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Abstract

Humans spontaneously organize a continuous experience into discrete events and use

the learned structure of these events to generalize and organize memory. We introduce

the Structured Event Memory (SEM) model of event cognition, which accounts for

human abilities in event segmentation, memory, and generalization. SEM is derived

from a probabilistic generative model of event dynamics defined over structured

symbolic scenes. By embedding symbolic scene representations in a vector space and

parametrizing the scene dynamics in this continuous space, SEM combines the

advantages of structured and neural network approaches to high-level cognition. Using

probabilistic reasoning over this generative model, SEM can infer event boundaries,

learn event schemata, and use event knowledge to reconstruct past experience. We show

that SEM can scale up to high-dimensional input spaces, producing human-like event

segmentation for naturalistic video data, and accounts for a wide array of memory

phenomena.

Keywords: event cognition; memory; latent structure; Bayesian non-parametric

models; neural networks
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Structured event memory: a neuro-symbolic model
of event cognition

Introduction

Although sensory input arrives continuously, our subjective experience is

punctuated by the perception of events with identifiable beginnings and ends

(Radvansky & Zacks, 2014). These event representations are abstract and schematic,

transcend specific sensory details and allow us to generalize our knowledge across time

and space. By distilling the latent structure underlying the sensory stream, event

representations can be used to reconstruct the past, comprehend the present, and

predict the future.

Despite the centrality of events in human cognition, there has been a notable

dearth of formal models. This speaks in part to the scope and complexity of the

modeling challenge; in some ways, a theory of event cognition is a theory of cognition

writ large. In this paper, we take on the challenge, developing an integrated model that

explains how humans segment, remember and generalize events. We frame event

cognition in the language of statistical learning theory and argue that events serve to

organize and structure continuous experience. This structure, and the generalization it

affords, explains many of the empirical phenomena observed in event cognition. Along

the way, we touch upon broader issues in cognitive science, including the need for

structured representation, probabilistic reasoning, and parallel distributed processing.

Our approach synthesizes ideas from symbolic and neural network modeling traditions,

demonstrating how these ideas can work together to produce human-like competence in

event cognition.

In what follows, we first summarize key empirical findings in the human event

cognition literature and discuss existing theoretical treatments. We then lay out a

general computational-level analysis, framing event cognition in terms of a common

probabilistic generative model of events that can be inverted for different computations.

This analysis forms the basic architecture of our model, which we then elaborate with a

number of specific assumptions about the underlying dynamics, representations, storage
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and retrieval processes, and inductive biases. In the Results, we put the model to work,

simulating a range of empirical phenomena. In the Discussion, we consider the

strengths and weaknesses of our modeling framework, how it compares to previous

theoretical treatments, and directions for future work.

Theoretical and empirical background

A comprehensive theory of human event cognition must address the following

questions:

• Segmentation: How do people identify event boundaries from the continuous

sensory stream?

• Learning: How do people acquire knowledge about the internal structure of events

from experience?

• Inference: How do people use their knowledge of events to make inferences about

unobserved properties of the world?

• Prediction: How do people use their knowledge of events to make predictions

about the future?

• Memory: How do people use their knowledge of events to reconstruct the past?

Here we briefly review the empirical data and theoretical ideas pertaining to each

of these questions.

Segmentation

Event segmentation has been primarily studied using subjective judgments about

event boundaries in movies and text. These judgments are consistent between subjects

(Newtson & Engquist, 1976; Zacks, Tversky, & Iyer, 2001) and tend to track feature

changes (Hard, Tversky, & Lang, 2006) or important statistical (Baldwin, Andersson,

Saffran, & Meyer, 2008; Schapiro, Rogers, Cordova, Turk-Browne, & Botvinick, 2013)

and causal boundaries (Baldwin et al., 2008; Radvansky, 2012). This process appears to
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STRUCTURED EVENT MEMORY 5

happen automatically and is identifiable in fMRI signals even in the absence of an

explicit segmentation task (Baldassano et al., 2017; Speer, Zacks, & Reynolds, 2007).

According to Event Segmentation Theory (EST; Radvansky & Zacks, 2011; Zacks,

Speer, Swallow, Braver, & Reynolds, 2007), people maintain an active representation of

the event structure (the current model) that they use both to interpret the current

situation and to predict what will happen within each event. When these predictions

are violated, a prediction error signals the occurrence of an event boundary (Zacks,

Kurby, Eisenberg, & Haroutunian, 2011; Zacks et al., 2001). This idea has been

implemented in a neural network model of event segmentation (Reynolds, Zacks, &

Braver, 2007), which used a context layer within a recurrent neural network to represent

an event model. The activity of the context layer modulates the activity of the hidden

layers of the network, thus varying the predicted dynamics by events. This architecture

is similar to gating mechanisms long used in recurrent network models (Hochreiter &

Schmidhuber, 1997). When simulated on a 3-D motion capture data set consisting of

several short movements of a single person (e.g. chopping wood) concatenated together,

prediction error in the model corresponded with transitions between events and was

used to signal updates of the context layer.

Other models of event dynamics have used recurrent neural networks with the

task of predicting the next item in a sequence. Schapiro and colleagues (2013) examined

whether transition uncertainty in the environment was necessary for an event boundary.

That is, one prediction of the Reynolds model is that if a transition between two scenes

is highly unpredictable then this will correspond to an event boundary. Conversely,

Schapiro and colleagues proposed that human event boundaries respect an alternate

form of structure, graph community structure, that is unrelated to the predictability of

scene transitions. They designed a task in which stimuli were drawn from a graph with

multiple communities and, crucially, transitions between communities were equally

probable as all other transitions. Thus, if people learn the underlying transition

dynamics than transitions between transitions will not generate a larger prediction error

crossing a community boundary than other transitions. They used a recurrent neural
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network as a model and found that the network represented stimuli from the same

graph community as more similar to each other, potentially signaling an event

boundary between communities through a decrease in similarity. This corresponded to

human-rated event boundaries, which tended to respect the graph community structure.

