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Abstract 9 

Ongoing climate change has been reported to have far-reaching impact on crop 10 

development and yield in many regions of the globe including Europe. However, little is 11 

known about the potential impact of climate change on specific stages of the crop cycle 12 

including crop establishment, although it is a crucial stage of the annual crop cycles. For 13 

the first time, we performed a simulation study to pinpoint how sugar beet sowing 14 

conditions of the next eight decades will be altered under future climate change and if 15 

these variations will affect sowing dates, germination and emergence as well as bolting 16 

rates of this crop. We chose Northern France as an important study site, representative of 17 

sugar beet growing basin in Northern Europe. Sugar beet emergence simulations were 18 

performed for a period between 2020 and 2100, taking into account five sowing dates 19 

(mid-February, 1st March, mid-March, 1st April and mid-April). Soil water contents and 20 

temperatures in the 0-10 cm soil horizon were first simulated with the STICS soil-crop 21 

model using the most pessimistic IPCC scenario (RCP 8.5) to feed the SIMPLE crop 22 

emergence model. We also evaluated the probability of field access for the earlier sowings, 23 
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based on the amount of cumulated rainfall during February and March. When analyzed 24 

by sowing date and for successive 20-year period from 2020 to 2100, there was a 25 

significant increase in seedbed temperatures by 2°C after 2060 while no change in 26 

cumulative rainfall was found before and after sowings, compared with the past. 27 

Emergence rate was generally higher for 2081-2100, while time to reach the maximum 28 

emergence rate decreased by about one week, compared with other periods, due to higher 29 

average seedbed temperatures. The rate of non-germinated seeds decreased, especially 30 

for the earlier sowing dates, but the frequency of non-emergence due to water stress 31 

increased after 2060 for all sowing dates, including the mid-February sowing. Bolting 32 

remains a risk for sowings before mid-March although this risk will be markedly 33 

decreased after 2060. The changes in seedbed conditions will be significant after 2060 in 34 

terms of temperatures. However, the possibility of field access will be a main limiting 35 

factor for earlier sowings, as no significant changes in cumulative rainfall, compared with 36 

the past, will occur under future climate change. When field access is not a constraint, an 37 

anticipation of the sowing date, compared to the currently practiced sowing (i.e. mid-38 

March), will lead to decreased risks for the sugar beet crop establishment and bolting. The 39 

use of future climate scenarios coupled with a crop model allows a precise insight into the 40 

future sowing conditions, and provide helpful information to better project future farming 41 

systems. 42 

Key words: adaptation, seed germination, seedling emergence, seedling mortality, soil-43 

surface crust, temperature, water stress 44 

1. Introduction 45 

Seed germination and seedling emergence are critical phases of a crop cycle that affect 46 

the success or failure of any crop establishment (Villalobos et al. 2016). These early 47 
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phases of crop cycle are affected by several biotic and abiotic factors that may reduce seed 48 

germination and seedling emergence rates (Lamichhane et al. 2018). More specifically to 49 

abiotic stresses, many factors including seedbed water content, temperature, and the 50 

frequency and quantity of cumulated rainfall profoundly impact crop establishment 51 

(Gallardo-Carrera et al. 2007; Constantin et al. 2015; Dürr et al. 2016). Several studies 52 

reported that climate change will result in increased mean temperature and higher 53 

precipitation variability in many regions of the globe including Europe (Pendergrass et al. 54 

2017; Kjellström et al. 2018). The effects of ongoing climate change on crop yield have 55 

been extensively studied (Lobell et al. 2008; Challinor et al. 2014). For instance, climate 56 

change from 1980 to 2008 has resulted in reduced global production of maize by 3.8% 57 

and wheat by 5.5% compared with a counterfactual without climate change (Lobell et al. 58 

2008). A recent meta-analysis (Challinor et al. 2014) -- based on 1,700 published 59 

simulation studies on climate change impacts on yields and adaptation -- showed that 60 

without adaptation, there will be losses in production for wheat, rice and maize in both 61 

temperate and tropical regions by 2 °C of local warming.  62 

While many studies assessed the impact of climate change on crop yields, there is less 63 

detailed information about the potential effect of climate change on crop establishment, 64 

although it is a crucial stage for annual crops. This prevents stakeholders from mobilizing 65 

adaptation strategies that may be helpful to attenuate climate change effects. Rather small 66 

adjustments (e.g. changes in varieties, sowing date and density, tillage or tactical pest 67 

management) in contrast to more systemic changes (e.g. changes in crop sequences; 68 

moving from dryland to irrigated systems or from spring to autumn sowings), may ensure 69 

successful crop establishment with positive impacts on crop yield (reviewed by 70 

Lamichhane et al. 2018). Indeed, either a lack or an excess of soil temperature, water 71 

content or rainfall may be detrimental to crop establishment. For example, if no 72 
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precipitation occurs after sowing the seed imbibition process is hindered and seeds 73 

cannot germinate. In contrast, if heavy rainfall occurs following sowing soil crusting will 74 

occur preventing seedlings from being emerged (Gallardo-Carrera et al. 2007). Spring 75 

crops are more sensitive to seedbed sowing conditions than winter crops. The risk of poor 76 

crop establishment is higher for these crops also because most of them are not able to 77 

compensate a lower plant density via tillering or ramification during their development.  78 

Sugar beet (Beta vulgaris L.) is a typical example of spring crop highly sensitive to seedbed 79 

sowing conditions. In Northern Europe, these conditions are frequently unfavorable, with 80 

low temperatures, heavy rainfall followed by dry periods leading to soil surface crusting 81 

on loamy soils (Durr and Boiffin 1995). Sugar beet growers have to optimize sowing dates 82 

and seedbed preparations to ensure successful crop establishment. In addition, sugar beet 83 

is subject to bolting, if cold temperatures occur following early sowings (Longden et al. 84 

1975; Milford et al. 2010), with negative impact on its yield and volunteer plant’s control. 85 

Simulation studies are useful to help decision-making process. Exploration of adaptation 86 

strategies to climate change using process-based models allows crop-level evaluation and 87 

adaptation of existing cropping systems (Challinor et al. 2014). While numerous crop 88 

models have been developed and used to facilitate decision-making during the crop 89 

development phase, only few models focus on the crop establishment phase. 90 

The objective of this simulation study was to pinpoint whether sowing conditions of the 91 

next decades (2020-2100) will be altered under climate change and if these variations 92 

will affect germination and emergence, as well as bolting rates of sugar beet in Northern 93 

Europe. A total of 405 sugar beet emergence simulations were performed taking into 94 

account five sowing dates. To this aim, we first mobilized the STICS soil-crop model 95 

