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Abstract: 28 

Given ongoing pollinator declines, it is important to understand the dynamics of linked extinctions 

of plants driven by pollinator extinctions. Topological robustness models focused on this question 30 

suggest relatively high robustness of plant species to pollinator species extinctions. Still, existing 

robustness models typically assume that all interactions in plant-pollinator networks are positive, 32 

which is clearly not always the case. For example, many pollinators remove floral resources with-

out transferring pollen, or even damage floral structures in the case of nectar robbing. Here we 34 

introduce antagonistic interactions into plant-pollinator networks and assess the resilience of plant 

communities to pollinator species losses. Incorporating antagonistic interactions leads to lower 36 

network robustness, i.e. an increased rate of plant species loss (as compared to networks with only 

mutualistic interactions) in empirical plant-pollinator networks. In conjunction with extinction or-38 

der, the addition of increasingly antagonistic interactions was idiosyncratic in that it did not always 

magnify the effects of extinction order across the three networks. These results underscore the 40 

importance of considering the full spectrum of interaction outcomes when assessing robustness to 

coextinctions in plant-pollinator networks, as well as other ecological systems. 42 
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Introduction 52 

Pollinator losses are increasing across the globe which could have potentially strong neg-

ative effects on the plants that rely on them for pollination (Biesmeijer et al. 2006, Potts et al. 54 

2010). Network-based simulations suggest that plant communities will be very robust to pollinator 

extinctions (i.e. secondary plant extinctions resulting from pollinator extinctions) (e.g. Memmott 56 

et al. 2004, 2007, Kaiser-Bunbury et al. 2010). This robustness is likely driven by two features of 

network structure. First, pollination networks are dominated by generalist interactions; most plants 58 

and pollinators each interact with several species from the other group over the course of their 

lives (Waser et al. 1996). Second, pollination networks have a nested structure in which specialist 60 

plants and pollinators tend to interact with a subset of the species in the other group that generalists 

interact with (Bascompte et al. 2003, 2006). Nestedness leads to an asymmetric interaction struc-62 

ture where specialists from one group tend to act with generalists, not specialists, from the other, 

which could reduce linked extinctions if specialists are vulnerable to stochastic extinctions (Bas-64 

compte et al. 2006, Bascompte & Jordano 2007). One feature of binary-graph plant-pollinator 

simulation models that may overestimate network robustness is that all interactions in a binary-66 

graph network are positive (i.e. strictly mutualistic). A typical binary-graph simulation modeling 

approach assumes that if at least one link remains between a plant and a pollinator, the plant will 68 

continue to persist (Memmott et al. 2004, 2007).  

While the assumption of “all interactions positive” is a reasonable starting point for mutu-70 

alistic network models, empirical evidence suggests at least three ways in which pollinators can 

have negative consequences for the reproduction of plants they interact with (Irwin et al. 2010, 72 

Ashman & Arceo-Gomez 2013, Brosi & Briggs 2013). First, some pollinators may visit and extract 

nectar or pollen rewards from flowers with which they have poor morphological trait matching, 74 
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leading to little or no pollen transfer while reducing floral rewards available for other pollinators 

(Stang et al. 2009). Second, there is the extreme example of nectar robbing, an antagonistic inter-76 

action from pollinators wherein the visitors do not visit the flower “legitimately” but rather pierce 

holes in a flower's corolla (or utilize a hole that has already been made) to access the nectar rewards 78 

without ever touching the reproductive parts of the flower and therefore not acting as a pollinator 

(Bronstein 2001, Genini et al. 2010, Irwin et al. 2010). On the other side of the interaction, some 80 

plants produce chemicals in pollen or nectar that that can be harmful to the bees that visit their 

flowers, or particularly the development of their offspring, reducing bee fitness (Praz et al. 2008, 82 

Sedivy et al. 2011, Haider et al. 2012). Third, the benefit that pollinators have on plant reproduction 

is sensitive to how “faithful” pollinators are to particular plant species in a single foraging bout. 84 