In a third model of event dynamics, Elman and McRae (2019) used a simple recurrent

network (Elman, 1990) with localist scene representations of the the scene to model

event knowledge of individual events. This model was able to learn the temporal

dynamics of events as well as co-occurrence statistics and predict sequential patterns of

activities.

Learning

The process by which people learn event structure is not well understood, though

several related lines of research offer some suggestive clues. One such line of research is

statistical learning, originally proposed to explain how language learners come to

delineate word boundaries in continuous speech through unsupervised observation

(Aslin, Saffran, & Newport, 1998; Saffran, Aslin, & Newport, 1996). In a typical

statistical learning task, subjects are presented with a sequences of objects and tested

on successively or simultaneously presented objects without feedback. The probability

distribution over sequences is potentially an important cue for learning latent temporal

structure, and children and adult learners acquire this temporal structure across a wide

range of linguistic and non-linguistic stimuli (Fiser & Aslin, 2001, 2002; Saffran et al.,

1996; Saffran, Johnson, Aslin, & Newport, 1999). A drawback of these statistical

learning tasks is that, while they are dynamic, the regularities embedded within them

tend to be fairly unstructured (e.g., simple Markov processes on discrete symbols). In

contrast, we would expect realistic events to contain a high degree of structure that may

be unpredictable from low-level features (Richmond & Zacks, 2017).

We contrast statistical learning with relational learning, which tends to consider

structure but not dynamic processes (Halford, Wilson, & Phillips, 1998; Hummel &

Holyoak, 2003; Kemp, Tenenbaum, Niyogi, & Griffiths, 2010). Events are thought to
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contain relational structure (Tversky, Zacks, & Hard, 2008), a feature that is often

lacking in computational models. Bayesian models have been developed to explain

relational structure learning (Kemp & Tenenbaum, 2008; Kemp et al., 2010), and we

develop a variant of these models for learning event schemata.

Neural networks also provide convenient models for learning the types of

sequential dependencies that constitute events. Typically, the sequential dependencies

that constitute an event are modeled with recurrent networks (Elman, 1990; Hochreiter

& Schmidhuber, 1997), which have strong theoretical guarantees in terms of what they

can learn (Siegelmann & Sontag, 1991, but see Geman, Bienenstock, and Doursat

1992), and have been empirically effective in computational domains with long-term

sequential dependencies, such as language (LeCun, Bengio, & Hinton, 2015) and

reinforcement learning (Mnih et al., 2016). Because neural networks rely on distributed

representations, they provide a basis for representing similarity though vector similarity

(Hinton, McClelland, & Rumelhart, 1986), and are well suited for smooth

generalization. These distributed representations can support symbolic structure via

algebraic manipulation (Doumas & Hummel, 2005; Hummel & Holyoak, 2003; Plate,

1995; Smolensky, 1990), which allows them to encode the higher order symbolic

processes the constitute events.

Inference

Event structure can inform inferences people make about parts of their

environment they did not experience. As we move through our natural world, we do not

always have immediate perceptual access to relevant features of our immediate

surroundings. For example, if a person hears a door open behind them, they can make

several inferences about the current scene that are relevant to the ongoing event, even

though they do not have full perceptual access to the each feature.

Inferences about events have historically been investigated with reading and

memory tasks in which a subject reads a narrative and either reading time (Altmann &

Mirković, 2009; McKoon & Ratcliff, 1992) or memory (Bower, Black, & Turner, 1979;
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Bransford, Barclay, & Franks, 1972) is used as a probe for their inferences about

unstated aspects of the event. One of the main themes in the reading comprehension

literature is that only a subset of inferences are made online, specifically those that are

necessary for satisfying some notion of coherence in the text, although there is

disagreement about what exactly this entails (Graesser, Singer, & Trabasso, 1994;

McKoon & Ratcliff, 1992; Trabasso & Van Den Broek, 1985). In the constructionist

account (Graesser et al., 1994), elements of the event model are used to fill in aspects of

the event when they are likely to be relevant, and these inferred portions of the event

are more quickly accessed and less surprising when they subsequently occur. This

implies an averaging effect where inferences about the unstated aspects of an event

reflect commonly experienced configurations. This is conceptually similar to adaptive

statistical biases seen in other domains, such as the estimation of spatial location

(Huttenlocher, Hedges, & Duncan, 1991).

Prediction

Event structure shapes predictions about the future. This can be seen in serial

reaction time tasks, in which subjects responds to cues more quickly when they are

generated from repeated, predictable patterns than when they are generated as a

random sequence (Nissen & Bullemer, 1987). This form of prediction has been argued

to be implicit (Reber, 1989; Robertson, 2007) and is consistent with earlier ideas that

people learn ‘scripts’ to guide their actions (Lashley, 1951; Schank & Abelson, 1977).

There is also a long history of studying prediction in language comprehension.

While reading, subjects fixate less often and for shorter durations on highly predictable

words (Ehrlich & Rayner, 1981) and are slower to process unexpected words

(Schwanenflugel & Shoben, 1985). Words completing sentences in a nonsensical way

elicit an N400 event-related potential, thought to signify a surprising or unexpected

stimulus (Kutas & Hillyard, 1984). Event knowledge specifically appears to influence

language comprehension (McRae & Matsuki, 2009); individual words cue event-based

knowledge (Altmann & Kamide, 1999; Hare, Elman, Tabaczynski, & McRae, 2009;
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McRae, Hare, Elman, & Ferretti, 2005), and combinations of words narrow the scope of

perceived events (Matsuki et al., 2011).

