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Abstract 9 

Public health authorities whole-genome sequence thousands of pathogenic isolates each month for microbial 10 

diagnostics and surveillance of pathogenic bacteria. The computational methods have not kept up with the 11 

deluge of data and need for real-time results.  12 

We have therefore created a bioinformatics pipeline for rapid subtyping and continuous phylogenomic analysis 13 

of bacterial samples, suited for large-scale surveillance. To decrease the computational burden, a two level 14 

clustering strategy is employed. The data is first divided into sets by matching each isolate to a closely related 15 

reference genome. The reads then are aligned to the reference to gain a consensus sequence and SNP based 16 

genetic distance is calculated between the sequences in each set. Isolates are clustered together with a 17 

threshold of 10 SNPs. Finally, phylogenetic trees are inferred from the non-redundant sequences and the 18 

clustered isolates are placed on a clade with the cluster representative sequence. The method was 19 

benchmarked and found to be accurate in grouping outbreak strains together, while discriminating from non-20 

outbreak strains. 21 

The pipeline was applied in Evergreen Online, which processes publicly available sequencing data from 22 

foodborne bacterial pathogens on a daily basis, updating the phylogenetic trees as needed. It has so far placed 23 

more than 100,000 isolates into phylogenies, and has been able to keep up with the daily release of data. The 24 

trees are continuously published on https://cge.cbs.dtu.dk/services/Evergreen  25 
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Main 32 

Epidemiological typing of bacteria is used by hospitals and public health authorities, as well as animal health 33 

authorities, to detect outbreaks of infectious diseases and determine trends over time. Traditionally, that 34 

includes culturing and isolating the pathogen, followed by species identification and subtyping using various 35 

conventional microbiological and molecular methodologies.  36 

For outbreak investigation, it is necessary to place the infectious agent into a more discriminatory category 37 

than species, to establish links between cases and sources. Multi-locus sequence typing (MLST) has been a 38 

frequently used molecular subtyping method, where sequence types are assigned to the isolates based on the 39 

combinations of alleles for 6-10 housekeeping genes1.  40 

Whole-genome sequencing (WGS) has opened a new chapter in microbial diagnostics and epidemiological 41 

typing. WGS data can be used to determine both MLST types and serotype of several bacterial species2,3. 42 

Several studies for multiple bacterial species have shown the value of WGS for elucidating the bacterial 43 

evolution and phylogeny, and identifying outbreaks4–6.  44 

The use of WGS has enabled the unbiased comparison of samples processed in different laboratories, boosting 45 

surveillance and outbreak detection, but the methods for sharing and comparing a large number of samples 46 

have not been established yet7,8. Therefore, a number of national, regional and international initiatives have 47 

been launched with the aim of facilitating the sharing, analyses and comparison of WGS data9–11.  48 

Since 2012, the US Food and Drug Administration (FDA) has lead a network of public health and university 49 

laboratories, called GenomeTrackr. These laboratories sequence bacterial isolates from clinical and 50 

environmental samples and upload the data to the National Center for Biotechnology Information (NCBI). 51 

GenomeTrackr is restricted to foodborne pathogens and currently includes data from only seven such bacterial 52 

species. All raw WGS data are publicly shared, facilitating the collaboration between laboratories.12 53 

Furthermore, the NCBI Pathogen Detection pipeline13  assembles the samples into draft genomes to predict the 54 

nearest neighbors and construct phylogenetic trees using an exact maximum compatibility algorithm14. This 55 

approach requires access to all of the raw data and very extensive computational power. In addition, no sub-56 

species taxonomical classification has been implemented at this time. 57 

Focusing on the same bacterial species as GenomeTrackr, PulseNet USA also has established procedures for 58 

use of WGS data for outbreak detection. In their vision, an extension of the highly successful MLST approach 59 

into a core-genome (cgMLST) or whole-genome (wgMLST) scheme, with genes in the order of thousand, would 60 

allow for sharing information under a common nomenclature. Meanwhile, all of the raw data could be kept 61 

locally. Only data from individual strains would have to be shared when further confirmation of an outbreak is 62 

required.11 Consequently, a number of, at times conflicting, cg- and wgMLST schemes have been proposed for 63 

a limited number of bacterial species15–22. Moreover, few of the proposed schemes provide a definitive 64 