Most pollinators are generalist foragers that can, in some contexts, switch between plant species 

within a single foraging bout (Waser et al. 1996, Brosi & Briggs 2013, Brosi 2016). When polli-86 

nators are promiscuous within a single foraging bout, they may transfer heterospecific pollen to 

floral stigmas, which can have negative effects on both male and female elements of plant repro-88 

duction (Morales & Traveset 2008, Flanagan et al. 2011, Arceo-Gómez & Ashman 2011, Brosi & 

Briggs 2013). While heterospecific pollen deposition is highly variable in nature (Ashman & 90 

Arceo-Gomez 2013, Briggs et al. 2016), it can represent a substantial percentage of total pollen on 

a stigma, often more than 50% of grains (Ashman & Arceo-Gomez 2013).  92 

It has long been recognized that exploitation of mutualisms (“cheating”) is commonplace 

and can have substantial impacts on the evolutionary persistence of mutualisms (Bronstein 1994, 94 

Richardson 2004, Bronstein et al. 2006, Chamberlain et al. 2014). While our understanding of the 

extent to which antagonistic interactions between plants and their pollinators is not complete, the 96 

examples listed above are common enough that the inclusion of such demonstrated negative 
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interactions on network dynamics and how they might impact the robustness of interactions to 98 

extinctions warrants exploration.  

To our knowledge, there are only two network simulation studies that incorporate the pos-100 

sibility for antagonistic interactions between plants and pollinators (Campbell et al. 2012, Mon-

tesinos-Navarro et al. 2017). Of these, Campbell et al. (2012) focused on network assembly and 102 

did not consider robustness. While Montesinos-Navarro et al. (2017) did include robustness as an 

outcome, they focused on plant-parrot interactions (with relatively modest species richness), with 104 

a starting assumption of negative interactions altered to include the potential for benefits to plants 

including pollination and also seed dispersal. Our study adds to those by incorporating antagonistic 106 

interactions into multiple empirical plant-pollinator networks consisting of many plant and polli-

nator species and in which the starting assumption of interaction direction is positive. We build on 108 

binary network simulation modeling approaches to assess how the addition of realistic antagonistic 

interactions in plant-pollinator networks can impact the effects of pollinator species losses on plant 110 

species persistence, i.e. network robustness. In previous simulations where all network interactions 

are considered positive, the removal of a given pollinator species could result only in the loss of 112 

one or more plants. By contrast, after incorporating antagonistic interactions, extinction cascades, 

(i.e. a second round of pollinator extinctions) also become possible (though see Vieira & Almeida-114 

Neto 2015).  

Our study examines the overall robustness of plant-pollinator interactions to extinctions in 116 

two ways (1) the area under each extinction curve, designated as R (i.e. the rate of decline in plant 

species richness as pollinator species are lost) (Dunne & Williams 2009); and (2) extinction cas-118 

cade length (i.e. higher order extinctions that occur beyond the induced pollinator knockout and 

the resulting plant extinction).  120 
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We examined the effects of two factors on network robustness: (1) the proportion of neg-

ative interactions in the network, including an all-interactions-positive control; and (2) the order 122 

of extinction, random pollinator losses vs. specialist-to-generalist vs. generalist-to-specialist. Re-

moving specialists first could be the most probable extinction sequence (Dunne et al. 2002) as 124 

specialist pollinators also tend to be the rarest species (e.g. Vazquez & Aizen 2003).  By contrast, 

generalists are thought to be the “backbone” of networks and when highly connected nodes are 126 

lost, networks are expected to collapse rather quickly (Dunne et al. 2002, Tylianakis et al. 2010, 

Albert et al. 2013); but see (Aizen et al. 2012) who show that loss of specialists can also accelerate 128 

the rate of species loss overall. While losing generalist pollinators first from a network may seem 

unlikely, there have been rapid declines and range contractions (leading to local extinctions) in 130 

several highly generalist bumble bee species which had previously been abundant (Goulson et al. 

