediction of prevalent CAD in 
French Canadians, the area under the receiving operating characteristic curve (AUC) 
for both PRS were 0.72-0.84, largely consistent with the original reports (Table 2). 
 
Estimation of CAD risk for LDLR delta > 15kb deletion carriers 
Approximately 60% of FH cases in the French-Canadian population of Quebec are 
due to the delta > 15kb deletion of the LDLR gene 22. To compare the predictive 
power of CAD PRS with the impact of penetrant FH mutations on CAD risk in this 
population, we used whole-genome sequence (WGS) data available in 1,964 MHI 
Biobank participants to call copy-number variants at the LDLR locus 19. We identified 
a total of 14 heterozygous carriers of the LDLR delta > 15kb deletion (breakpoints: 
chr19:11,188,403-11,204,295 (hg19)). The estimated allele frequency in this cohort 
is 0.36%, which is in the range of the reported frequency (~0.03-0.38%) 23,24. In our 
dataset, the LDLR delta > 15kb deletion was associated with increased LDL-
cholesterol levels (LDL-cholesterol: 1.34 mmol/L increase per copy of the LDLR 
deletion, p-value=1.2x10-8). When combining baseline and follow-up data, we found 
that 12 out of the 14 LDLR deletion carriers were CAD cases (odds ratio (OR)=3.30 
and 95% confidence interval=0.72-15.2; p-value=0.13). Although this result is not 
statistically significant owing to our limited sample size, it allows us to estimate that 
French Canadians who carry a strong FH mutation are ~3 times more at risk to 
develop CAD. This provides a direct opportunity to identify the proportion of 
individuals at similar or increased risk for CAD based on their PRS. Using the 
distributions of GPSCAD and metaGRSCAD, we estimate that 6-7% of the French-
Canadian population is at the same or higher risk for CAD than carriers of the FH 
LDLR delta > 15kb deletion. This result is consistent with the estimate by Khera et al. 
that 8% of European-ancestry individuals in the UK Biobank have a PRS that confers 
comparable or higher CAD risk than rare FH mutations 11 
 
Prediction of incident and recurrent CAD 
The MHI Biobank is a prospective hospital-based cohort with available regular 
follow-up clinical information collected. We took advantage of this design to also test 
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the CAD PRS against incident and recurrent CAD events. Because genetic variants 
are present at birth, it can be argued that PRS analyses of late-onset diseases such 
as CAD are always prospective. However, analyses of clinical information collected 
retrospectively is subject to selection biases and thereby analysis of such information 
might impact the accuracy of the PRS. Inouye et al. had shown that metaGRSCAD 
can identify incident cases in the UK Biobank 12. Among the 1245 controls at 
baseline with follow-up available in the combined MHI Biobank cohorts, 402 had a 
first CAD event between recruitment and follow-up (median follow-up time = 4 years 
(range = 5 weeks - 7.2 years)). GPSCAD was not associated with incident CAD 
(OR=1.11, p-value=0.074), whereas the association between metaGRSCAD and 
incident CAD was only modest (OR=1.15, p-value=0.025) (Table 2). The prediction 
of incident CAD by GPSCAD and metaGRSCAD was also markedly lower than for 
prevalent CAD (AUC=0.56-0.60) (Table 2). Of the 1812 CAD cases at baseline with 
follow-up information available, 1382 had a recurrent CAD event during the follow-up 
period (median follow-up time in years = 3.9 years (range = 1.1 - 7)). We found that 
GPSCAD and metaGRSCAD, two PRS developed to predict primary CAD events, were 
also associated with recurrent CAD events (GPSCAD: OR=1.10, p-value=0.0098; 
metaGRSCAD: OR=1.16, p-value=5.76x10-5), although the AUC were relatively small 
(0.56-0.60) (Table 2). 
 