(Brisson et al. 1998, 2003) to generate soil water content and temperature in the seedbed 96 
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(0–10 cm) using the most pessimistic IPCC scenario. We then used the data obtained as 97 

input variables to feed the SIMPLE crop emergence model (Dürr et al. 2001; Constantin et 98 

al. 2015). The emergence courses and final rates, and causes of no-seedling emergence 99 

are analyzed and discussed. In addition, the possibility of field access was evaluated 100 

comparing historical records in relation to future climatic conditions. 101 

2. Materials and methods 102 

2.1. Description of the SIMPLE crop emergence model 103 

A comprehensive description including the functioning of the SIMPLE model and the list 104 

of equations and input variables has been previously provided (Dürr et al. 2001). Briefly, 105 

the model predicts the germination and emergence process and their final rates in 106 

relation to environmental conditions during sowing. The model has previously been 107 

parameterized for a number of crop species -- including wheat, sugar beet, flax, mustard, 108 

French bean, oilseed rape (Dürr et al. 2001; Dorsainvil et al. 2005; Moreau-Valancogne et 109 

al. 2008 ; Dürr et al. 2016), and a plant model Medicago truncatula (Brunel et al. 2009) - 110 

which allows to compare a range of plant species using the same set of parameters 111 

(Gardarin et al. 2016).  112 

SIMPLE creates 3D representations of seedbeds with sowing depth distribution and the 113 

size, number, and position of soil aggregates as input variables. Daily soil temperature and 114 

soil water potential in several layers are also used as input variables for simulations, along 115 

with plant characteristics for germination and seedling growth. The model predicts 116 

germination and emergence, seed by seed, at daily intervals. The time required for 117 

germination of the seed i is chosen at random in the distribution of thermal times that 118 

characterizes the seed lot used. Cumulative thermal time from sowing is calculated above 119 

the base temperature (Tb) for germination, provided that the soil water content at the 120 
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seed sowing depth is above the base water potential (Ψb). The Tb and Ψb thresholds for 121 

germination are input variables. If seed i has not germinated after a given time (usually 122 

fixed at 30 days for the simulation), the model considers that the seed will never 123 

germinate. If the seed germinates, then a seedling grows from the seed. Time is expressed 124 

as thermal time using the Tb value. To better include the effect of early water stress on 125 

seedling growth, we added a water stress function to the SIMPLE model, which reduces 126 

emergence after germination (Constantin et al. 2015). With this function, the fate of 127 

seedlings is determined by considering soil water potential in the soil layer in which the 128 

radicle grows in the two days following germination. During this period, if soil water 129 

potential is lower than Ψb, the seedling does not emerge and dies the following day. If this 130 

is not the case, the time it takes for the seedling to reach the soil surface after germination 131 

is calculated by SIMPLE based on the seed’s sowing depth, the length of the pathway the 132 

shoot takes through the aggregates, and the shoot’s elongation function, whose 133 

parameters are input variables. The probability of the seedlings remaining blocked under 134 

aggregates depends on the size and position of the clods in the seedbed, i.e. laying on the 135 

surface or below it. Soil surface crusting depends on cumulative rainfall after sowing; a 136 

proportion of seedlings remain blocked under the crust depending on daily crust water 137 

content (no seedlings are blocked if the crust is wet). Simulations at the individual seed 138 

level are run 1000 times to predict the emergence rate and final emergence percentage. 139 

The causes of non-emergence simulated by SIMPLE are (i) non-germination, (ii) death of 140 

seedlings caused by water stress after germination and (iii) mechanical obstacles (clods 141 

or a soil crust). The SIMPLE model does not consider biotic stresses, such as pests and 142 

diseases or the effect of high temperatures, which could inhibit germination or cause 143 

young seedling death.  144 
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Bolting risk is represented by a function that was not initially presented in the seminal 145 

paper describing the SIMPLE model (Dürr et al, 2001). This function was derived from 146 

Longden et al (1975) and the probability of bolting μb is calculated as: 147 

𝜇𝑏 = 𝑐1 (1 − 𝑒−𝑐2𝑛𝑐𝑐𝑑
𝑐3
)        Equation 1 148 

where c1, c2, c3 dimensionless coefficients (Table 1); nccd is the number of cumulative cold 149 

days from sowing to the end of June and is calculated as follows: 150 

𝑛𝑐𝑐𝑑 = ∑ 𝛿𝛂𝒊𝛃𝒊
𝑖=𝑖𝑚𝑎𝑥
𝑖=1          Equation 2 151 

where i is a daily index ranging from 1 (sowing day) to imax (day corresponding to the end 152 

of June) and 𝛿𝛂𝒊𝛃𝒊 is the Kronecker symbol with: 153 

𝛼𝑖 = 𝛽𝑖  if θ𝑖 < θ𝑏 and α𝑖 ≠ β𝑖 otherwise      Equation 3 154 

where θ𝑖 is the maximum daily temperature at 2 m, and θ𝑏 is the maximum threshold air 155 

temperature to define whether a given day is considered as cold or not with regard to 156 

bolting (Table 1).  157 

More recent studies (Fauchère et al 2003; Milford 2010) suggested that devernalization 158 

can occur if plants are exposed to high temperatures during a specific period of the crop 159 

cycle. Based on this information, we analyzed the number of days with Tmax >25°C 160 

between 60 to 120 days post sowing (dps). Finally, we established that if this number was 161 

>7, the potential risk of having bolted plants became zero. 162 

2.2. Climate scenarios and simulations of the seedbed climate 163 

We used the RCP 8.5 emission scenario to generate soil temperature and water content of 164 

the seedbed using the STICS soil-crop model (Brisson et al. 2003). This model daily 165 

simulates soil water contents and temperatures, according to daily weather and soil 166 
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characteristics. Variations in soil moisture were predicted using STICS at 0-2, 2-4, 4-6 and 167 

6-10 cm. We selected Estrées-Mons (49°52′44″N 3°00′27″E), located in the typical sugar 168 

beet growing regions of Northern France, as study site. We chose Northern France as 169 

representative sugar beet growing basin of Northern Europe. The soil type considered 170 

had the following soil granulometry and chemical characteristics at the 0-30 cm soil 171 

horizon: 0.197 g.g-1 clay, 0.747 g.g-1  silt and 0.056 g.g-1  sand; 0 g.g-1 CaCO3, 0.095 g.g-1 C, 172 