nomenclature of sequence types to go with the allele profiles.  The existing schemes do not cover all of the 65 

potential allelic variation: a recent study showed, that for Campylobacter jejuni, that has maintained MLST 66 

schemes, only approximately 53% of the strains of animal origin could be assigned to an existing unique allelic 67 

profile23. Continuous curation of the hundreds of relevant bacterial species, that are known human, animal and 68 

plant pathogens, would require great effort. A centralized database for the distribution of the allele profiles 69 

and sequences would be also necessary. Furthermore, for comparable results, the same analysis pipeline or 70 

software should be used for the prediction of the allelic profiles.  71 

The approaches mentioned above yield preliminary results and, in most cases, selected WGS data are further 72 

analyzed using single nucleotide profiling for outbreak detection. Here, genomic variants (single nucleotide 73 

polymorphisms (SNPs), insertions and deletions) are derived by aligning WGS reads to a reference genome. For 74 
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each bacterial species, custom single nucleotide profiling (SNP validation, cluster threshold determination, etc.) 75 

is necessary in order to achieve results that are biologically relevant and informative. The samples (of current 76 

interest and historical) included in the analysis and the reference genome are chosen on a case-by-case basis, 77 

usually based on subtyping results. Various SNP analysis pipelines are used by laboratories and research groups 78 

for inferring phylogenetic trees for isolates of interest24–29. For example, Public Health England developed and 79 

uses SnapperDB for outbreak detection without initial cluster analysis by cg- or wg-MLST. SnapperDB consists 80 

of tools to create a database of SNPs compared to a given reference sequence, and assign each isolate a SNP 81 

address based on single linkage clustering.30 82 

We present here a whole-genome, single nucleotide-based method for subtyping and preliminary 83 

phylogenomic analysis, that circumvent the known limitations of current gene- and SNP-based approaches. 84 

PAPABAC carries out rapid and automated subtyping of bacterial whole-genome sequenced isolates and 85 

generates continuously updated phylogenetic trees based on nucleotide differences. We demonstrate two 86 

applications, a standalone version for local monitoring of bacterial isolates, and Evergreen Online, for global 87 

surveillance of foodborne bacterial pathogens. We also suggest a stable naming scheme for each isolate, 88 

making the results from the pipeline easier to communicate to others. To the best of our knowledge, no such 89 

tool exists at the moment.  90 

  91 
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 92 

 93 

Figure 1 Overview of PAPABAC. (A) The input raw read files are classified into sets based on k-mer similarity to NCBI RefSeq 94 
complete prokaryotic chromosomal genomes. (B) The raw reads are mapped to the reference genome and a consensus 95 
sequence is generated via strict statistical evaluation (p < 0.05) of the mapped bases in each position. (C) The resulting 96 

consensus sequences are of equal length in each template set. The new isolates in each set are clustered to the non-97 
redundant isolates already in the set if the pairwise nucleotide difference based genetic distance is less than 10. The 98 

remaining new isolates undergo the same clustering process. (D) Pairwise genetic distance between all non-redundant 99 
isolate in the set is used as input for neighbor-joining algorithm. If there are less than 600 non-redundant isolates in a set, 100 

an approximately maximum likelihood phylogenetic tree is also inferred based on the consensus sequences (red: new 101 
isolates). The clustered isolates are placed back onto the trees with 0 distance to the cluster representative (marked with 102 
an asterisk). (E) The information about the acquired isolates, the sets, the clusters, and the phylogenetic trees is stored in 103 

SQLite databases, which are queried once all sets with new isolates are processed to output the results to the users. 104 
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 105 

Figure 2 Comparison of the ideal tree (left) to the PAPABAC maximum likelihood tree made of the in vitro experiment dataset31Taxa with 106 
an asterisk were clustered together with the taxa in the same clade.  107 
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Results 108 

Pipeline for automated phylogenomic analysis of bacterial whole-genome sequences (PAPABAC) 109 

We developed PAPABAC (Figure 1), a phylogenomic pipeline for the automated analysis of bacterial isolates, 110 

that needs no additional input besides WGS data (fastq files) and generates clusters of closely related isolates. 111 