Discussion 

Because PRS are simple and relatively inexpensive, their implementation in the 
clinical setting holds great promises. For CAD in particular, early detection could lead 
to simple yet extremely efficacious therapeutic interventions (e.g. statins, aspirin). 
Given this exciting possibility, we tested two recently developed CAD PRS in French 
Canadians recruited from population- and hospital-based cohorts. We validated 
previous findings that both GPSCAD and metaGRSCAD perform well for prevalent CAD 
cases. However, their performance was lower for incident and recurrent CAD in the 
MHI Biobank. Using the French-Canadian founder FH LDLR delta > 15kb mutation to 
calibrate CAD risk, we confirmed that PRS can identify about 6-7% of the population 
that is at equal or higher CAD risk than carriers of a FH monogenic mutation.  
 
Our study raises a few interesting questions. Although it is appreciated that PRS do 
not transfer well between ancestral populations 25,26, little is known about the 
transferability of PRS across populations within the same ancestry. Our results 
indicate that CAD PRS developed in European-ancestry individuals perform quite 
well in the genetically and environmentally homogenous French-Canadian 
population. How well these same PRS would predict CAD in a more diverse 
European-ancestry population, or in a population living in a very different 
environment, remain critical open questions for further investigation. Another 
important result from our analyses is the lower accuracy that these PRS have to 
predict incident or recurrent CAD cases when compared to prevalent CAD cases, 
highlighting the importance of the method used to create the PRS. GPSCAD and 
metaGRSCAD were built using mainly GWAS for prevalent CAD, and are therefore 
particularly suitable to predict prevalent CAD as opposed to incident or recurrent 
events. In particular, our analyses of incident and recurrent CAD were based on the 
MHI Biobank, which is a hospital-based cohort. Thus, it is possible that confounders 
such as the presence of co-morbidities and medications (e.g. anti-thrombotic) would 
impact PRS performance. It is important to clarify these differences in order to 
determine what factors in the study design and what ascertainment biases influence 
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the PRS. Furthermore, an extension of our results implicates that GWAS that aim to 
specifically identify the genetic architecture of incident or recurrent CAD events might 
yield improved predictive power to calibrate risk score models over PRS based on 
CAD prevalence alone.  
 
In conclusion, while it may still take some time before PRS become widely applicable 
in the clinic to predict CAD, their utility is likely to increase as the community 
continues to improve methods and gain access to large GWAS carried out in 
populations of different ethnic backgrounds. But true improvement in CAD prediction 
based on PRS will only occur if the scientific progress is mirrored by an effort to 
explain the strengths and limitations of this new biomarker to the medical community 

and the general population. 
 
Methods 
Data sources and availability 
All participants have provided written informed consent and the project was 
approved by the ethics committee of the MHI. The low-pass whole-genome 
sequencing (WGS) dataset (phase1) and the genotyping dataset (phase 2) of the 
MHI Biobank have been previously described 19,20. Case status for CAD prevalence 
was defined as having a myocardial infarction (MI) or coronary artery interventions 
(coronary artery bypass grafting (CABG) or percutaneous coronary intervention 
(PCI)) before the first visit. Controls were selected to be free of MI, PCI, CABG, 
transient ischemic attack or stroke, peripheral vascular disease, congestive heart 
failure, and angina. We used the same clinical definitions to identify incident and 
recurrent CAD events in the MHI Biobank: participants who had a first-ever CAD 
event between baseline and follow-up were considered incident cases and 
participants who had at least a second CAD event during the same period were 
considered recurrent CAD cases. Average follow-up time was 4.2 years for phase 1 
and 3.6 years for phase 2. We used GenomeStrip (v.2.0) with default parameters on 
the MHI Biobank phase 1 WGS data to identify participants who carry the known 
French-Canadian founder LDLR deletion 27. We excluded the 14 individuals who 
carry the LDLR delta > 15 kb deletion from all subsequent PRS analyses. 
 