2008, Meeus et al. 2011).  132 

We hypothesized that first, increasing the number of antagonistic interactions in the net-

work would lead to both a decrease in the robustness of the network (R, or the area under the 134 

extinction curve) and greater number of extinction cascades. Second, we hypothesized that inclu-

sion of antagonistic interactions would not change the effects of extinction order (specialist-to-136 

generalist, generalist-to-specialist, or random) relative to networks that assumed strictly beneficial 

interactions (Memmott et al. 2004, 2007).  138 

 

Methods 140 

Empirical networks  

Following previous binary network assessments of robustness (Memmott et al. 2004, 2007), we 142 

used empirical network datasets to conduct our robustness assessments. We selected three plant-
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pollinator networks of varying size and connectance that represent a range of natural plant-polli-144 

nator interactions; as in previous assessments, this selection is not meant to be exhaustive 

(Memmott et al. 2004, 2007, Valdovinos et al. 2012). First, the Clemens and Long (1923) network 146 

was collected on Pikes Peak, Rocky Mountains, Colorado USA. This is the largest network with 

97 plant species forming 918 unique pairwise interactions with 275 pollinator species. Data were 148 

collected in various subalpine habitats at 2500 m elevation over 11 years (Clements & Long 1923). 

Second, the Arroyo et al (1982) network data were collected at an elevation between 2200m and 150 

2600m between 1980 and 1981 in the alpine (Andean) zone of Cordon del Cepo in Central Chile. 

The network is intermediate in size with 87 plant species forming 372 unique pairwise interactions 152 

with 98 pollinator species. Third, the Dupont network (2003) is the smallest, and data were col-

lected in the sub-alpine desert above 2000 m on the island of Tenerife, Canary Islands between 154 

May 7 and June 7, 2001. The network consists of 11 plant species forming 109 unique pairwise 

interactions with 38 pollinator species. These network data sets were retrieved from the NCEAS 156 

Interaction Web Database (http:// www.nceas.ucsb.edu/interactionweb, September 1, 2013). 

Assignment of antagonistic interactions 158 

To simulate antagonistic interactions between plants and pollinators, we randomly assigned 

negative values to the existing interactions in each binary empirical network (non-existing in-160 

teractions were not subject to negative assignment). Negative interactions were set at a value of 

-1, i.e. equivalent magnitude to positive interactions. Thus, each possible interaction in a net-162 

work could have a value of -1, 0, or +1. We assumed that the presence and sign of interactions 

were symmetric between plants and pollinators following network literature that assumes quan-164 

titative interaction strengths are symmetric (e.g. Okuyama & Holland 2008, Holland & Hastings 

2008). We assessed four different proportions of negative interactions: 0 (control), 0.05, 0.10, 166 
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and 0.15, with 50 replicate configurations of randomly-assigned negative values for each net-

work at each proportion of negative values. We thus used a total of 3 (empirical networks) ´ 4 168 

(proportion negative interactions) ´ 50 (replicate configurations) = 600 networks. We only used 

configurations of negative interactions that were initially stable, i.e. which would not automat-170 

ically lead to extinctions in the absence of perturbations. As a stability condition throughout our 

simulations, we assumed that plants and pollinators need a positive balance of interactions, that 172 

is, a row or column sum of greater than or equal to one. By definition, this automatically ex-

cluded all highly specialist nodes (i.e. those two or fewer interactions) from being assigned a 174 

negative interaction. While the proportion of negative interactions in empirical networks has 

not been studied to our knowledge, the maximum value we used (15% negative) represents a 176 

practical upper limit of negative interaction assignment that allows for stable initial network 

configurations without excessive search times. 178 

 

Extinction simulations 180 

We simulated extinctions by sequentially removing pollinator species one at a time (i.e. pollinator 

“knockouts”) and recording the number of plant species that were left with a positive sum of pol-182 

linator interactions. Plant species left with an interaction sum less than or equal to zero were then 

considered extinct and removed from the network due to assumed failure to sexually reproduce. 184 

Next, we evaluated if the secondary removal of those plant species left a pollinator species with 

an interaction sum less than or equal to zero. If yes, they were then considered extinct and removed 186 

from the network. These cycles of extinctions are referred to throughout the text as “extinction 

cascades”. This cycle continued until all plant and pollinator species were left with an interaction 188 

sum greater than 0 at which point the simulation moved on to the next pollinator species knockout. 
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Knockouts were repeated until all of the plant species were lost from the network. We carried out 190 

the extinction simulations separately for each of the aforementioned 600 network configurations 

and each of the three extinction orders.  192 

 

Analysis of network robustness metrics 194 

We evaluated network robustness via two response variables: (1) R (the area under the curve of 

extinction) – this is a quantitative measure of robustness of a network following a species knockout 196 

(extinction). (2) Extinction cascades – the number of higher order extinction cycles that take place 

after a single pollinator species knockout. We examined how both robustness and extinction cas-198 

cade length were affected by: 1) increasing the proportion of antagonistic interactions; and 2) ex-

tinction order (generalists first, specialists first, random); as well as 3) the interaction between 200 

these two factors. 