PAPABAC first matches the isolates to complete bacterial chromosomal genome reference sequences with 112 

greater than 99.0% sequence identity and a minimum average depth of 11. These reference sequences serve as 113 

templates for the alignment of the raw reads. The aligned bases at each position are statistically evaluated to 114 

determine the consensus sequence, as previously described for a nucleotide difference method32. Positions 115 

that do not fulfil the significance criteria remain ambiguous, get assigned “N”, and disregarded during the 116 

pairwise genetic distance calculation. These steps ensure that there is high confidence in the consensus 117 

sequence that is the basis of the genetic distance estimation. 118 

The pipeline retains analysis results in such a manner that input is added to the previously processed data. The 119 

phylogenomic analysis is carried out on the current input and the previously found non-redundant isolates 120 

(singletons and cluster representatives). The genetic distance is estimated in a pairwise manner, comparing the 121 

given two sequences for all non-ambiguous positions, i.e. positions where none of the two sequences have an 122 

“N” assigned. The distances between the previously processed runs are stored on disk, saving computational 123 

time, and only the distances to the new isolates are computed in a given run. A clustering step during the 124 

genetic distance calculation forms clusters of closely related isolates and reduces the number of similar 125 

sequences in each set, and thereby also reducing the computation time. After identifying a non-redundant 126 

isolate and a closely related isolate to it, the one previously deemed non-redundant will be the cluster 127 

representative and kept, while the clustered one will be omitted from the subsequent runs of the pipeline. 128 

However, the information about the clustering will be added to a database and the clustered isolate will be 129 

placed on the inferred phylogenetic tree. The cluster representatives remain constant through the subsequent 130 

runs of the pipeline, and the clusters only increase in size if new isolates are clustered with the representative. 131 

Therefore, each cluster is stable and can be reliably identified by the template name and the identifier of its 132 

cluster representative. 133 

The pipeline can be run on on a computer with 8 Gb RAM and Unix system. The computational time is reduced 134 

compared to re-running the whole analysis each time new samples are added, even without parallelisation 135 

(Figure S1). 136 

PAPABAC was benchmarked against three SNP pipeline benchmarking datasets. An Escherichia coli in vitro 137 

evolution experiment dataset31 provided 50 closely related samples on a short temporal scale with less than 138 

100 nucleotide differences across the dataset. The PAPABAC maximum likelihood (Figure 2) and neighbor-139 

joining (Figure S2) trees were comparable to the ideal phylogeny of the in vitro experiment dataset. The 140 

algorithm clustered together 7 out of 10 samples with the same ancestor that were taken on the same day and 141 

presumably had less than 10 nucleotide differences between them. 142 

Benchmarking against the Campylobacter jejuni (Figure S3A) and the Listeria monocytogenes (Figure S3B) 143 

datasets from Timme et al.33, PAPABAC correctly clustered the related outbreak strains (colored) and the 144 

outgroups, where the genetic distance was below the clustering threshold. The topologies of the maximum 145 

likelihood phylogenetic trees closely resembled the tree topologies given.    146 

  147 
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 148 

Figure 3 Time requirement of the phylogenomic analysis for given number of non-redundant and new strains, on 20 CPUs. 149 

 150 

Evergreen Online for surveillance of foodborne bacterial pathogens 151 

Evergreen Online was built on PAPABAC. Raw WGS data files of five major foodborne pathogens (C. jejuni, E. 152 

coli, L. monocytogenes, Salmonella enterica, and Shigella spp.) are downloaded daily from public repositories 153 

with the aim of global surveillance of potential outbreaks worldwide. The inferred phylogenetic trees and 154 

information about all of the isolates in the system are available and searchable on the website 155 

(http://cge.cbs.dtu.dk/services/Evergreen). 156 

The platform has been available since October 1st 2017, with logs reliably saved since October 28th 2017. The 157 

number of raw read files downloaded fluctuates with the work week of the public health laboratories. On 158 

busier days, more than 800 isolates are downloaded. The average number of isolates downloaded is 418. 159 

Downloading and mapping to the reference genomes take 130 minutes on average, with the majority of the 160 

time spent on downloading. Alignment of the raw reads and the generation of the consensus sequences takes 161 

on average 9 minutes per isolate. The computing time for the template sets is dependent on the number of 162 

non-redundant and new sequences in each set, but in most cases even the slowest is finalized within five hours 163 