CARTaGENE (www.cartagene.qc.ca) is a population-based cohort of Quebec that 
includes individuals aged between 40 and 69 years 21. A subset of this cohort totaling 
5762 samples were genotyped on the Illumina Infinium Global Screening Array 
(GSA). We used PLINK (version 1.9, https://www.cog-genomics.org/plink/1.9/) to 
apply the following quality-control filters: we excluded samples and variants with >5% 
missingness, variants out of Hardy-Weinberg Equilibrium (p-value<1x10-6), A/T and 
G/C variants, and variants with a minor allele frequency (MAF) <1%. Following these 
quality-control steps, we phased genotypes with ShapeIT v2.r790 and imputed 
missing genotypes on the Michigan Imputation Server (version 1.30.4) using the 
Haplotype Reference Consortium panel  (Version r1.1 2016) 28,29. Case-control 
status for CAD in CARTaGENE was defined using the same criteria than for the MHI 
Biobank (see above). Principal components for all three cohorts were calculated in 
PLINK using the pca function.  
 
Polygenic risk scores 
The models for the two PRS (GPSCAD and metaGRSCAD) used in this study are 
available online (see Web links below) 11,12. Genetic risk scores for all models were 
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generated with PLINK (version 1.9) and the --score function to calculate the sum of 
the product of the dosage of effect alleles per variant weighted by the CAD effect 
size 30. We excluded variants with low imputation quality score (rsq <0.3). PRS were 
Z-score normalized and centered (mean=0, standard deviation=1) per dataset to 
facilitate interpretation of odds ratios.  Detailed numbers for missing variants from all 
models can be found in Table S1.  
 
Statistical analysis 
We performed all statistical analysis in R (version 3.5.0) 31. In the MHI Biobank 
datasets, we tested by logistic regression the association between CAD case-control 
status and PRS Z-scores correcting for age, sex, and the first four principal 
components. In the MHI Biobank phase 1 data, we also corrected for statins use (all 
MHI Biobank cases from phase 2 were on statin treatment). For the CARTaGENE 
data, we used a similar logistic regression model, correcting for age, sex, the first 
four principal components, and recruitment center. We calculated odds ratios per 
standard deviation of the GPSCAD or metaGRSCAD PRS, and considered p-value < 
0.05 as significant. We calculated AUC using the pROC package in R 32. Meta-
analysis was performed with the R metafor package using the coefficients and 
standard errors (SE) from the individual regression models with a fixed effect model 
fitted with the “FE” method 33. We tested the association between LDL-cholesterol 
levels and the LDLR deletion in RVTest using the score test function 34. For these 
analyses, we increased the LDL-C levels of dyslipidemic participants by 30% to 
account for the effect of statins. 
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Tables 
 
Table 1. Demographics and clinical information for the participants involved in the study. Coronary artery disease (CAD) is defined 
as previous diagnosis of myocardial infarction or revascularization procedures (percutaneous coronary intervention or coronary 
artery bypass grafting). Hypertension is defined as a previous diagnosis of hypertension, on antihypertensive therapy or with 
systolic blood pressure ≥140 mmHg or diastolic blood pressure ≥90 mmHg. Diabetes mellitus is defined as a previous diagnosis of 
diabetes or treatment with antidiabetic drugs. Dyslipidemia is defined as a previous diagnosis of hypercholesterolemia or treatment 
with lipid-lowering drugs. N.A. = not available. 
 

Characteristic MHI Biobank phase 1 MHI Biobank phase 2 CARTaGENE 

Genotyping platform Low-pass WGS (5X) Illumina MEGA Illumina GSA 

Baseline status Controls Cases Controls Cases Controls Cases 

Sample size, n (% women) 976 (28) 974 (27) 817 (60) 2492 (17) 5589 (60) 173 (17) 

Mean age, years (standard deviation) 66.0 (10.1) 66.9 (8.87) 66.0 (10.7) 66.7 (8.31) 54.9 (7.78) 60.5 (6.90) 

Type 2 diabetes, n (%) 195 (20) 291 (30) 59 (7) 702 (28) 336 (6) 42 (24) 

Hypertension, n (%) 632 (65) 751 (77) 287 (35) 1878 (75) 1132 (20) 94 (54) 

Dyslipidemia, n (%) 741 (76) 923 (95) 306 (37) 2350 (94) 1551 (28) 121 (70) 

Mean LDL-cholesterol, mmol/L (standard deviation)  2.65 (0.87) 2.09 (0.7) 3.12 (0.85) 2.67 (0.8)  3.03 (0.85)  1.99 (0.76) 

Follow-up number of years, median (range) 4.1 (2.8–6.6) 4.1 (2.7–7) 3.8 (0.1-7.2) 3.7(1.1-7) N.A. N.A. 
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Table 2. Association with and prediction of coronary artery disease by polygenic risk scores in three cohorts. N.A. = not applicable. 
 