Neural measures also offer support for the proposal that people continually

leverage sequential structure to make online predictions about upcoming experiences

(Cohn, Jackendoff, Holcomb, & Kuperberg, 2014; Schiffer & Schubotz, 2011). These

predictions are influenced by event structure. Behaviorally, people make better

predictions within an event than across event boundaries (Zacks et al., 2011) and

unpredictability across event boundaries is associated with prefrontal cortex, striatum,

and hippocampus (Axmacher et al., 2010; Lisman & Grace, 2005; Ranganath & Rainer,

2003; Zacks et al., 2011). These findings are consistent with the hypothesis that failure

in prediction is used to signal event boundaries (Reynolds et al., 2007; Zacks et al.,

2007).

Memory

Memory can be both aided and impaired by knowledge of event structure. Event

boundaries induce selective trade-offs in memory that depend on the exact study design

and memory measure. Sequential recall and temporal order memory are worse across

event boundaries than across boundaries (DuBrow & Davachi, 2013, 2016; Heusser,

Ezzyat, Shiff, & Davachi, 2018), but memory for specific items has been found to be

higher at event boundaries (Heusser et al., 2018) and the presence of an event boundary

can increase overall recall (Pettijohn, Thompson, Tamplin, Krawietz, & Radvansky,

2016). Moreover, individuals with better event segmentation perform better on

subsequent memory tests (Sargent et al., 2013; Zacks, Speer, Vettel, & Jacoby, 2006).

An ongoing event appears to have a privileged role in memory as well, as memory for

items within an ongoing event is often better than immediately following an event

boundary in a way that is not recovered by returning to the original context

(Radvansky & Copeland, 2006; Radvansky, Krawietz, & Tamplin, 2011).

The Event Horizon Model (Radvansky, 2012; Radvansky & Zacks, 2014) offers a

conceptual explanation for these findings. According to this model, people track the
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causal structure of events and use this structure to aid memory retrieval. This causal

structure leads to better memory for items overall but can lead to memory interference

under certain conditions, such as when recall depends on retrieval of a single event

model and the presence of multiple events can introduce noise. The Event Horizon

Model further hypothesizes that working memory maintains privileged access to the

current model, which thus results in better memory retrieval. According to this

account, sequential recall might be impaired across event boundaries because it relies on

two competitive event models, whereas overall recall would be improved because it is

non-competitive.

Event knowledge has also been implicated in false memory paradigms (Bower et

al., 1979; Bransford et al., 1972). In these paradigms, subjects report remembering

unstated details of a story that were nonetheless consistent with the narrative. This

effect is parametric, such that more experiences with similar stories increases

script-consistent false memories (Bower et al., 1979). This suggests that people use

event knowledge to fill in the gaps of their memory and are consistent with ‘script

theory’ in which people organize sequential processes in terms of an abstract schema, or

script, that organizes perception and influences memory (Schank & Abelson, 1977).

Conceptually, this is similar to the idea of ‘pattern completion’, where a partial memory

trace is reconstructed with reference to learned pattern of activity (McClelland,

McNaughton, & O’reilly, 1995; Norman & O’Reilly, 2003), and may be adaptive if it

facilitates inference about unobserved aspects of an event.

Limitations of existing theoretical accounts

Most previous theoretical accounts of event cognition have been

non-computational (Radvansky, 2012; Radvansky & Zacks, 2014; Zacks et al., 2007).

While these accounts provide valuable theoretical insight into event perception and

memory, they do not offer the same level of detailed prediction as a computational

model. Computational accounts of events have typically focused either on providing a

normative account without considering experimental data, or have provided an
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explanation for a specific set of phenomena. Several models have focused on learning

event dynamics and detecting boundaries as a statistical property of the stimuli.

Reynolds et al. (2007) proposed a recurrent neural network model to account for event

segmentation, arguing that prediction error could be used in learning event dynamics

and arbitrating between event models. While their model was able to develop useful

event representations in a 3-d motion capture dataset, it was not directly compared to

human behavior. In contrast, the model proposed by Schapiro et al. (2013) was used to

account for their empirical finding that humans are sensitive to community structure

when delineating event boundaries, even when transition uncertainty is matched when

staying within vs. transitioning across communities.

Neither of these models incorporate structured event representations, limiting

their ability to explain the data on script memory and text comprehension.

Furthermore, it has been argued that structured event representations are simpler to

learn and generalize (Goodman, Ullman, & Tenenbaum, 2011; Kemp & Tenenbaum,

2008; Richmond & Zacks, 2017). The recent model developed by Elman and McRae

(2019) avoids structured representation by using localist representations within a

recurrent neural network model of events. Their model is able to generalize (infer) the

co-occurrence of different fillers in their appropriate roles and shows generalization

between events. Nonetheless, the representation used by Elman and McRae (2019) is

problematic. Propositional roles were encoded with separate vectors in the input space,

and specific fillers were encoded with one-hot representations in this vector space. This

is a representationally greedy embedding space: each encoded item increases the

dimensionality of the space by one and is completely orthogonal to every other item.

Such a representation is unlikely to scale to naturalistic datasets, as learning the

correlational structure needed to generalize is subject to the curse of dimensionality.

In all of these computational models, events are modeled as a dynamical process

that unfolds over time. To our knowledge, how these processes interact with memory

has not been addressed with computational modeling. The Temporal Context Model

(Howard & Kahana, 2002) and the related Context Maintenance and Retrieval model
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(Polyn, Norman, & Kahana, 2009) treat memory as a dynamical process in which an

evolving context induces a temporal organization in memory. These models suggest

dynamics similar to what we would expect when learning events but do not provide a

mechanism for partitioning events or generating predictions of the future. Related

models of memory support some forms of inference (e.g., Nelson & Shiffrin, 2013;

Shiffrin & Steyvers, 1997), but these models tend not to incorporate the dynamical

processes that define events.

Finally, no prior computational model of event cognition has attempted to explain

naturalistic data (e.g., real videos). While the use of naturalistic data is not a

theoretical challenge to any prior model of event segmentation, it is nonetheless an

important practical consideration. In order to validate our computational theories of

cognition, we should strive to show that they scale to real-world problems. Otherwise, it

is not clear whether our models of cognition work only when constrained to artificial

tasks. More broadly, while several computational models have addressed parts of event

cognition; to our knowledge, no model has attempted to address all aspects of the

problem.