(Figure 3). 164 

As of June 26th 2018, the pipeline downloaded 82,043 isolates. Out of these, 63,276 isolates have been mapped 165 

to references with at least 99.0% identity and average depth of 11 (Figure S4A). The majority of the isolates 166 

were typed as Salmonella enterica (59.1%), followed by Escherichia coli (19.4%) (Figure S4B). The two largest 167 

template sets are S. Dublin and S. Typhimurium serovars, with both close to 9,500 isolates in total. After the 168 

homology reduction there were 3,216 and 5,093 non-redundant sequences in these sets, respectively. On 169 

average, 67% of the sequences are non-redundant in the template sets, while the E. coli template sets are the 170 

most diverse and the Listeria monocytogenes ones are the least diverse (Figure S4C). There were 122 isolates 171 

predicted to have a type not specified by the query (Table S1). Of these, 14 isolates were mixed samples, 172 

composed of both the queried and the non-queried organisms. 173 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2019. ; https://doi.org/10.1101/540138doi: bioRxiv preprint 

http://cge.cbs.dtu.dk/services/Evergreen
https://doi.org/10.1101/540138
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8  
 

 174 

Figure 4 Neighbor-joining tree for the Listeria_monocytogenes_07PF0776_NC_017728_1 set after the samples of the L. monocytogenes 175 
dataset were added. Isolates colored in concordance with Figure S3B 176 

The L. monocytogenes SNP pipeline benchmarking dataset33 was added to the template set 177 

(Listeria_monocytogenes_07PF0776_NC_017728_1) of the corresponding reference genome in Evergreen 178 

Online, to test the sensitivity and accuracy of the clustering in large datasets. This template set at that moment 179 

contained more than 2400 isolates, of which 1398 were non-redundant. The isolates were placed onto a clade 180 

of a clonal lineage. The outbreak and outgroup isolates were separated in concordance with the ideal 181 

phylogeny (Figure 4). The smaller clade of outbreak samples clustered to a sample (SRR538386) of an 182 

environmental swab in 2014, from California, USA. 183 

Isolates that were presumed to be from an E. coli O157:H7 outbreak were selected for the comparison of 184 

Evergreen Online and the NCBI Pathogen Detection platform (NCBI-PD). They were located on the 185 

Escherichia_coli_O157_H7_str_Sakai_chromosome_NC_002695_1 neighbor-joining (NJ) tree from Evergreen 186 

Online and the PDS000000952.271 SNP cluster tree from NCBI-PD. The labelled isolates appeared in three 187 

clusters on the NJ tree. There were 19.9 nucleotide differences between the yellow and the red cluster 188 

representatives and 12.6 nucleotide differences between the yellow and the blue cluster representative. On 189 

the PD tree, the isolates marked with red circles were on the same clade, while the ones marked with blue and 190 

yellow were intermixing on clades that were, at most, 15 compatible characters apart (Figure 5).   191 
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192 

 193 

Figure 5 Selected isolates in the Escherichia_coli_O157_H7_str_Sakai_chromosome_NC_002695_1 NJ tree (top) and on the 194 
PDS000000952.271 SNP cluster maximum compatibility tree (bottom). The three largest clusters of the selected samples on the NJ tree 195 
are labelled with yellow, red and blue dots. These isolates were marked with the same labels on the NCBI-PD tree. The red labelled ones 196 
are on a single cladeon the PD tree, while the blue and yellow isolates are mixing on two other clades.  197 
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Discussion 198 

Whole-genome sequencing, performed alongside the traditional methods in routine microbiology, yields 199 

hundreds to thousands of WGS isolates yearly in hospital, public health and food safety laboratories. This 200 

amount of data is overwhelming for many, and there is a lack of methods to generate a quick overview and 201 

help prioritize resources. The timely analysis of the sequencing data would allow the detection of more 202 

bacterial outbreaks and aid the prevention of further spread. However, lack of human and computational 203 

resources for this demanding task often hampers the prompt procession of the data. Automating the initial 204 

subtyping phase would facilitate the start of an outbreak investigation. PAPABAC offers rapid subtyping for a 205 

wide range of prokaryotic organisms: the supplied database covers all bacterial subtypes with complete 206 