 202 

R: area under the extinction curve. 

R is the sum of the remaining plant species at each time step along the extinction simulation, 204 

standardized by its theoretical maximum value, the starting number of plants ✕ the starting number 

of pollinators (Burgos et al. 2007). We calculated R for each of the 50 simulations per order and 206 

proportion of antagonistic interactions for all three networks. We used binomial GLMs with a logit 

link function to statistically assess network robustness.  208 

 

Total number of extinction cascades. 210 

Cascade length is based on the higher order extinctions that occurred beyond the induced pollinator 

knockout and the resulting plant extinction(s). We define cascade length as the extent to which a 212 
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knockout impacted trophic levels (plant or pollinator) beyond the immediately impacted one. Cas-

cades of length 0 (i.e., no cascade) indicate only direct plant extinctions driven by a given pollina-214 

tor knockout. A cascade of length 1 results when a pollinator knockout generates plant extinctions 

which then lead directly to subsequent pollinator extinction(s), while a cascade of length 2 indi-216 

cates additional subsequent plant extinction(s). A length 3 cascade would continue with additional 

pollinator extinctions driven by the plant extinctions in the length 2 cascade, and so on. We under-218 

score that to be considered part of an extinction cascade, extinctions must have resulted from a 

single pollinator knockout. We calculated the total number of cascade events that occurred across 220 

the entire knockout sequence for each of the 50 replicate network configurations for each set of 

starting networks using GLMs with Poisson errors and a log link function.  222 

 
Results 224 

 
 First, we examined how the inclusion of antagonistic interactions impacted network ro-226 

bustness (R) and extinction cascades. For all three of the empirical networks, the incorporation of 

antagonistic interactions decreases R (i.e the decline in remaining plant species accelerates as pol-228 

linator species are removed) compared to networks that only include mutualistic interactions (Pro-

portion of Antagonistic Interactions; p < 10-5, models R1-R3, Table 1, Fig 1).  230 

 The effect of antagonistic interactions on extinction cascades differed between networks. 

In both the Arroyo and Dupont networks, the addition of antagonistic interactions increased the 232 

magnitude of extinction cascades (p < 10-5, Table 1, Fig 2) when compared to those networks that 

were comprised of all mutualistic interactions. In contrast, the addition of antagonistic interactions 234 

had no effect on the number of extinction cascades in the Clemens network (p > 0.5, Table 1, Fig 

2). 236 
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 Next, we examined how extinction order impacted network robustness (R) and extinction 

cascades. When compared to random extinction order, simulations with generalists removed first 238 

have the strongest negative impact on R (i.e. the intercepts for R are lower; p < 10-5, Table 1), 

while removing specialists first has the least negative impact on network robustness (p < 10-5, 240 

Table 1). This pattern held across all three networks (models R1-R3, Table 1).  

 The three networks varied in the degree to which extinction order impacted the number of 242 

extinction cascades produced after knockouts. For the Clemens network, when the generalists 

were removed first, the total number of extinction cascades was higher than in the other two or-244 

ders (main effect p < 10-5, model C2, Table 2). In contrast, when specialists were removed first 

we saw the fewest extinction cascades (main effect p < 10-5, model C2, Table 2). We saw similar 246 

results for the Arroyo network; when the generalists were removed first, the total number of ex-

tinction cascades was higher than in the other two orders (main effect p = .002, model C3, Table 248 

2). When specialists were removed first we saw fewer extinction cascades (main effect p = 

0.049, model C2, Table 2).  Finally, for the Dupont network, extinction order did not impact the 250 

total number of extinction cascades (order main effects, p > 0.1, model C1, Table 2). 