The Structured Event Memory model

We propose a model, Structured Event Memory (SEM), that systematically

addresses the 5 desiderata for understanding event cognition (segmentation, learning,

inference, prediction, memory), overcoming the limitations of prior models.

Our model is a computational-level analysis of event segmentation and memory

that frames these tasks in terms of probabilistic reasoning. At a high level, our model

assumes that people simultaneously segment ‘scenes’ into events. By scenes, we mean a

description of the environment containing a relevant set of objects and the relations

between them. For example, for a person watching a movie, a scene might be the

experience of sitting in a dark room eating popcorn, or it might describe the ongoing

actions of the movie, the characters involved, and its setting. In the context of a

psychological study, a scene might describe stimuli currently on a screen and the context
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of sitting in front of a computer. Each individual event token is assumed to be unique

to a sequence of contiguous scenes, and we assume each event token is associated with a

generalizable event type that describes the dynamics of all tokens that share a type. We

use a nonparametric prior over event segmentations that allows both the number of

types and the boundaries between tokens to be inferred based on the scene inputs.

SEM simultaneously learns the sequential dependencies over scenes for each event

type (analogous to a ‘script’ or ‘event schema’) for the purpose of generalizing these

dynamics to new instances of the event type. Due to the challenge of generalizing

dynamics over logical expressions, and in order to facilitate the neural plausibility of the

model, we embed the logical descriptions in a vector space using holographic algebra

(Plate, 1995). The event dynamics can then be parametrized as continuous functions of

these vectors, and the parameters can be learned using gradient descent.

Finally, we assume that the memory encoding and retrieval process loses

information about the features of the scene. Inferred event structure is combined (via

Bayes’ rule) with a noisy memory trace to reconstruct past scenes. This gives rise to

effects of event semantics and boundaries on memory performance.

A prior distribution over events

We make the following assumptions about events:

1. Humans do not know a priori how many distinct event types there are; this must

be discovered from the data.

2. Humans attempt to reuse previously learned event models whenever possible.

This constitutes a “simplicity” bias in the sense of Ockham’s razor. It facilitates

generalization between events, a key computational goal.

3. Events are temporally persistent, such that there is a high probability that any

two consecutive moments in time are in the same event.

4. Events define dynamical systems, generating predictions of successor scenes as a

function of the current scene.
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5. Events have latent structure: each instance of an event (and the scenes within

events) may be unique with respect to specific percepts but nonetheless shares a

latent structure (such as the relationships between objects) with similar events.

6. Events are used in memory retrieval to regularize a noisy memory trace. By this

we mean that event knowledge can compensate for missing information in a

memory trace by introducing knowledge of a typical event in a reconstruction

process.

Assumptions 1, 2 and 3 relate to the process of assigning each moment in time to an

individual event. We can satisfy these assumptions using a simple Bayesian

nonparametric process known as the sticky Chinese restaurant process (CRP).1

The sticky CRP sequentially assigns time points to events according to past event

frequency (higher frequency events are more likely to be repeated) and recency (the

most recent event is more likely to be repeated) while maintaining some probability

that a new event will be generated at each moment in time (cf. assumption 1).

Formally, at time n the next event is drawn from the following distribution:

Pr(en = k|e1:n−1) ∝






Ck + λ [en−1 = k] if k ≤ K

α if k = K + 1
(1)

where en is the event assignment, K is the number of distinct event types in e1:n−1,

I[·] = 1 if its argument is true (0 otherwise), and Ck is the number of previous

timepoints assigned to event k. The concentration parameter α > 0 determines the

simplicity bias (cf. assumption 2); smaller values of α favor fewer distinct events

(Figure 1). The stickiness parameter λ ≥ 0 determines the degree of temporal

autocorrelation (cf. assumption 3); higher values of λ favor stronger autocorrelation.

The remaining assumptions relate to the nature of event schemata (assumptions 4

and 5) and memory retrieval (assumption 6). In the following sections, we discuss how

these assumptions can be instantiated in a computational model. First, we discuss the

representational space in which event models, as dynamical systems, operate (cf.

1 For an explanation of this culinary metaphor, see Gershman and Blei (2012).
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Figure 1 . Samples from the generative process of events under different

parameter regimes. Each row in each panel is a single draw from the process across

time. Colors indicate when different event schemata are active. High values of the

concentration parameter α (bottom row) leads to more unique events. High values of

the stickiness parameter λ (right column) leads to longer event durations.

assumption 4). Representation is critical for generalization, and to that end, we discuss

a structured representation in vector space that facilitates generalization via continuous

functions. We then return to our model to discuss event dynamics and how they are

learned, how event segmentation occurs in the model, and finally, we present our model

of event memory.

Scene representations

We assume that event schemata define dynamical processes over scenes, in which

the event model is used to generate a prediction about the next scene given the recent

history of scenes. Formally, we define a function that takes in a scene s ∈ S and returns

a successor scene s′. We further assume that for each scene s, there exists a distributed

(vector) representation x ∈ d. Whereas a scene can be thought of a ground-truth

description of the external world, x can be thought of as a representation of the features
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of s relevant to an agent.

A core assumption is that the vector representation of the scene is distributed and

encodes features in a similarity space (Goodfellow, Bengio, & Courville, 2016). For

example if “cat” and “dog” have meaningful representations, they may share a number

of features encoded in the space, such as “isSmall” and “isFurry”. As pure symbols,

“cat” and “dog” are as distinct from each other as any other pair of symbols. Here, we

assume the features of each term in this similarity space are linearly composable with

vector addition, a property common in distributed systems and learnable with

unsupervised training (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013; Radford,

Metz, & Chintala, 2015). As a consequence of this similarity space, similar scenes have

similar vectors such that the vector representation of “dog” is close in Euclidean space

to the vector representation of “cat”.