genomes present in NCBI RefSeq. Further reference genomes could be added to increase the covered sequence 207 

space, but the active curation of the reference database is not required for routine usage. The selection of the 208 

reference sequence for the phylogenomic analysis is fast and robust. It is independent of pre-assumptions 209 

about the isolates. Misclassification during previous analysis does not introduce errors into the downstream 210 

analysis. Contamination from another species is discarded during the consensus sequence generation. The 211 

subtyping step via k-mer based mapping to a close reference also serves as a sequencing quality control 212 

measure, because low-quality sequencing runs will typically result in isolates with low identity to any reference 213 

and/or low depth. These isolates do not progress further to the phylogenomic analysis, as they would not yield 214 

reliable results.  215 

The phylogenomical analysis performed on the template sets has higher discriminatory power than cg- or wg-216 

MLST. The underlying nucleotide difference method was validated in five different studies6,31,32,34,35. By using all 217 

positions in the consensus sequences for estimating the genetic distance, instead of considering only selected 218 

loci, we ensure a high level of sensitivity, as we also include mutations that occur between genes.  219 

The clustering step during the genetic distance calculation was introduced in order to reduce the homology in 220 

the template sets and thus reduce the computational burden as the template sets increase in size. However, 221 

the clustering threshold of 10 nucleotide differences also constructs informative clusters of highly similar 222 

isolates. Benchmarking with the E. coli in vitro evolution experiment dataset (Figure 2) showed that the 223 

algorithm was capable of correctly clustering isolates that were derived from the same ancestor, while 224 

distinguishing them from other closely related strains. The same sensitivity was demonstrated on empirical 225 

outbreak datasets (Figure S3), where the pipeline clustered the outbreak-related strains and separated them 226 

from the outgroup strains. Both the maximum likelihood inferred and the neighbor-joining trees placed the 227 

outbreak strains correctly in the phylogeny. These results show, that PAPABAC provides quick and reliable 228 

information about the close relatives of an outbreak strain to provide candidates to perform a more thorough 229 

analysis on.  230 

The design of PAPABAC means that once an isolate passed the homology reduction step, it will be present in 231 

the subsequent runs of the pipeline. When an incoming isolate is highly similar to a non-redundant one, the 232 

more recent will be the one that is clustered, added to the database and removed from further runs. Hence, 233 

the cluster representatives and clusters are robust to the addition of new data to the analysis. Therefore, 234 

PAPABAC yields a stable and communicable name for the clusters, comprised of the template name and the 235 

cluster representative.  236 

Evergreen Online has been steadily processing WGS data of foodborne bacterial pathogen isolates collected 237 

worldwide in real time (Figure S4A). It has been able to keep pace with the flow of the generated data that 238 

mainly came from public health and food safety laboratories. Excluding the download time and the optional 239 

maximum likelihood based phylogenetic inference, the whole analysis is done in less than a day, even for 240 
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template sets with thousands of isolates (Figure 3). This turnover time facilitates quick response in a potential 241 

outbreak scenario. 242 

The isolates are not distributed equally across the templates in the system (Figure S4B). Out of the five queried 243 

species, S. enterica isolates are disproportionally represented. Sequences in the S. Dublin and the S. 244 

Typhimurium LT2 template sets comprise in total approximately half of the S. enterica isolates. The sequence 245 

diversity in the template sets is varied, but the homology reduction on the template sets reduces the number 246 

of sequences approximately by a third, significantly decreasing the computational time. The L. monocytogenes 247 

template sets were the least diverse, which could be due to sampling bias: bacteria that are present in the 248 

environment are routinely sampled from food production sites multiple times, producing highly similar 249 

sequences, that are then removed from the ongoing analysis. We also tested how a large number of sequences 250 

already present in a template set would affect the ability of the pipeline to discriminate between samples 251 

(Figure 4). The template set that corresponded to the stone fruit L. monocytogenes outbreak dataset reference 252 

had more than 1,000 non-redundant isolates, which was ideal for the test analysis. The isolates that were part 253 

of the same outbreak clustered together and formed the two expected outbreak clusters, despite the 254 

confounding presence of the sequences already in the template set. The smaller clade, however, had a 255 

different cluster representative when using all data for the template set, compared with analysis of the 256 

outbreak data alone: an environmental sample, that could be related to the outbreak, as it was sampled from 257 

the same US state and year (California, 2014) as the samples in the outbreak dataset. These findings indicate 258 

that the pipeline is capable of identifying closely related samples, however it is necessary to conduct 259 

epidemiological analysis and apply other knowledge when interpreting the results.  260 