Finally, we assessed the interaction between proportion of antagonistic interactions and 252 

extinction order in terms of both R and extinction cascade length. Interaction effects were idiosyn-

cratic across the three networks in terms of R. For the Dupont network, the addition of antagonistic 254 

interactions had no effect on R across all extinction orders (interaction terms p > 0.5). In both the 

Arroyo and Clemens networks, the addition of antagonistic interactions dramatically reduced R 256 

when specialists were removed first compared to the random extinction order simulations (inter-

action terms both p < 10-5, models R2-3; Table 1, Fig 2). In contrast, in both the Arroyo and Clem-258 

ens networks, when generalists were removed first, the effect of increasing negative interactions 
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was reduced relative to the random extinction order (interaction terms both p < 10-5, models R2–260 

3; Table 1, Fig 2). In contrast, the impact of extinction order on extinction cascades was not af-

fected by the proportion of antagonistic interactions (interaction terms p > 0.4, models C1-C3, 262 

Table 2, Fig 2). This was true for all three networks. 

 264 

Discussion  

Our study examined how both the incorporation of antagonistic interactions into networks, 266 

as well as order of extinction in extinction simulations, impacted robustness and total number of 

extinction cascades in three empirical networks. We found that incorporating antagonistic interac-268 

tions leads to lower network robustness (R), i.e. an increased rate of plant species loss (as compared 

to networks with only mutualistic interactions) in all three of the networks. Furthermore, when 270 

compared to random extinction order, simulations with generalists removed first show the lowest 

overall robustness whereas the removal of specialists first has the least impact on lowering network 272 

robustness. This is true for all three networks and followed our expectations based on previous 

network extinction simulations (Memmott et al. 2004, 2007). Finally, the addition of increasingly 274 

antagonistic interactions did not always magnify the effects of extinction order, leading to idio-

syncratic results across the three networks.  276 

While some of the results from our simulations are intuitive (e.g. addition of antagonistic 

interactions could make networks less robust to extinction), not all of our results could be predicted 278 

a priori. We did not expect the networks to behave idiosyncratically with respect to how antago-

nistic interactions and extinction order impacted both R and the total number of extinction cascades. 280 

Specifically, we found that in the smallest of the networks (Dupont), extinction order did not im-

pact the magnitude of the effect of antagonistic interactions on network robustness. The effect of 282 

removing generalists first from the two larger networks (Arroyo and Clemens) largely 
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overshadowed the impact of antagonistic interactions, leading us to conclude that the impact of 284 

losing generalists can, in some cases, be so detrimental so as to make inclusion of antagonistic 

interactions essentially irrelevant. Interestingly, across the three networks the impact of antagonis-286 

tic interactions on total cascade length was unpredictable. Neither increasing antagonistic interac-

tions nor extinction order were a good predictor for how many extinction cascades would take 288 

place in a simulation. Total number of extinction cascades is likely related to structural properties 

unique to each network, which warrant further exploration. 290 

In all three networks, removing pollinator species from generalist to specialist first has a 

larger impact on the robustness of the network than with the order of specialist to generalist re-292 

movals. This pattern has been noted in previous studies (Memmott et al. 2004 and 2007) though 

ours is the first study to examine the role of extinction order after incorporating antagonistic inter-294 

actions in the networks. Memmott et al. (2004 and 2007) noted from their study (again, which 

included only positive interactions) that while robustness was impacted when species were re-296 

moved from generalist to specialist, the effect was not as dramatic as expected or as reported in 

food web studies when the most linked interactors are removed (Dunne et al. 2002, Curtsdotter et 298 

al. 2011). In our case, adding antagonistic interactions in to the network made the network less 

robust, resulting in patterns more like those of food web studies where removal of the most linked 300 

species causes a collapse to low richness (Dunne et al. 2002, Srinivasan et al 2007).                   