Model Cohort Phenotype Cases Controls p-value Odds ratio OR (95% CI) AUC AUC (95% CI) 
GPSCAD MHI Biobank phase 1 CAD prevalence 974 976 3.82E-21 1.64 1.48-1.81 0.72 0.70-0.74 

MHI Biobank phase 2 CAD prevalence 2492 817 1.07E-21 1.61 1.46-1.77 0.82 0.80-0.83 
CARTaGENE CAD prevalence 173 5589 2.55E-10 1.69 1.44-1.99 0.84 0.81-0.87 
Meta-analysis CAD prevalence 3639 7382 7.54E-50 1.63 1.53-1.74 N.A. N.A. 
MHI Biobank phase 1 CAD incidence 257 636 4.76E-03 1.25 1.07-1.45 0.60 0.51-0.62 
MHI Biobank phase 2 CAD incidence 145 609 0.555 0.95 0.79-1.14 0.56 0.54-0.62 
Meta-analysis CAD incidence 402 1245 0.074 1.11 0.99-1.25 N.A. N.A. 
MHI Biobank phase 1 Recurrent events 446 416 0.026 1.17 1.02-1.35 0.58 0.54-0.62 
MHI Biobank phase 2 Recurrent events 937 1396 0.0063 1.13 1.03-1.22 0.57 0.55-0.6 
Meta-analysis Recurrent events 1383 1812 0.0098 1.10 1.02-1.18 N.A. N.A. 

metaGRSCAD MHI Biobank phase 1 CAD prevalence 974 976 3.37E-25 1.74 1.57-1.93 0.72 0.70-0.75 
MHI Biobank phase 2 CAD prevalence 2492 817 3.84E-28 1.74 1.57-1.92 0.82 0.80-0.84 
CARTaGENE CAD prevalence 173 5589 8.55E-12 1.75 1.49-2.05 0.84 0.81-0.87 
Meta-analysis CAD prevalence 3639 7382 8.45E-62 1.74 1.63-1.86 N.A. N.A. 
MHI Biobank phase 1 CAD incidence 257 636 0.05 1.17 1.00-1.37 0.59 0.55-0.63 
MHI Biobank phase 2 CAD incidence 145 609 0.25 1.11 0.93-1.34 0.57 0.52-0.62 
Meta-analysis CAD incidence 402 1245 0.025 1.15 1.02-1.30 N.A. N.A. 
MHI Biobank phase 1 Recurrent events 446 416 2.84E-03 1.24 1.08-1.43 0.60 0.56-0.63 
MHI Biobank phase 2 Recurrent events 937 1396 3.79E-03 1.17 1.04-1.24 0.56 0.54-0.59 
Meta-analysis Recurrent events 1383 1812 5.76E-05 1.16 1.08-1.25 N.A. N.A. 
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Figures  
 

 

Figure 1. Correlation between normalized GPSCAD and metaGRSCAD. The 
correlation between GPSCAD and metaGRSCAD  in (A) the MHI Biobank phase 1 
(Pearson’s r = 0.75, p-value <2x10-16), (B) the MHI Biobank phase 2 (Pearson’s r = 
0.75, p-value <2x10-16), and (C) CARTaGENE (Pearson’s r = 0.74, p-value <2x10-16). 
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Figure 2. Distributions of GPSCAD and metaGRSCAD in the MHI Biobank phase 2 
cohort. Distributions of the normalized polygenic risk score from Khera et al. 
(GPSCAD, left column) and Inouye et al. (metaGRSCAD, right column) in the MHI 
Biobank phase 2 data for prevalent (A,B), incident (C,D), and recurrent (E,F) 
coronary artery disease events.  
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