A primary motivation of using distributed representations is that they facilitate

smooth generalization. As we will discuss in the next section, defining scenes in vector

space allows us to parametrize event dynamics over arbitrary scenes. We will assume

that these event dynamics are smooth, such that if f is a function that represents the

event dynamics and x ≈ y, then f will generally have the property f(x) ≈ f(y)

(Goodfellow et al., 2016). An embedding space that encodes similar scenes with similar

vectors will facilitate this type of generalization naturally with parameterized functions;

by contrast, were we to use a tabular representation, we would have to define transitions

over an intractably large discrete space that does not permit smooth generalization.

Distributed representations have the further advantage that they are

representationally compact. A purely symbolic representation encodes a dimension for

each binary feature, whereas a distributed representation can take advantage of the

correlational structure to encode scenes in a lower-dimensional space (Goodfellow et al.,

2016). This is related to dimensionality reduction, in which a representation is

projected into a low-dimensional space that preserves relevant features and discards

irrelevant features. This property is important for computational reasons, as it is

computationally intractable to estimate dynamical systems in high dimensional spaces

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 5, 2019. ; https://doi.org/10.1101/541607doi: bioRxiv preprint 

https://doi.org/10.1101/541607
http://creativecommons.org/licenses/by/4.0/


STRUCTURED EVENT MEMORY 17

(Bellman, 1961) (such as the raw perceptual space) and event dynamics are thought to

be smoother in higher-level (i.e. low-dimensional) representations (Richmond & Zacks,

2017). As a practical matter, we need a principled way to construct a low-dimensional

scene representation to model naturalistic data sets. Later in the paper we will present

simulations with video data and show that convolutional neural networks are well suited

to this task for visual domains (Fukushima, 1980; Kietzmann, McClure, & Kriegeskorte,

2018; LeCun et al., 2015). Representational spaces as described above can be learned in

visual data with unsupervised methods (Hou, Shen, Sun, & Qiu, 2017; Radford et al.,

2015). In our simulations, we use a variational autoencoder (VAE; Kingma & Welling,

2013), an unsupervised convolutional neural network, to learn the representational

space (see Appendix A for detail). We note that while the representation of scenes is

important for our theoretical model, we are agnostic to the specific details by which it is

learned in the brain.

In addition to these unstructured features of scenes, we further assume that scenes

encode relational structure. By this we mean that scenes contain relational information

about how particular fillers are bound to particular roles (Radvansky & Zacks, 2011).

For example, if a person is holding a phone, the scene would contain not just a reference

to the objects “person” and “phone”, but also a specific binding between the objects

and their roles in the relationship “holding”. A faithful vector representation of

structured scenes must therefore also contain this structure when relevant. Formally,

this requires variable binding, a prerequisite for symbolic computation. There are

several ways variable binding can be implemented in vector spaces, such as using tensor

products (Smolensky, 1990), holographic reduced representations (Plate, 1995), or

binding by synchrony (Hummel & Holyoak, 2003).

In this paper, we will focus on holographic reduced representations (HRRs), which

use circular convolution (a compressed form of tensor product) as the binding operator,

and vector addition as the conjunction operator. This produces vectors of a fixed

dimensionality (unlike tensor products) regardless of the complexity of the underlying

formula. Concretely, consider the expression “dog chases cat”. This takes the logical
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form “chase(dog, cat)”, where dog occupies the agent role and cat occupies the patient

role. If we have vectors representing both roles and fillers (where our fillers are “dog”,

“cat” and “chase” and our roles are “agent”, “patient” and “verb”), then the scene

vector is constructed according to:

x = dog ⊛ agent + chase ⊛ verb + cat ⊛ patient

where ⊛ denotes circular convolution. The underlying components can be

approximately decoded using circular correlation, a simple algebraic operation, directly

from the composed scene vector (see Plate, 1995, for details).

The HRR is convenient because both the encoding operation and approximate

decoding operation can be accomplished by efficient algebraic manipulations.

Furthermore, the operations of HRRs preserve the similarity of the composed terms (see

Appendix B for detail), meaning that structural properties can be encoded as features

of the embedding space. For example, we can decompose a term as a linear combination

of structured and unstructured features, such as

cat = acceptAgent + acceptPatient + isSmall + isFurry + ...

where the features “acceptAgent”, “acceptPatient” correspond to valid relational roles

“isSmall”, “isFurry” are unstructured features. If the term “dog” corresponds to a

similar vector with shared composed features, than a scene composed with “dog” will be

similar to a scene composed with “cat”. Concretely, the scene “chase(cat, mouse)” will

be close in vector space to the scene “chase(dog, mouse)” because of the structure

similarity of the fillers. As noted above, this facilitates smooth generalization of event

dynamics by parameterized functions.

Scene dynamics

As previously noted, we assume that event schemata are stochastic dynamical

processes that takes in a scene s and output a successor scene s′ with probability

Pr(sn+1|sn, e), where sn is the scene at time index n and e ∈ Z is an event label. In

SEM, we assume this probability distribution is defined with a smooth function f over

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 5, 2019. ; https://doi.org/10.1101/541607doi: bioRxiv preprint 

https://doi.org/10.1101/541607
http://creativecommons.org/licenses/by/4.0/


STRUCTURED EVENT MEMORY 19

the embedded scenes and parameterized by θ, such that

Pr(xn+1|x1:n, e, θ) = N (xn+1; f(x1:n, e, θ), βI) (2)

where I is the identity matrix, and xn+1 and x1:n are the vector embedding for the

successor scene sn+1 and all of the previous scenes, respectively. Equivalently, we are

assuming that the position of the successor scene in vector space is defined by the

function f , such that

xn+1 = f(x1:n, e, θ) +  (3)

where  is zero-mean Gaussian noise.