0.001 g.g-1N, C/N ratio 9.3, and pH 7.7.  173 

Four weather and soil parameters were analyzed for the year 2020-2100: average soil 174 

temperature at sowing, average soil and maximum air temperature 30 dps, and cumulated 175 

rainfall 30 dps. The average weather data of the last 19 years (2000-2018) registered at 176 

the weather station of the study area were calculated to compare the trend with the 177 

simulated weather data of the next 81 years.  178 

2.3. Sugar beet sowing scenarios 179 

Values of plant input variables of SIMPLE for sugar beet crop are reported in Table 1. The 180 

seedbed considered in this study is typical of that prepared by growers and was 181 

characterized by 15-25% of soil aggregates >20mm in diameter and 70-85% of its 182 

aggregates having <20mm in diameter.  The simulated sowing depths were 2.5 ± 0.4 cm. 183 

A total of 405 sugar beet emergence simulations was performed for a period between 184 

2020 and 2100, taking into account five sowing dates: mid-February, 1st March, mid-185 

March, 1st April, and mid-April. Farmers in Northern France most often practice mid-186 

March sowing of sugar beet crop but we included both earlier (mid-February and 1st 187 

March) and late (1st April and mid-April) sowing dates taking into account a possible shift 188 

in future sowing dates due to climate change.  189 
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2.4. Analysis of simulation results 190 

Climatic data were pooled and analyzed by sowing date and 20-year period (2000-2018 191 

for the past and 2020-2040, 2041-2060, 2061-2080, and 2081-2100 for the future). When 192 

data were analyzed by sowing date, the 100 years were treated as replicates. When data 193 

were analyzed by 20-year period, the 20 years x five sowing dates (i.e. 100) were treated 194 

as replicates. ANOVA was used to determine the potential effect of sowing dates and 195 

periods, and their interaction on the four average weather and soil parameters mentioned 196 

above.  197 

The variability of germination and emergence rates and their duration was analyzed by 198 

establishing three classes of rate or duration, expressed as the frequency of each class 199 

over the 20-year period for germination and emergence rates, and their duration. For 200 

germination rate, thresholds were poor germination when germination rate was <75% 201 

and sufficient germination above 75%. For emergence rate, thresholds were poor 202 

emergence when the emergence rate was <50%, and sufficient over 50%. For germination 203 

duration, thresholds were low duration when the number of days required to reach 204 

maximum germination (NGmax) was < 14 days and high when NGmax was >14 days. For 205 

emergence duration, thresholds were low duration when the number of days required to 206 

reach maximum emergence (NEmax) was < 28 days, and high when NEmax was >28 days. 207 

The frequency of poor germination (<75%) and emergence (<50%) rates as well as high 208 

NGmax (>14 days) and NEmax (>28 days) duration were analyzed as they could lead to 209 

crop emergence failure and potential re-sowing. 210 

The variability of causes of non-emergence was analyzed by establishing two classes of 211 

seed and seedling mortality rates for each mortality cause. For non-germination, the two 212 

classes were low with <25% and high with >25% non-germinating seeds. For seedling 213 
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mortality due to clod, crust and drought, the two classes were low with <15%, and high 214 

with >15% of seedling mortality. Frequency of high risks of non-germination (>25%) and 215 

seedling mortality due to clod, crust, and drought (each >15%) cases are presented for 216 

the same reason as described above.  217 

The variability of bolting rates was presented as the average predicted percentages of 218 

bolted plants over the 20-year periods. This variability was also analyzed by establishing 219 

three classes of bolting rates : <0.5%, 0.5-1%, and >1% rate.  220 

To determine significant effects on germination, emergence and bolting rates, and 221 

duration as well as on causes of non-emergence, in addition to the same statistical analysis 222 

performed for weather data (i.e. only by sowing date and 20-year period pooling all the 223 

data), we also analyzed the data by sowing date for each 20-year period separately 224 

(hereafter referred to as period). All statistical analyses were conducted using software R 225 

(Hothorn and Everitt 2009). 226 

2.5. Technical feasibility of sowing 227 

An earlier sowing than the currently practiced sowing (mid-March) may be possible 228 

under future climate change. This shift in sowing date however depends on field access 229 

for sowing. We determined whether farmers will have technical possibility for sowing for 230 

the simulated sowing dates and years using two following approaches. 231 

i) based on a past historical data set (1987-2005), we observed a correlation between the 232 

quantity of total cumulative rainfall during the sowing in March and the percentage of 233 

sugar beet surface sown in France at the end of this month (Figure 1). We then compared 234 

these past observations with the predicted cumulative future rainfall of the same months 235 

(i.e. February and March). 236 
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ii) we supposed that >1 mm rainfall on sowing day will not technically allow field access 237 

for farmers for the sowings in February and March because the soil surface is wet and 238 

evapotranspiration low. Based on this, we calculated the frequency of days >1 mm rainfall 239 

for February and March. 240 

3. Results  241 

3.1. Sowing conditions and their variability under future scenario 242 

When analyzed by sowing date, differences between the average soil temperature at 243 

sowing, average soil and maximum air temperature 30 dps were statistically significant 244 

(P < 0.001) (Table 2). When analyzed by period of time, all average weather values 245 

related to temperature increased with time with statistically significant differences (P < 246 

0.001). In contrast, no differences statistically significant were found for average rainfall 247 

30 dps (P = 0.220). 248 

As expected, average soil temperature at sowing increased with later sowing dates. The 249 

trend was similar for average soil and maximum air temperatures 30 dps. Overall, average 250 

soil temperature at sowing ranged between 5 °C for the mid-February sowing to 11 °C for 251 

the mid-April sowing, while average soil temperature 30 dps ranged from 6 °C for the mid-252 

February sowing to 13 °C for the mid-April sowing. Also average maximum air 253 

temperature 30 dps was the lowest (9 °C) for the mid-February sowing while it was the 254 

highest (16 °C) for the mid-April sowing. In contrast to the three temperature factors, 255 

average rainfall 30 dps did not follow the same pattern: it was high (45-52 mm) for the 256 

first four sowing dates with no significant differences, and then decreased drastically for 257 

the mid-April sowing (28 mm).  258 
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When analyzed by period, average soil sowing day temperature was the lowest (7 °C) for 259 

the 2020-2040 and 2041-2060 periods, and increased progressively for the 2061-2080 260 

and 2081-2100 periods by 8 and 9 °C, respectively. The trend was the same also for 261 

average soil temperature 30 dps, which ranged from 9 °C for the 2020-2040 period to 11 262 

°C for the 2081-2100 period. These differences were significant between the first two and 263 

the last two periods. These changes became significant after 2060. In contrast, mean 264 

average maximum air temperature 30 dps varied over periods but with no regular 265 

increase. Mean cumulated rainfall 30 dps ranged from 39 to 47 mm, with a high variability 266 

between individual years, but without any significant differences until 2100. There was 267 

no significant effect of the sowing date x period interaction on any of the analyzed weather 268 

data (Table 2).  269 

3.2. Emergence rate, duration and frequency 270 

Year-to-year emergence rate variability for all five sowing dates is described in Figure 2. 271 