 To our knowledge, there are only two network studies that incorporate antagonistic inter-302 

actions into network simulations (Campbell et al. 2012, Montesinos-Navarro et al. 2017). In their 

models, Campbell et al. (2012) define interactions as either mutually beneficial or beneficial for 304 

one species and detrimental to the other (in contrast to our model, which compares the robustness 

of networks in which all interactions are considered beneficial to those that incorporate the 306 
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possibility of antagonistic interactions). Another key difference between our work and the Camp-

bell model is their focus on hypothetical (rather than empirical) networks. While their model is 308 

focused on network assembly, not robustness to co-extinctions, their simulations revealed “critical 

species”—those species that cause significant community collapse when removed—as species that 310 

tend to have asymmetric interaction direction. Their results suggest that when these critical species 

are lost, the network is left with an abundance of antagonistic interactions in their absence, which 312 

can lead to further extinctions and often collapse.  In the second study, Montesinos-Navarro et al. 

(2017) assessed the relative contribution of antagonistic vs mutualistic interactions to nestedness 314 

and modularity in plant-parrot interactions, which were first assumed to be negative, with positive 

interactions (seed dispersal, pollination) then added. Through simulated co-extinction cascades, 316 

Montesinos-Navarro et al. revealed that in simulations where the beneficial effects of parrots were 

considered, the networks were more robust to extinctions. These findings, considered in conjunc-318 

tion with the results presented here, underscore the importance of considering the range of inter-

actions types (mutualist to antagonistic) that can be realized in plants—animal interactions.  320 

 To further our understanding of how the incorporation of antagonistic interactions could 

affect robustness to co-extinction, we suggest two lines of inquiry for future studies: 1) explicit 322 

consideration of network structural properties; and 2) incorporation of re-wiring dynamics. In 

terms of the first area, structural attributes including nestedness, degree distribution, connectance, 324 

and many others can drive network outcomes such as persistence (e.g. Valdovinos et al. 2016), as 

well as local stability and resilience (e.g. Okuyama and Holland 2008). While our work considered 326 

three distinct plant-pollinator networks—with contrasting levels of connectance, species richness, 

and other attributes—it was beyond the scope of this study to directly consider the effects of net-328 

work structure. Future work should address how different network structural properties operate in 
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conjunction with antagonistic interactions to shape robustness. Second, a substantial body of work 330 

has revealed that re-wiring (potential for change in interaction identity, typically following partner 

extinctions or substantial changes in abundance) can alter network robustness to co-extinctions 332 

(Fortuna & Bascompte 2006, Kaiser-Bunbury et al. 2010). Again, while inclusion of re-wiring 

dynamics was beyond the scope of this study, its consideration could change our understanding of 334 

how antagonistic interactions impact network robustness. In particular, given that re-wiring tends 

to buffer networks against coextinctions, it could help to offset the negative effects of antagonistic 336 

interactions. 

Habitat loss and degradation are leading to global pollinator losses (Biesmeijer et al. 2006; 338 

Potts et al.2010). Given the central importance of pollination in food production and the mainte-

nance of biodiversity and ecosystem function, it is imperative that we come to a predictive under-340 

standing of how pollinator losses will affect plant-pollinator systems. Evidence suggests that los-

ing even a few pollinators can potentially have a strong antagonistic effect on the plants that rely 342 

on pollination for reproduction (Biesmeijer et al. 2006, Potts et al. 2010, Brosi & Briggs 2013). In 

the absence of empirical studies, network-based simulations suggest some potential that plant com-344 

munities could be robust to pollinator extinctions (Memmott et al. 2004, 2007, Kaiser-Bunbury et 

al. 2010). While not exhaustive, this study reveals how one key assumption in plant-pollinator 346 

simulation models may contribute to overestimation of network robustness. By incorporating more 

realistic representations of the interactions that take place in a plant-pollinator community, we are 348 

more likely to identify properties of networks that determine robustness to extinctions. Future 

studies that improve on predictive models will allow us to anticipate likely changes in pollination 350 

services and help us design strategies to maximize ecosystem resilience. 

 352 
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Table 1: GLM results for network robustness (R) for each network separately. 404 

 
 406 

Model 
Number Network Variable Estimate Std. 