We are agnostic to the shape of the function f and only require that θ is learnable

from observation. In our simulations, we model f as a recurrent neural network

(Figure 2). Except where noted, we used a fully connected, four-layer network with

gated recurrent units (GRUs; Cho, Van Merriënboer, Bahdanau, & Bengio, 2014) with

a leaky rectified linear activation function (α = 0.3; Maas, Hannun, & Ng, 2013) as a

non-linearity and 50% dropout for regularization (Srivastava, Hinton, Krizhevsky,

Sutskever, & Salakhutdinov, 2014). A second, non-recurrent hidden layer with a linear

output is used to produce the output. The networks were implemented in Keras

(Chollet et al., 2015) and were trained with batch updates of cached observations using

the Adam stochastic optimization algorithm (Kingma & Ba, 2014). Parameter values

for this optimization are listed in table D2. We chose a recurrent network so that the

network would be sufficiently flexible to learn the event dynamics. Previous

theoretically modeling suggest event dynamics can represented with recurrent neural

networks (Elman & McRae, 2019; Reynolds et al., 2007; Schapiro et al., 2013), and

similar recurrent neural networks are thought to be biologically plausible (O’Reilly &

Frank, 2006). Furthermore, Reynolds et al. (2007) found that recurrence improved

learning event dynamics when compared to otherwise identical feed-forward networks.

Nonetheless, we do not believe that any of these specific implementation details are

critically necessary, and other variants may make similar predictions.

The noise over scene transitions in equation 2 is assumed to be Gaussian with a

diagonal covariance matrix, such that the covariance matrix is the product of the
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Output

Input gate

Maintenance gate

Gated Recurrent Units

...... Next Scene

Current Scene

Gated 
Recurrent Units

Linear Units......

......

......

Figure 2 . Event Dynamic Neural Network A four-layer network took in the current

scene as the input and predicted the next scene as the output. The network has two

hidden layers: one with gated recurrent units (GRU; Cho et al., 2014) and a leaky

rectified linear output and second layer of fully connected, linear units. GRUs provide

recursion by maintaining an internal state of the network. This state is controlled by

two gates, an ‘input‘ gate and a ‘maintenance’ gate.

identity matrix and the vector of noise parameters β ∈ Rd
+. This is done for

mathematical convenience, as estimating a full covariance function is a difficult problem

with limited data. The vector β is estimated using maximum a posteriori estimation,

assuming an inverse-χ2 prior parametrized by ν degrees of freedom and a scale of s2

(Gelman et al., 2013).

We separately define an initial condition f0 for the function f , which is estimated

from the data with a uniform prior over f0. The transition probability for scene st+1

following an event boundary is thus:

Pr(sn+1|sn, en+1 ∕= en) =


N (xn+1; f0, βI) Pr(f0)df0 (4)

Importantly, this initial condition probability is different for experienced and novel

events. The prior over f0 is important for novel events, as it allows us to define a scene

transition probability for an unseen event by integrating over the prior. When the event
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en+1 is a previously unseen event, enew, the transition probability in equation 4 reduces

to a constant. For experienced events, we simplify this probability function by ignoring

the prior Pr(f0) and instead use a point estimate of f0. As we discuss in the following

section, we use the probability Pr(sn+1|sn, enew) to infer the event boundaries and

therefore require a definition of this term for unseen events.

Event segmentation

Having defined the generative process for events, the representational space for

scenes, and the scene dynamics, we can now pose questions for the computational

model. A primary challenge for the model presented above is how it can learn and

segment events without an external training signal. In terms of statistical estimation,

event segmentation is an unsupervised learning problem. A key claim of the model is

that it can learn event dynamics while simultaneously segmenting scenes into events. In

order to solve both of these problems simultaneously, we perform inference over the

generative model.

As we assume that events are not directly observable, their identity and

boundaries must be inferred (segmented). Given a history of scenes s = {sn}N
n=1, Bayes’

rule stipulates the posterior over events e = {en}N
n=1 is:

Pr(e|s, θ) = 1
Z

Pr(s|e, θ) Pr(e) (5)

where Pr(s|e, θ) is the likelihood of the scene history under a hypothetical event

segmentation, and Pr(e) is the prior probability of the event sequence (i.e., the

generative process for events, Eqn. 1) and Z is the normalizing constant. The likelihood

can be decomposed according to:

Pr(s|e, θ) =
N

n=1
Pr(sn+1|sn, en, θ) (6)

where Pr(sn+1|sn, en, θ) = Pr(xn+1|x1:n, e, θ) is given by Eq. 2. The likelihood can be

viewed as a way of encoding (inverse) “prediction error”, which has been suggested as a

key determinant of event segmentation (Reynolds et al., 2007; Zacks et al., 2011). A low

likelihood indicates a high prediction error, favoring the inference of an event boundary.
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To make this point more explicit, we can express the log-likelihood for a single

transition sn → sn+1 as follows:

log Pr(sn|sn+1, e, θ) = − 1
2β

||xn+1 − f(x1:n; e, θ)|| + const. (7)

Thus, the log probability is inversely proportional to the prediction error.

In principle, event segmentation requires inference over the intractably large

discrete combinatorial space of partitions. To comply with the cognitive constraint that

inference is carried out online (i.e., without re-segmenting past experiences), we employ

a “local” maximum a posteriori (MAP) approximation (Anderson, 1991; Gershman,

Radulescu, Norman, & Niv, 2014):

Pr(en+1|s1:n, θ) =


e1:n−1

Pr(en|s1:n, e1:n−1, θ) (8)

≈ Pr(en|s1:n, ê1:n−1, θ) (9)

where s1:n denotes the sequence of scenes observed from time 1 to n and ê1:n−1 is a

point estimate of the prior event segmentation defined recursively as follows:

ên = argmax
en

Pr(en|s1:n, ê1:n−1, θ) (10)

In other words, we approximate the intractable summation over e1:n with a single high

probability hypothesis about the prior segmentation.