Results on the effect of sowing date for each period and their interaction on emergence 272 

rate, duration and frequency are reported in Table 3. Results on the effect of sowing date 273 

and period separately, and their interaction on emergence rate and duration are 274 

presented in Supplementary Table 1. 275 

Year-to-year variability in emergence rate was very high for all sowing dates over the 81 276 

simulated years ranging from 0 to 85%. Emergence rate most often registered between 277 

50 and 85%, but emergence rate <50% were observed in many cases. Simulated average 278 

emergence rate by “sowing date × period” ranged from less than 50% for the mid-279 

February sowing in 2020-2040 to more than 70% for different sowing dates. The 280 

frequency of poor emergence rate (<50%) ranged from 14 to 48% depending on sowing 281 
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date × period. The mid-February sowing in the 2020-2040 period not only had the lowest 282 

average emergence rate but also a high frequency of poor emergence rate. 283 

When data were analyzed by sowing date for each period, the interaction effect of sowing 284 

date x period on emergence rate was not statistically significant (P = 0.08). In contrast, 285 

the interaction effect was statistically significant (P < 0.001) when all data were pooled 286 

and analyzed only by sowing date or period (Supplementary Table 1).  287 

Simulated mean NEmax by sowing date × period ranged from 20 days for the mid-April 288 

sowing in the 2081-2100 period to 50 days for the mid-February sowing in the 2041-2060 289 

period (Table 3). Mean NEmax decreased over sowing dates and also over periods, by 290 

more than one week for the earlier sowing dates and to a lower extent for later sowings. 291 

Within each period, mean NEmax was almost no significantly different between the five 292 

sowing dates. However, there were statistically significant differences when the data were 293 

analyzed only by sowing date (P < 0.001) or period (P < 0.001; Supplementary Table 1).  294 

The frequency of high NEmax (>28 days) ranged from 15 to 100% by sowing date × 295 

period. This frequency was higher for earlier sowing dates and also for earlier periods 296 

(Table 3). 297 

3.4. Causes of non-emergence rates and frequencies 298 

Results on the main causes of non-emergence are reported in Table 4. The major causes 299 

of non-emergence were non-germination, followed by soil surface crusting and seedling 300 

death due to drought while seedling death due to clod was the least important. Results on 301 

the effect of sowing date for each period and their interactions on germination rate, 302 

duration and frequency are reported in Table 5. Outcomes on the overall effect of sowing 303 

date and period, and their interactions on germination rate and duration are presented in 304 

Supplementary Table 1. 305 
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3.4.1. Non-germination 306 

The mean non-germination rate ranged from less than 5% for several sowing dates after 307 

the mid-March sowing to 37% for the mid-February sowing in the 2020-2040 period. 308 

When data were analyzed by sowing date for each period, and their interaction, no 309 

statistically significant effect of the sowing date, period, or their interaction was found on 310 

non-germination rate except between the 2020-2040 and 2081-2100 periods for the mid-311 

February sowing. In contrast, non-germination rate differences were statistically 312 

significant when the data were combined and analyzed by sowing date (P < 0.001), period 313 

(P < 0.01), and their interaction (P < 0.001; Supplementary Table 2). The frequency of 314 

high non-germination (>25%) ranged from 0 to 48% (Figure 3) depending on sowing 315 

date x period and was higher for earlier sowings.  316 

Simulated average NGmax values ranged from 14 to 22 days when data were analyzed by 317 

sowing date for each period. These values generally decreased with later sowing dates 318 

and periods (Table 5). The frequency of high NGmax (>14 days) ranged from 8 to 21% 319 

which generally decreased with later sowings and over the periods. No statistically 320 

significant effect of sowing date, period and their interaction (P = 0.98) was found on 321 

mean NGmax values when data were analyzed by sowing date for each period. In contrast, 322 

when data were analyzed only by sowing date or period, there were statistically 323 

significant effects of sowing date (P < 0.001) and period (P < 0.01), but not of their 324 

interaction on mean NGmax (Supplementary Table 1).  325 

3.4.2. Seedling mortality due to crust 326 

Seedling mortality rate due to soil surface crust ranged from 6 to 15% (Table 4). Average 327 

mortality rate was generally lower for the 2020-2040 period until the mid-March sowing, 328 

as soil surface crust prevents emergence only when it becomes dry. No statistically 329 
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significant effect of sowing date (P = 0.48) or period (P = 0.24) or their interaction was 330 

observed on seedling mortality rate either when the data were analyzed by sowing date 331 

for each period (P = 0.76) or only by sowing date and period (P = 0.22) (Supplementary 332 

Table 2). The frequency of high seedling mortality rate (>15%) ranged from 19 to 45% 333 

(Figure 3). This frequency was lower for the 2020-2040 period until mid-March sowing.  334 

3.4.3. Seedling mortality due to drought 335 

Seedling mortality rate due to drought ranged from 1 to 14%, and increased with later 336 

sowing dates and periods, with some exceptions (Table 4). When data were analyzed by 337 

sowing date for each period, no significant effect of sowing date, period or their 338 

interaction (P = 0.276) was found on seedling mortality rate. In contrast, when the data 339 

were pooled and analyzed only by sowing date and period, statistically significant effect 340 

of sowing date (P < 0.001), period (P < 0.001) and their interaction (P < 0.05) was found 341 

on seedling mortality rate (Supplementary Table 2). The frequency of high mortality 342 

due to drought (>15%) ranged from 0 to 40% (Figure 3). This frequency increased with 343 

later sowing dates and periods. It is however remarkable that seedling mortality due to 344 

drought appeared for the 2081 – 2100 period even for sowings as early as mid-March or 345 

even before. 346 

3.4.4. Seedling mortality due to clod 347 

Seedling mortality rate due to clod ranged from 9 to 12% (Table 4) with little variability 348 

among the sowing dates or periods. This was expected because this mortality mostly 349 

depends on seedbed structure, which was the same for all simulations, independent of the 350 

sowing date and period. 351 

3.5. Risks of bolting 352 
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When data were analyzed by sowing date for each 20-year period, significant effect of 353 

sowing date, period or their interaction (P < 0.001) was found on potential bolting rate 354 

and devernalization conditions. The average predicted potential bolting rates ranged 355 

from 0.04% to 1.65%. As expected, bolting rates were higher for sowings in February and 356 

decreased with later sowing dates. Our results showed that the predicted bolting rates 357 

decreased progressively and significantly after 2060 for all simulated sowing dates 358 