Evergreen Online allows for automated selection of closely related isolates out of thousands, which is also the 261 

objective of NCBI-PD. E. coli isolates, situated on three clusters in Evergreen Online and supposedly from an 262 

outbreak, were located in NCBI-PD and their placement in the SNP cluster tree was compared to the Evergreen 263 

Online tree (Figure 5). One cluster (red) was in agreement between the two platforms, and samples from the 264 

other two (yellow and blue) clusters were intermixing on a clade on the NCBI-PD tree. The nucleotide 265 

difference counts between these samples are low and the differences between the phylogenomic methods 266 

could lead to differences in the finer details of the inferred phylogenies. The homology reducing clustering in 267 

Evergreen Online means that any sample in the cluster is less than 10 nucleotide differences from the cluster 268 

representative, however, the differences between the samples could amount to 18 nucleotides. The 269 

compatible character distances on the NCBI-PD tree between the mixed samples are less than 18 characters. 270 

Taking this into account, the observed distribution of the yellow and blue labeled samples is concordant with 271 

our results.  272 

Table 1 Comparison of pipelines for large-scale surveillance for pathogenic bacteria 273 

 SnapperDB NCBI-PD PAPABAC 
For a wide range of bacterial species x - x 

Requires only raw sequencing reads as input - x x 

Whole-genome based x x x 

Assembly-free x - x 
Quality control steps x x x 

Automated phylogenomical analysis - x x 

Stable clustering of samples across runs - - x 

Communicable nomenclature for subtype and 
cluster 

X - x 

Open source x - x 
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 274 

In summary, we developed PAPABAC with the aim of rapid subtyping and continuous phylogenomical analysis 275 

on a growing number of bacterial samples. PAPABAC overcomes limitations of cg- and wg-MLST approaches by 276 

tolerating genomic variation during subtyping, but providing greater sensitivity during the phylogenomical 277 

analysis. It was benchmarked on datasets created for testing SNP-based pipelines, and was proved to be 278 

accurate in discriminating between outbreak related and non-related samples. The software is open source and 279 

fulfills expectations put to WGS-based surveillance pipelines (Table 1). Evergreen Online, an application made 280 

for the global surveillance of foodborne bacterial pathogens, demonstrates the accuracy, speed, stability and 281 

practicality of PAPABAC on thousands of samples via an on-going analysis, where the results are published 282 

online.  283 

 284 
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 382 

 383 

Methods 384 

Bioinformatics pipeline: PAPABAC 385 

The pipeline takes raw whole-sequencing reads (fastq files) as input. Matching reference sequences 386 

(templates) in our reference database, that have greater than 99.0% identity, are identified for the isolates 387 

using 16-mers via KMA36 in sparse mode. Multiple templates are accepted, if they meet the criteria, allowing 388 

for the procession of mixed samples. Information about the runs and their templates are inserted into the main 389 

SQLite database. The isolates are grouped into sets according to the matched templates. The next steps are 390 

performed in these sets in parallel. The isolate reads are mapped to the template using the mapping algorithm 391 
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of NDtree32, yielding equal-length consensus sequences. The Z-score threshold for accepting a base is set to 392 

1.96. 393 

Genetic distance based on nucleotide difference is calculated pairwise between the previous, non-redundant 394 

isolates and the new isolates. Positions with ambiguous bases are discarded. The new isolates are clustered to 395 

the non-redundant ones with a threshold of 10, in order to reduce the homology in each set and form 396 

informative clusters. In this step, the non-redundant isolate is prioritized over the new isolate and becomes the 397 

cluster representative. After the clustering, the remaining new isolates are clustered together with the 398 