Event Memory

We now turn our attention from the problem of event segmentation to consider

the encoding of items into memory. We first define the generative process of encoding

items into memory and then return to discuss how event dynamics can be used to

improve memory in a reconstructive process. Consider the paired sequences of

embedded scenes x = {x1, .., xN} and events e = {e1, ..., eN} that define the world

dynamics of our generative model. Each scene vector xn ∈ Rd is a real-valued vector

encoding the features of the scene at time n, while en ∈ Z is a label corresponding to

the event model at the same time.
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Implicitly, both x and e encode time via position because they are ordered

sequences. In order to make this representation explicit, we define an unordered set of

memory ‘items’ y = {y1, ..., yN} that have a one-to-one correspondence to the scene

vectors x and events e. Each element yi is defined as a 3-tuple of the features of the

scene, the event label, and its time index, such that yi = (x′, e′, n) where x′ is the vector

of features, e′ is the event label and n is the time index. Equivalently, x′ = xn and

e′ = en for the scene yi = (x′, e′, n).

We assume memory is a lossy encoding and retrieval process such that all of the

components of the memory items are corrupted. Specifically, we assume an encoding

process Pr(ỹ|y) creating the corrupted (encoded) memory trace ỹi = (x̃′, ẽ′, ñ) where

x̃′ = [x̃1, ..., x̃d], ẽ′ and ñ corresponds to the corrupted memory traces of the scene

features, event label, and time index, respectively. The assumption that memory traces

are corrupted versions of an original stimulus is common in computational models of

memory (Hemmer & Steyvers, 2009; Huttenlocher et al., 1991; Shiffrin & Steyvers,

1997) and is analogous to a capacity-limited compression (Brady, Konkle, & Alvarez,

2009; Nassar & Frank, 2016).

For convenience, we will assume that the corruption process for each component of

each scene vector is independent, such that

Pr(ỹ|y) = Pr(x̃|x) Pr(ẽ|e) Pr(ñ|n). (11)

We assume Gaussian noise over the features, such that

Pr(x̃|x) = N (x̃; x, τ I) (12)

where the parameter τ corresponds to the degree of corruption noise of the feature. For

event tokens, we assume that the corruption process is an asymmetric channel similar to

a Z-channel (MacKay, 2003), such that the event token is either correctly encoded or

that the event label is completely lost:

Pr(ẽ|e) =






e if ẽ = e

1 − e if ẽ = e0

0 otherwise

(13)
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where e0 is a ‘null’ event label corresponding to no event model (representing a loss of

the event label), and where the parameter e defines the probability of retaining the

event label in memory. Thus, when 1 = 0.0, the event label is completely lost from the

memory trace. Corruption noise over the time index n is defined as a discrete uniform

over the interval [n − b, n + b], such that

Pr(ñ|n) ∼ U[n − b, n + b]. (14)

We will typically assume small values of b, allowing for items in memory to be

flipped, but not allowing large jumps in time. Taken with the corruption of event labels,

time index corruption has several consequences, including the corruption of the relative

order of items within each event and the corruption of the (implicitly represented)

boundary location. We note that while we have committed to these independent

corruption processes, other forms of information loss in memory are plausible, including

event-label switching and non-uniform time corruption among others. The full memory

trace over n scenes is defined as the unordered set of corrupted traces ỹ = {ỹ1, ..., ỹN}.

Reconstruction. Given a memory trace ỹ and learned event dynamics (f, θ, e),

the task of the memory model is to reconstruct y. We note that this is different from

many models of memory, in that we assume a corrupted memory trace and ask how

event dynamics can be used to denoise this trace, whereas many memory models are

concerned with the process by which a memory trace is generated (e.g., Norman &

O’Reilly, 2003). To reconstruct y, we define the generative process of the corrupted

memory traces and do inference over this process to reconstruct the original items prior

to encoding. Knowledge of the event dynamics is helpful in memory reconstruction

because they are assumed to be the generative process of the original scenes. As such,

the event dynamics can regularize the reconstructive memory process. A similar

approach by Huttenlocher and colleagues (1991) was used to model human memory

judgments of the spatial location of dots. They argued that a category prior can be

used to reduce the variance of a corrupted memory trace. Here, we argue that event

dynamics occupy the same role, reducing variance of the corrupted memory trace by

regularizing (that is, adding an adaptive statistical bias).
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scene
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Figure 3 . Memory corruption. A lossy memory encoding procedure stores the

features of the original scene x, its time index n and event index e in corrupted form

ỹ = (x̃, ẽ, ñ). Memory reconstruction inverts this generative process to infer the original

memory item.

We first consider the generative process of ỹi (and its corrupted features x̃i and

time index ñ). This is defined:

Pr(ỹi|f, θ) =


e



x
Pr(ỹi|x, e) Pr(x|e, f, θ) Pr(e)dx (15)

where x = x1:n and e = e1:n are the sequences of scenes and event labels, respectively.

The three probability distributions, Pr(ỹi|x, e), Pr(x|e, f, θ), and Pr(e) correspond to

the encoding process, transition dynamics and prior over events, respectively.

The goal of memory retrieval is to estimate the original scenes ŷ using a

reconstruction process over the generative model (equation 15). Because the posterior

has no closed form expression, we employ Gibbs sampling to draw a sample of

reconstructed memory traces. A complete description of our Gibbs sampling algorithm

is detailed in Appendix C, but at a high level, Gibbs sampling takes advantage of the

conditional independence properties of the generative model, which can be seen in the

graph structure (Figure 3). At each point in time, the generative process for the

memory trace, the dynamics over scenes and the dynamics over events can be expressed

with three conditionally independent functions (equations 11, 2, and 1, respectively).

As such, we can draw samples of the memory traces, reconstructed scenes and event
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labels one variable at a time by conditioning on the other variables in the process.