(Table 6). Likewise, the potential for devernalization highly increased due to an increased 359 

number of days with Tmax > 25°C at the end of spring (Table 6). Based on these results, 360 

the average risk of bolting will be lower after 2060, even for the earliest sowing dates.  361 

3.6. Technical feasibility of sowing 362 

Results on the probability of field access for February and March over periods are 363 

reported in Table 7. When considering cumulated rainfall over one month or the number 364 

of days >1 mm rainfall in February or March (i.e. the earliest sowing periods), there were 365 

no statistically significant differences between the two months and over the 20-year 366 

periods. This means that the technical feasibility of sowings will remain the same as 367 

nowadays, as shown in Figure 1.   368 

4. Discussion 369 

4.1. Seedbed micro-climatic conditions under future scenarios  370 

We used the STICS soil-crop model based on the RCP 8.5 emission scenario to generate 371 

climate data. This model has been reported to be sensitive enough to generate realistic 372 

soil data such as soil moisture (Constantin et al. 2015; Dürr et al. 2016; Tribouillois et al. 373 

2018). Predictions of the STICS soil-crop model showed that during the sowing period of 374 

sugar beet, mean seedbed temperatures will increase over time and that a higher 375 
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variability of rainfall will occur, without an overall increase of its cumulated values. The 376 

trends we found here are coherent with those generally expressed for global climate 377 

changes, and the use of the STICS model allows to evaluate more precisely these changes 378 

specifically in the seedbed and for the sowing period of sugar beet in Northern France or 379 

Europe. 380 

Under the most pessimistic climate scenario that we used, the predicted rise in mean soil 381 

temperature at sowing remained 0 °C until 2060 and became +2 °C after 2080. When 382 

climatic data of the next eight decades were compared with the past two decades, we 383 

found that average soil temperature 30 dps of the last 19 years were similar to those 384 

predicted until 2060, but higher over the last two periods. This highlights that the impact 385 

of climate change will become more remarkable after 2060 with warmer soil 386 

temperatures during the last two decades of the 21st century. Interestingly, when 387 

maximum air temperature at sowing was considered, mean values 30 dps showed a very 388 

high year-to-year variability, but without any regular increase over the years.  389 

In contrast to predicted seedbed temperatures, cumulative rainfall did not change over 390 

time and were more or less the same for the first four sowing dates. A delay of two weeks 391 

in sowing from 1st to mid-April resulted in an increased drought risk under future climate 392 

change.  393 

4.2. Sugar beet crop establishment under future climate 394 

Several previous studies compared results of field observation and simulation using the 395 

SIMPLE crop emergence model and found its prediction similar to observed data 396 

(Dorsainvil et al. 2005; Brunel-Muguet et al. 2011; Constantin et al. 2015; Dürr et al. 397 

2016). Therefore, prediction of germination and emergence rates reported in this study 398 

can be considered reliable. Even by using the most pessimistic climate scenario, 399 
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predictions based on the SIMPLE crop emergence model showed that, in most cases, there 400 

will be a sufficient level of sugar beet crop emergence in Northern France and Europe 401 

under future climate change.  402 

Despite performing simulation studies using only one climate scenario, the results of this 403 

study represent an important outcome for decision making related to sugar beet sowing 404 

not only in Northern France, but in Northern Europe in general due to similar climatic 405 

conditions and sowing dates. The inclusion of the most pessimistic climate scenario for 406 

simulation did not render necessary the use of other less pessimistic climate scenarios 407 

(i.e. RCP 2.6, 4.5 and 6).  This is because we did not find any dramatic changes in sugar 408 

beet emergence rate which would have been less impacted with simulation studies 409 

including less drastic future climate scenarios. Nevertheless, our results are based on only 410 

one study site which represents a limit and thus future studies taking into account several 411 

study sites over space could shed more light in this regard.  412 

The most important finding of this study is that there are no important variability in terms 413 

of emergence rate among sowing dates, except for the earliest one for which emergence 414 

rate was predicted to be higher and less variable after 2060. Sowing date adaptation is, 415 

by far, the most frequently investigated climate change adaptation option (White et al. 416 

2011). Sugar beet farmers in France and Northern Europe, who currently practice the 417 

mid-March sowing, may thus anticipate sowing under future climate scenarios, given that 418 

earlier sowing provides higher yield benefits. This is due to a prolonged vegetation period 419 

and the higher amount of intercepted solar radiation, as it is the case for many field crops 420 

(Van Ittersum and Rabbinge 1997).  421 

Bolting causes yield penalties in sugar beet , and contribute to gene flow, seed dispersion, 422 

and volunteer plant development in the next crops (Longden et al 1975; Sester et al 2008). 423 
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Therefore, bolting risks could be a limiting factor even when there are possibilities for 424 

earlier sowing. Our results showed that the predicted bolting risk will decrease over time 425 

and will become reduced for the mid-February sowing and very limited for the 1st March 426 

sowing, especially after 2060.  427 

4.3. Causes of non-emergence of seedlings under future scenarios 428 

In terms of the total percentage of emergence failure, the one due to non-germination was 429 

the most important followed by soil surface crusting and drought. Seedling mortality rates 430 

under clod did not vary over sowing dates or periods since it strictly depends on the 431 

seedbed structure chosen for simulations. It is also the reason why the maximum 432 

simulated emergence rate remained always around 85%, due to about 5% non-433 

germinating seeds in the simulated seed lot and about 10% non-emerging seedlings due 434 

to the simulated seedbed structure. Both germination and emergence were affected by 435 

the considered abiotic stresses. At the germination stage, very low temperature with 436 

earlier sowings, and very low or no rainfall during the later sowings affected the seed 437 

germination process. During the emergence phase, the frequency of emergence failure 438 

was either related to seedling mortality due to a soil surface crust with all sowing dates, 439 

or to water stress with later sowings. The average risk of crop emergence failure remains 440 

similar with sowing dates or periods but the prevalence of individual stress factor changes 441 

according to sowing dates and periods. After 2060 and to a greater extent after 2080, 442 

higher risks of seedling mortality due to drought appear even for the earliest sowing date. 443 

Such an analysis of non-emergence results can be obtained only with a simulation 444 

approach. Even in the current situation, field observations are rarely undertaken since 445 

they are difficult, time consuming and cannot be performed in a high number of fields.   446 
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Although the SIMPLE model does not consider the effect of high temperatures that could 447 

inhibit germination, we exclude the impact of this stress, given that all sowing were 448 

performed in spring and under North European conditions.  449 

Seed germination and seedling emergence rates of sugar beet simulated by the SIMPLE 450 

crop emergence model could be overestimated because this model does not take into 451 

account the effect of biotic stresses (Constantin et al. 2015). Nevertheless, the risk related 452 

to biotic stress could be still limited under current cropping practices for two reasons. 453 