Error Z value P value 

  Intercept 0.999 0.013 77.21 p<10-5 
R1 Dupont Proportion Antagonistic -1.76 0.136 -12.958 p<10-5 

  Generalist First -0.637 0.017 -36.48 p<10-5 
  Specialist First 0.822 0.021 39.246 p<10-5 
  Proportion Antagonistic*Generalist First -0.153 0.184 -0.829 0.47 
  Proportion Antagonistic*Specialist First -0.088 0.218 -0.404 0.686 
       

R2 Clemens Intercept 0.519 0.001 347.052 p<10-5 
  Proportion Antagonistic -5.333 0.016 -335.789 p<10-5 
  Generalist First -1.359 0.002 -619.182 p<10-5 
  Specialist First 1.309 0.002 531.221 p<10-5 
  Proportion Antagonistic*Generalist First 2.564 0.024 107.368 p<10-5 
  Proportion Antagonistic*Specialist First -4.988 0.025 -202.52 p<10-5 
       

R3 Arroyo Intercept 0.665 0.003 248.79 p<10-5 
  Proportion Antagonistic -5.099 0.028 -181.276 p<10-5 
  Generalist First -1.31 0.004 -343.465 p<10-5 
  Specialist First 1.122 0.004 257.603 p<10-5 
  Proportion Antagonistic*Generalist First 2.876 0.041 70.217 p<10-5 

    Proportion Antagonistic*Specialist First -3.436 0.044 -78.825 p<10-5 
 

 408 

 
 410 

 
 412 

 
 414 

 
 416 

 
 418 

 
 420 

 
 422 
 
 424 
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 426 

Table 2. GLM results for total number of cascades vs. proportion antagonistic interactions for each 
network separately. 428 

 

Model number Network Variable Estimate 
Std. 
Error Z value P value 

C1 Dupont Intercept 0.461 0.136 3.398 0.001 

  Proportion Antagonistic 6.557 1.154 5.681 0 

  Generalist First 0.015 0.189 0.077 0.939 

  Specialist First -0.336 0.207 -1.625 0.104 

  Proportion Antagonistic*Generalist First 0.853 1.595 0.535 0.593 

  Proportion Antagonistic*Specialist First 0.89 1.745 0.51 0.61 

       
C2 Clemens Intercept 1.671 0.095 17.61 0 

  Proportion Antagonistic -0.351 0.883 -0.397 0.691 

  Generalist First 0.447 0.122 3.659 0 

  Specialist First -1.098 0.179 -6.121 0 

  Proportion Antagonistic*Generalist First -0.486 1.141 -0.426 0.67 

  Proportion Antagonistic*Specialist First 2.14 1.633 1.31 0.19 

       
C3 Arroyo Intercept 0.827 0.123 6.706 0 

  Proportion Antagonistic 4.136 1.079 3.831 0 

  Generalist First 0.488 0.16 3.06 0.002 

  Specialist First -0.412 0.209 -1.969 0.049 

  Proportion Antagonistic*Generalist First -1.311 1.406 -0.932 0.351 
    Proportion Antagonistic*Specialist First -3.068 1.882 -1.631 0.103 

 430 
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 632 

Figure legends 
 634 

Figure 1: Extinction patterns for the three pollination networks (a) Dupont, (b) Arroyo and (c) 
Clemens. For a given treatment, we tracked the dynamics of plant extinctions following simu-636 

lated pollinator knockouts. X axis for each network is constrained by the total number of pollina-
tors in that given network. Lines represent the mean of 50 simulations for each given proportion 638 

negative and extinction order.  
 640 

Figure 2. Effects of negative interactions on network robustness during pollinator knockout sim-
ulations (shown Figure 1) for different extinction orders and starting networks. Data shown are 642 

boxplots displaying median, 50%, and 95% quantiles of robustness (R) for the 50 simulations for 
each proportion negative across the three simulated extinction orders (row headers) and starting 644 

network IDs (column headers). Outliers (data points beyond ± 95% quantiles) are displayed as 
points. 646 

 
Figure 3. Effects of negative interactions on total number of extinction cascades occurring during 648 

pollinator knockout simulations for different extinction orders and starting networks. Points indi-
cate the mean total number of cascades summed across an entire knockout sequence for 50 ex-650 

tinction simulations. Error bars indicate ± 95% confidence intervals. Total cascades are presented 
for each proportion negative interaction across three simulated extinction orders (row headers) 652 

and starting network IDs (column headers). 
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