Hobohm 1 algorithm37. In this case, the cluster representative is the one that has already passed the 399 

redundancy threshold. The information about new or extended clusters is saved to the main SQLite database. A 400 

distance matrix is constructed for all non-redundant isolates and saved to disk for use in the next run. A 401 

distance-based phylogenetic tree is inferred by neighbor-joining38,39. If there are less than 600 non-redundant 402 

isolates in the set, then a whole-genome based approximate maximum likelihood phylogenetic tree is also 403 

inferred using IQ-tree40, where the neighbor-joining tree is the starting tree and the GTR nucleotide 404 

substitution model is used. The clustered isolates are placed back onto the clades with zero distances to the 405 

cluster representative. Their tip labels start with an asterisk. The information about the trees is saved to the 406 

main SQLite database. 407 

When all the phylogenetic trees with new isolates have been inferred, then the main SQLite database is 408 

queried for the list of all isolates, their templates, cluster representatives (if there is any) and the latest 409 

phylogenetic tree they are on. This information is printed to a tab-separated file. 410 

Scripts and installation instructions are available on bitbucket: 411 

https://bitbucket.org/genomicepidemiology/evergreen  412 

Online Evergreen platform 413 

A query is made to the National Center for Biotechnology Information (NCBI) Sequencing Read Archive (SRA) 414 

for the newly published Illumina paired-end sequenced isolates of Campylobacter jejuni, Escherichia coli, 415 

Listeria monocytogenes, Salmonella enterica, and Shigella spp. on a daily basis. Fastq files of raw sequencing 416 

reads and the corresponding metadata (collection date, location, institute, source, etc.) are acquired either 417 

from SRA or from the European Nucleotide Archive (ENA). The downloaded isolates are the input to PAPABAC. 418 

The metadata are saved in the main SQLite database, and added to the tip labels on the phylogenetic trees. 419 

Once all instances of the second wrapper script have finished, then the SQLite databases are queried for the list 420 

of available phylogenetic trees (the maximum likelihood trees preferred over neighbor-joining ones), changes 421 

in the clusters and the list of all isolates in the system, which is then used to update the website. 422 

Architecture 423 

The pipeline is written in Python 2.7 and Bash in Unix environment. In addition to the standard Anaconda 424 

Python 2.7 packages, it also requires ETE Toolkit v3.041 and Joblib v0.11 (https://pythonhosted.org/joblib) 425 

packages to be installed. Neighbor program from the PHYLIP package v3.697 426 

(http://evolution.genetics.washington.edu/phylip.html) and IQ-tree v6.040 are used for the phylogenetic tree 427 

inference. The SQL database management is performed with SQLite v3.20.1 (https://www.sqlite.org).  428 

The two main parts of the pipeline have their own wrapper scripts. PAPABAC can be run on a personal 429 

computer with as few as four cores.  430 

Evergreen Online is running on a high-performance computing cluster, utilizing the Torque (Adaptive 431 

Computing Inc., USA) job scheduler. The first wrapper is run in one instance on 20 cores, meanwhile the second 432 
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wrapper is run once on 20 cores for each template that has at least one new run, in a parallel fashion. When all 433 

of these instances are finished running, a Bash script is launched to collect the information from the SQL 434 

database, the website is updated and the job for the next day is scheduled.  435 

Reference database 436 

The reference sequences are complete prokaryotic chromosomal genomes from the NCBI RefSeq database. 437 

Homology reduction was performed at a 99.0% sequence identity threshold with the Hobohm 1 algorithm. The 438 

curated NCBI prokaryotic reference genomes were given priority in the process. The reference sequences and 439 

the classification database could be downloaded via ftp 440 

(ftp://ftp.cbs.dtu.dk/public/CGE/databases/Evergreen/). 441 

Website 442 

The phylogenetic trees are interactively visualized on the website (https://cge.cbs.dtu.dk/services/Evergreen/) 443 

using the Phylocanvas API (http://phylocanvas.org). The isolates and clusters can be searched by SRA run ID, 444 

which allows the quick localization of the clusters that increased in size via their cluster representative. 445 

Computational time comparison of continued phylogenomic analysis 446 

101 samples from the Escherichia coli in vitro evolution experiment dataset by Ahrenfeldt et al. were batched 447 

according to their sampling time. The parallelization in PAPABAC was disabled. The traditional method meant 448 

that the analysis was carried out on all the samples up to the given batch, starting anew each time, but using 449 

the same scripts as PAPABAC.  450 

Benchmarking of PAPABAC with the Escherichia coli in vitro evolution experiment dataset by Ahrenfeldt et 451 

al. 452 

The last samples in each lineage were selected for the benchmarking. Therefore, the benchmarking dataset 453 

constituted 50 tips on the ideal phylogeny. These samples were batched according to their sampling time (6th, 454 