First, pelleting of sugar beet seeds containing protectants (fungicides, insecticides, and 454 

nematicides) and biostimulants -- is performed to date on 100% seeds (Agreste 2014) 455 

which may limit risks of the sugar beet crop establishment due to biotic stresses. Although 456 

several diseases of sugar beet caused by soil-borne pathogens, including Rhizoctonia root 457 

rot and damping-off, have been reported in Northern France (Motisi et al. 2009), the 458 

disease pressure is generally low when seeds are treated. Secondly, sugar beet crop is 459 

often rotated with other crops including wheat, to reduce pest inocula sensu lato, although 460 

some of the crops introduced into the rotation scheme may also be affected by the same 461 

soil-borne pathogens affecting sugar beet (Motisi et al. 2009). This is due to a wide host 462 

range of most soil-borne pathogens affecting the crop establishment phase (Lamichhane 463 

et al. 2017). Therefore, risks related to biotic stresses may be a limiting factor to sugar 464 

beet crop establishment under two conditions: i) when seeds are not treated with 465 

conventional pesticides and when farmers plan to anticipate sowing, especially under 466 

climate change. As shown in this study, an anticipation of sowing, compared to the 467 

currently practiced sowing (i.e. mid-March) may be beneficial in terms of yield, but it has 468 

to take into account potential risks due to biotic stresses. The latter is generally increased 469 

when crops are sown into cold and humid soil conditions and without chemical seed 470 

treatment (Serrano and Robertson 2018). Therefore, future studies should integrate the 471 
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biotic determinants affecting crop establishment into the SIMPLE crop emergence model 472 

since the sustainability of chemical pesticides in general and those used for seed 473 

treatment in particular is increasingly questioned, especially in the European Union for 474 

human health and environmental reasons (Lamichhane et al. 2016). This has led to the 475 

recent ban of neonicotinoids in the EU which were widely used for seed treatment (Gross 476 

2013).  477 

4.4. Technical feasibility of sowing 478 

The feasibility of technical field operations depends on water content of the soil top layers 479 

and thus also on climate change and sowing dates. We evaluated the possibility to enter 480 

into the field with agricultural equipments including a seeder for each simulated sowing 481 

date and year, using past historical data on earlier sowing dates. Our results suggest that, 482 

field access will represent the main limit for earlier sowings in the future as rainfall during 483 

early spring will not decrease, compared with the past.  484 

5. Conclusions 485 

Climate impact studies are dominated by those on crop yields (Wollenberg et al. 2016). 486 

Little is known about the impact of changing climate on specific stages of the crop cycle, 487 

especially the crop establishment phase. To achieve an acceptable level of yield it is 488 

essential to optimize conditions that favor crop establishment. Despite several 489 

limitations, simulation studies represent an important means when it comes to predict 490 

food security of the 21st century under future climate change. The present study provides 491 

important information that was not possible without mobilizing simulation approach 492 

using process-based models. Despite some possibilities of crop emergence failure, the 493 

quality of crop establishment will be acceptable under future scenarios, which was not 494 

easy to predict without simulations. An anticipation of sowing, compared to the currently 495 
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practiced sowing (i.e. mid-March), will be viable under future climate change, with 496 

possibility of compensating increasing drought risks during summer. However, the 497 

possibility of filed access will remain a limiting factor due to extremely variable and high 498 

cumulative rainfall values in late winter across our study sites. 499 
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Table 1. Values of the input variables of SIMPLE for sugar beet used in this study  

Parameter Value Unit 

Germination   

Base temperature, Tb,germ 3.5  °C 

Germination percentages per thermal time class STTg   °Cd (%)  

20-25 3  
25-30  12  
30-35 12  
35-40 32  
40-45 15  
45-50 15  
50-55 6  
55-60 1  
Residual percentage of non-germinated seeds  4  

Base water potential Ψb,germ 1.94  MPa 

Heterotrophic growth   

Base temperature for elongation Tb,elon 3.5  °C  

Parameters of the Weibull elongation function   

(i) for hypocotyl   

a 59.06358 mm 

b 0.01696  °C-1d-1 

c 2.6095  
(ii) for radicle   

v 0.7 mm °C-1d-1 

Mechanical obstacles - clods   

Parameters of the probability function of seedling death under clod   

(i) Buried clods   

αb  0.031  mm-1  
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L0b   10.37 mm 

ii) Clods laid on the soil surface   

αss 0.021  mm-1  

L0ss  23.16 mm 

Mechanical obstacles - soil surface crust   

Probability (p) for a seedling to emerge through a dry crust 60 % 

Daily rain threshold causing the appearance of a crust 5 mm 

Cumulative rain-threshold causing the appearance of a crust 12 mm 

Daily rain threshold causing humidification of the crust during the last 3 days 3.5 mm 

Parameters of the bolting function    

c1  
1.407769 
10-1  

c2 
2.500000 
10-5  

c3 2.197334  
θb, threshold for the daily maximum air temperature at 2 m for bolting  12 °C 
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Table 2. Differences among weather data (means ± standard deviation) of the study site when analyzed by sowing date, 20-year period and their 

interaction 

 

Sowing date ASTS (°C) AST 30 dps (°C) ATairmax 30 dps (°C) TR 30 dps (mm) 

Mid-February 5a ± 3 6a ± 2 9a ± 2 46b ± 30 

1st March 7b ± 3 8b ± 2 11b ± 2 45b ± 28 

Mid-March 7b ± 3 9c ± 2 12c ± 2 49b ± 27 

1st April 9c ± 3 11d ± 2 15d ± 2 52b ± 26 

Mid-April 11d ± 3 13e ± 2 16e ± 2 28a ± 19 

Df 4 4 4 4 

Significance level *** *** *** *** 

Period     

2000-2018 7a ± 3 9a ± 3 13b ± 4 40a ± 27 

2020-2040 7a ± 4 9a ± 3 12a ± 3 43a ± 21 

2041-2060 7a ± 3 9a ±3 12a ± 3 46a ± 27 

2061-2080 8b ± 3 10b ± 3 13b ± 3 39a ± 27 

2081-2100 9b ± 3 11b ± 3 14b ± 3 47a ± 33 

Df 4 4 4 4 

Significance level *** *** *** NS 

Sowing date X Period     

Df 12 12 12 12 

Significance level NS NS NS NS 

Means followed by the same letter are not significantly different within the year or sowing date categories; ***P < 0.001; **P < 0.01; *P < 0.05  
NS: not significant; dps: days post sowing; ASTS: average soil temperature at sowing; AST: average soil temperature; ATairmax: average daily 
maximum air temperature; TR: total cumulated rainfall  
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Table 3. Emergence rate and duration (means ± standard deviation) and frequencies with <50% emergence rate and >28 days to reach the 

maximum emergence when analyzed by sowing date for each 20-year period and their interaction  

Sowing date Period 
Emergence 
(%) 

Frequency (%) 
of emergence 
rate <50% 

NEmax 
(days) 

Frequency 
(%) of 
NEmax 
>28 days 

Mid-February 2020-2040 48a ± 32 48 45a ± 24 95 

 2041-2060 62a ± 24 25 50a ± 12 100 

 2061-2080 63a ± 20 30 40a ± 13 80 

 2081-2100 68a ± 20 25 37a ± 10 70 

  
 

 
  

1st March 2020-2040 66a ± 20 24 43b ± 13 90 

 2041-2060 59a ± 28 30 40ab ± 16 85 

 2061-2080 60a ± 20 30 36ab ± 11 65 

 2081-2100 67a ± 19 30 32a ± 12 60 

  
 

 
  

Mid-March 2020-2040 73a ± 16 24 38a ± 11 81 

 2041-2060 64a ± 21 35 35a ± 11 75 

 2061-2080 62a ± 23 30 29a ± 11 70 

 2081-2100 68a ± 20 35 29a ± 10 65 

  
 

 
  

1st April 2020-2040 69a ± 15 14 28a ± 7 43 

 2041-2060 70a ± 15 25 27a ± 7 40 

 2061-2080 66a ± 21 25 26a ± 10 50 

 2081-2100 74a ± 15 25 23a ± 8 30 

  
 

 
  

Mid-April 2020-2040 74ab ± 14 33 23a ± 7 33 
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 2041-2060 74b ± 11 20 24a ± 7 30 

 2061-2080 66a ± 16 60 22a ± 7 20 

 2081-2100 72b ± 15 25 20a ± 7 15 

Sowing date X 
Period 

Df 12  12  
Significance 
level 

NS 
 

NS 
 

Means followed by the same letter are not significantly different; number of days required to 
reach maximum emergence (NEmax); NS: not significant 
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Table 4. Rates of non-emergence causes (means ± standard deviation) of seedlings as analyzed by sowing date for each 20-year period and their 

interaction 

Sowing date Period 
Non-

Germination 
(%) 

Clod (%) Crust (%) 
Drought 

(%) 

Mid-February 2020-2040 37b ± 39 9a ± 5 7a ± 10 1a ± 3 

 2041-2060 17ab ± 27 11a ± 4 11a ± 13 1a ± 2 

 2061-2080 17ab ± 22 11a ± 3 9a ± 13 1a ± 1 

 2081-2100 13a ± 17 11a ± 2 8a ± 13 2a ± 6 

  
    

1st March 2020-2040 14a ± 18 11a ± 2 9a ± 12 1a ± 2 

 2041-2060 21a ± 32 10a ± 4 10a ± 12 1a ± 1 

 2061-2080 16a ± 24 11a ± 3 13a ± 14 2a ± 3 

 2081-2100 12a ± 19 11a ± 2 10a ± 13 4a ± 12 

  
    

Mid-March 2020-2040 9a ± 16 12a ± 2 6a ± 10 1a ± 4 

 2041-2060 11a ± 18 12a ± 3 13a ± 14 1a ± 2 

 2061-2080 17a ± 28 11a ± 4 10a ± 12 3a ± 6 

 2081-2100 9a ± 14 12a ± 2 12a ± 14 7a ± 15 

  
    

1st April 2020-2040 5a ± 7 12a ± 1 13a ± 12 2a ± 5 

 2041-2060 7a ± 10 12a ± 2 11a ± 13 4a ± 10 

 2061-2080 11a ± 22 11a ± 3 11a ± 12 5a ± 12 

 2081-2100 6a ± 8 12a ± 1 9a ± 12 9a ± 14 

  
    

Mid-April 2020-2040 4a ± 1 12a ± 1 10a ± 13 7a ± 11 

 2041-2060 5a ± 4 12a ± 1 9a ± 9 5a ± 11 
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 2061-2080 8a ± 11 12a ± 2 15a ± 14 14a ± 19 

 2081-2100 6a ± 8 12a ± 1 10a ± 12 6a ± 14 

Sowing date 
X Period 

Df 12 12 12 12 

Significance 
level 

NS NS NS NS 

Means followed by the same letter are not significantly different within the sowing date 
categories; NS: not significant 
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Table 5. Germination rate and duration (means ± standard deviation) and frequencies with <75% germination rate and >14 days to reach the 

maximum germination when analyzed by sowing date for each 20-year period and their interaction 

 

Sowing 
date 

Period 
Germination 
(%) 

Frequency 
(%) of 
germination 
rate <75% 

NGmax 
(days) 

Frequency 
(%) of 
NGmax 
>14days 

Mid-
February 2020-2040 

63a ± 39 48 21a ± 10 21 

 2041-2060 83ab ± 27 15 22a ± 5 20 

 2061-2080 83ab ± 22 25 20a ± 6 15 

 2081-2100 87b ± 17 20 18a ± 7 13 

  
 

 
 

 

1st March 2020-2040 86a ± 18 14 22a ± 7 17 

 2041-2060 79a ± 32 25 20a ± 8 16 

 2061-2080 84a ± 24 25 20a ± 8 13 

 2081-2100 88a ± 19 15 18a ± 8 14 

  
 

 
 

 

Mid-March 2020-2040 91a ± 16 10 22a ± 7 18 

 2041-2060 89a ± 18 10 21a ± 7 16 

 2061-2080 83a ± 28 20 19a ± 9 16 

 2081-2100 91a ± 14 10 19a ± 8 13 

  
 

 
 

 

1st April 2020-2040 95a ± 7 5 17a ± 6 14 

 2041-2060 93a ± 10 5 16a ± 5 13 

 2061-2080 89a ± 22 15 18a ± 8 14 

 2081-2100 94a ± 8 5 16a ± 7 11 
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Mid-April 2020-2040  96a ± 1 0 15a ± 8 11 

 2041-2060 95a ± 4 0 17a ± 7 12 

 2061-2080 92a ± 11 10 15a ± 7 10 

 2081-2100 94a ± 8 5 14a ± 7 8 

Sowing 
date X 
Period 

Df 12  12  

Significance 
level 

NS  NS  

Means followed by the same letter are not significantly different; number of days 
required to reach maximum germination (NGmax); NS: not significant 
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Table 6. Bolting rate (means ± standard deviation), without the devernalization effect, and frequency when analyzed by sowing date for 

each 20-year period and their interaction and potential devernalization due to high temperatures (7 days with Tmax > 25°C) 60 to 120 
days after sowing. 