7th and 8th day). The batches were processed by PAPABAC chronologically. The pipeline was run with the 455 

default parameters. Both maximum likelihood and neighbor-joining trees were inferred. 456 

The phylogenetic trees inferred on all 50 isolates were trimmed for the reference sequence and compared with 457 

the ideal phylogeny using the phytools R package42.  458 

Benchmarking of PAPABAC with datasets from Timme et al. 459 

Each dataset was downloaded with the provided script into a distinct directory. The pipeline was run 460 

individually on the datasets with default parameters. If the isolates were mapped to more than one template, 461 

the phylogenetic trees of the template set with the highest number of isolates were evaluated. The maximum 462 

likelihood trees were visually compared to the ideal phylogenies and checked for the distribution of the isolates 463 

amongst the clades. 464 

Comparison with the NCBI Pathogen Detection platform 465 

Escherichia coli isolates were queried from the SQL database of Evergreen Online (EO) for the period of 2018-466 

03-15 and 2018-06-01, corresponding to a multistate outbreak of E.coli O157:H7 in the USA43. These samples 467 

were subtyped using traditional MLST2, as it was assumed, that the sequence type with the most isolates would 468 

also include the outbreak samples. Sequence type 11, which is commonly corresponds to the O157:H7 469 

serotype, was selected for further analysis. The corresponding samples and their SNP clusters were found in 470 

the NCBI-PD platform. The phylogenetic tree for the SNP cluster with the most samples (PDS000000952.271) 471 
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was downloaded. The common samples were marked on both the NCBI-PD and the EO phylogenetic tree 472 

(Escherichia_coli_O157_H7_str_Sakai_chromosome_NC_002695_1). The marked samples on the three biggest 473 

clusters on the EO tree were labeled, and their placement on the NCBI-PD tree was visually inspected.  474 
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Supplementary material 475 

 476 

Table S1 Non-queried species, due to mislabelled or mixed samples 477 

Genus Species Isolate 

Bacillus subtilis 3 

Bacillus pumilus 2 

Campylobacter coli 58 
Campylobacter fetus 1 

Citrobacter amalonaticus 1 

Enterobacter cloacae 2 

Enterococcus faecalis 1 
Escherichia albertii 5 

Hafnia alvei 3 

Klebsiella pneumoniae 7 

Listeria ivanovii 1 

Morganella morganii 7 

Peptoclostridium difficile 1 

Proteus mirabilis 7 
Providencia stuartii 2 

Pseudomonas aeruginosa 6 

Raoultella ornithinolytica 1 
Salmonella bongori 11 

Staphylococcus epidermidis 1 

Streptococcus agalactiae 1 

 478 

 479 

 480 

Figure S1 Computational time of the Escherichia coli in vitro evolution dataset where the samples were added in batches based on the 481 
sampling time. 482 

 483 
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 484 

Figure S2 Comparison of the ideal tree (left) to the PAPABAC neighbor-joining tree made of the in vitro experiment dataset31Taxa with an 485 
asterisk were clustered together with the taxa in the same clade. 486 
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 487 

Figure S3 Maximum likelihood trees of (A) Campylobacter jejuni and (B) Listeria monocytogenes SNP pipeline benchmarking datasets. 488 
The trees on the left are the “ideal” phylogenies by Timme et al. The colored (blue, red) clades contain the outbreak strains, while the 489 

black ones are non-related isolates. The reference sequences were trimmed from the trees. 490 
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 491 

Figure S4 A) Number of downloaded and included isolates as function of data acquisition events B) Number of isolates for the species we 492 
query for C) Fraction of non-redundant isolates in template sets larger than 100 isolates 493 

A B

C

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2019. ; https://doi.org/10.1101/540138doi: bioRxiv preprint 

https://doi.org/10.1101/540138
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Large scale automated phylogenomical analysis of bacterial whole-genome isolates and the Evergreen platform
	Abstract
	Keywords
	Main
	Results
	Discussion

	Methods