 

Sowing date Year categories 
Potential 

bolting rate 
(%) 

  

Frequency of  potential bolting 
rates (%) 

 

Number of days 
with Tmax > 25°C, 
60-120 days after 

sowing 
 

<0.5% 0.5-1% >1%  

Mid-February 2020-2040 1.65b± 0.59 0 3 18 3a ± 3 

 2041-2060 1.60b ± 0.76 2 2 16 4ab ± 6 

 2061-2080 0.97a ± 0.41 4 5 11 7ab ± 4 

 2081-2100 0.79a ± 0.54 7 8 5 8b ± 7 

       

1st March 2020-2040 0.89b ± 0.38 3 9 9 4a ± 4 

 2041-2060 0.88b ± 0.52 5 7 8 7ab ± 7 

 2061-2080 0.47a ± 0.26 12 8 0 13bc ± 7 

 2081-2100 0.40a ± 0.33 13 6 1 15c ± 9 

       

Mid-March 2020-2040 0.40b ± 0.21 16 5 0 6a ± 6 

 2041-2060 0.40b ± 0.28 13 6 1 13ab ± 8 

 2061-2080 0.17a ± 0.13 20 0 0 20bc ± 10 

 2081-2100 0.16a ± 0.17 19 1 0 23c ± 12 

       

1st April 2020-2040 0.11bc ± 0.08 21 0 0 8a ± 8 
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 2041-2060 0.13c ± 0.14 19 1 0 17ab ± 10 

 2061-2080 0.04ab ± 0.05 20 0 0 26bc ± 12 

 2081-2100 0.02a ± 0.03 20 0 0 32c ± 12 

       

Mid-April 2020-2040 0.02ab ± 0.02 21 0 0 13a ± 11 

 2041-2060 0.03b ± 0.04 20 0 0 26b ± 12 

 2061-2080 0.01ab ± 0.01 20 0 0 33bc ± 12 

 2081-2100 0.00a ± 0.01 20 0 0 42c ± 11 

Sowing dates X 
Periods 

Df 12    
 

12 
 

Significance 
level 

***    *** 

Means followed by the same letter are not significantly different within the sowing dates or 
periods; ***P < 0.001; **P < 0.01; *P < 0.05; NS: not significant 
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Table 7. Indicators for field accessibility for farmers to perform sowing for early sowing dates and periods 
 
 

Period of time Period 
Average cumulated rainfall 

30 days before sowing (mm) 
Number of days with 

>1mm  

1st February  – end of February 

2000-2018 38a ± 3 8a ± 0.45 

2020-2040 47a ± 3 11 a ± 0.47 

2041-2060 51a ± 3 11 a ± 0.48 

2061-2080 51a ± 4 10 a ± 0.47 

2081-2100 52a ± 3 11 a ± 0.47 

 
   

1st March –end of March 

2000-2018 45a ± 3 8 a ± 0.43 

2020-2040 48a ± 3 10 a ± 0.45 

2041-2060 50a ± 3 9 a ± 0.44 

2061-2080 37a ± 3 7 a ± 0.42 

2081-2100 50a ± 4 9 a ± 0.45 

Means followed by the same letter are not significantly different within the sowing dates or periods 
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Supplementary Table 1. Germination and emergence rates and duration of sugar beet (means ± standard deviation) when analyzed by sowing date 

and 20-year period 

 

Sowing date 
Germination (%) 

Emergence 
(%) 

NGmax (days) NEmax (days) 

Mid-February 79a ± 29 59a ± 25 17a±7 26b±8 

1st March 84ab ± 23 61a ± 22 20b±7 38d±14 

Mid-March 89bc ± 19 64a ± 21 15a±7 22a±7 

1st April 93c ± 13 64a ± 20 20b±7 43e±16 

Mid-April 94c ± 7 63a ± 20 20b±8 33c±11 

Df 4 4 4 4 

Significance level *** NS *** *** 

Period     

2020-2040 86a ± 23 63ab ± 23 19b±8 35b±16 

2041-2060 88a ± 21 63ab ± 21 19b±7 35b±14 

2061-2080 86a ± 22 58a ± 22 18ab±8 31a±12 

2081-2100 91a ± 14 64b ± 21 17a±7 29a±11 

Df 3 3 3 3 

Significance level NS * ** *** 

Sowing date X Period     

Df 12 12 12 12 

Significance level *** *** NS NS 

Means followed by the same letter are not significantly different within the year or sowing date categories; 
***P < 0.001; **P < 0.01; *P < 0.05; NS: not significant; NGmax and NEmax: number of days required to reach 
the maximum germination and emergence respectively 
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Supplementary Table 2. Causes of non-emergence rates of sugar beet (means ± standard deviation) when analyzed by sowing date and 20-year 

period 

 

Sowing date 
Non-Germination 

(%) 
Clod (%) Crust (%) Drought (%) 

Mid-February 7a ± 13 10a ± 4 9a ± 12 2a ± 4 

1st March 16bc ± 23 11ab ± 3 10a ± 12 3a ± 6 

Mid-March 6a ± 7 11bc ± 3 10a ± 12 4ab ± 8 

1st April 21c ± 29 12c ± 2 11a ± 12 6bc ± 11 

Mid-April 11ab ± 19 12c ± 1 11a ± 12 9c ± 14 

Df 4 4 4 4 

Significance level *** *** NS *** 

Period     

2020-2040 14a ± 23 11a ± 3 9a ± 12 3a ± 7 

2041-2060 12a ± 21 11a ± 3 10a ± 12 3a ± 7 

2061-2080 14a ± 22 11a ± 3 11a ± 13 6b ± 12 

2081-2100 9a ± 14 11a ± 2 10a ± 12 6b ± 12 

Df 3 3 3 3 

Significance level ** NS NS *** 

Sowing date X Period     

Df 12 12 12 12 

Significance level *** *** NS * 

     

Means followed by the same letter are not significantly different within the year or sowing date categories; 
***P < 0.001; **P < 0.01; *P < 0.05; NS: not significant 
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Figure 1. Relationship between cumulative rainfall (measured at Estrées-Mons ; 49°52′44″N 3°00′27″E) and  percentage of sown 

surface recorded at the end of March across the sugar beet growing area in France (1987-2005). 
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Figure. 2.  Year-to-year emergence rate variability of sugar beet by sowing date under future climate scenario  
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Figure 3. Frequencies (%) of non-emergence causes when analyzed by sowing date for each 20-year period. Only causes with a high frequency that 

could pose risks of crop emergence failure were considered which included frequency of non-germination >25% and frequency of seedling mortality 

due to clod, crust and drought, each >15% 
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