To capture the possibility of memory failure, we augment the set of corrupted

memory traces {ỹ} with a ‘null’ memory y0 and define a special case of the corruption

process conditioned on a time index

Pr(y0|y) ∝  (16)

where  is a free parameter that controls forgetting in the model, as we discuss below.

This choice of corruption process is convenient, as it has the interpretation of

integration over memory items,


y Pr(ỹi|yi)dy ∝  for any arbitrary value of .2 We

assume that y0 can be repeatedly sampled, as it is does not correspond to a specific

memory trace, but the absence of one. Finally, we also assume that the learned event

models and parameters (f, θ) are known because they have already been learned.

Simulations

The parameter values for all of the following simulations are listed in table D2 in

the appendix. The code for all simulations is available in our Github repository:

https://github.com/ProjectSEM/SEM.

Human-like segmentation on naturalistic stimuli

A key test of the model is whether it generates human-like segmentation on

naturalistic tasks. Operationally, event boundaries in human studies are often defined

by having subjects mark them in a naturalistic dataset, for example, while watching a

video (Baldassano et al., 2017; Hanson & Hirst, 1989; Newtson & Engquist, 1976; Zacks

et al., 2006, 2001). Historically, this has posed a challenge for computational models

due to the difficulty of dealing with unannotated raw video data. The computational

model proposed by Reynolds et al. (2007) attempted to circumvent this problem by

2 Implicitly, this corruption process assumes a uniform prior over features, Pr(x) ∝ 1. Alternatively, we

could assume a generative process x ∼ N (0, I), but this will lead to a similar result so long as the

norm of corrupted memory traces are similar, and  would likewise parameterize the degree of

forgetting in the model for reasons discussed below.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 5, 2019. ; https://doi.org/10.1101/541607doi: bioRxiv preprint 

https://doi.org/10.1101/541607
http://creativecommons.org/licenses/by/4.0/


STRUCTURED EVENT MEMORY 27

using a carefully collected, low-dimensional motion capture dataset. Reynolds et al.

(2007) evaluated their recurrent neural network model of event processing on a set of

motion capture timeseries, each of which contained 18 points in a 3-dimensional

coordinate space measured across time with a 3Hz sampling rate. While this model was

able to provide valuable theoretical insights, such as the feasibility of updating event

models with prediction error, it is difficult to fully validate the model without

comparing the model directly to human data.

However, because of the rapid improvement in computer vision in recent years

(LeCun et al., 2015), this computational issue can now be tackled; we can directly

evaluate SEM on the same naturalistic dataset used in human studies. In the following

simulations, we evaluate SEM on three video datasets previously used in a pair of

studies by Zacks et al. (2006, 2001) to probe human event segmentation. We use the

model to generate event boundaries and compare its predictions to human behavior

reported in Zacks et al. (2006). We do so with fully unsupervised training, estimating an

unstructured scene representation with a variational auto-encoder (see Appendix A for

details). Consequently, in a video of a person making a bed, the model is not told what

a person is or a bed is but has access only to what can be learned from pixel data. We

are not claiming that people only use unstructured information while performing this

task, but we nonetheless believe it is important to validate the model’s performance in

an end-to-end, fully unsupervised process on naturalistic data to argue that SEM scales

up. We will return to the role structure plays in segmentation with later simulations.

Results. The stimulus set in Zacks et al. (2006, 2001) consists of five videos of a

single person completing an everyday task, such as washing dishes, shot from a single,

fixed camera angle with no edits. At a resolution of 240x320x3 pixels, each frame has

more than 230,000 dimensions, and we used a variational auto-encoder to generate an

unstructured scene representation of 100 dimensions. We evaluated the model on each

of the three videos used as stimuli in experiment 1 of Zacks et al. (2006). The model

was trained on each video independently with the parameter values listed in table D1.

Figure 4 shows a qualitative comparison of human and model behavior in the “washing
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dishes” video as well as a quantitative comparison over all three videos. Both human

and model event boundaries have been binned in 1 second intervals, as was reported in

Zacks et al. (2006). Qualitatively, there is good agreement between the model’s MAP

estimates of boundaries and the population of human subjects, with several of the

major peaks in the group data corresponding to a model boundary. We assess this

quantitatively with the point-biserial correlation between the model’s MAP boundary

estimates and the grouped subject data. Point-biserial correlation is a similar metric to

the one used by Zacks et al. (2006) to asses the segmentation of each individual subject.

The point-biserial correlation of the model was 0.143, both highly significant under

permutation testing (95% CI of permutation test: [-0.068, 0.034]) and well within the

range of observed human values (range: [0.054, 0.412], middle 75% of observations:

[0.139, 0.400]). As the model produces a boundary probability at each time step, we

also compared the model’s log boundary probability to the aggregated human data

directly, which was significant (r2 = 0.067, 95% CI of permutation test: [0.000, 0.005]).

Event boundaries and community structure

While naturalistic tasks provide ecological validity, in the simulations above it is

difficult to tell which features of the dataset people and the model rely on to segment

events. Thus, while we can make descriptive comparisons, the video dataset does not

provide a particularly diagnostic test of the model. A stricter test of the model is to

compare human and model segmentation on specific features that can potentially drive

segmentation.

One such principle that has previously been identified is prediction error

(Reynolds et al., 2007). Humans show a decrease in predictive accuracy across an event

boundary in naturalistic tasks (Zacks et al., 2011) and generally respect statistical

structure (Avrahami & Kareev, 1994; Baldwin et al., 2008). Moreover, surprising

occurrences in human tasks influence event perception (Newtson, 1973), suggesting that

the predictability of scenes is important for segmentation. Given the formulation of

event segmentation in our model as probabilistic inference (equation 5), the property
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Figure 4 . Video Segmentation. Top: SEM generates human-like boundaries. The

model MAP estimate of boundaries is shown for the “washing dishes” video and

compared to human segmentation frequency. Bottom Left: Model log boundary

probability compared to human segmentation frequency at each moment in time. Each

grey dot is represents a 1s interval and the regression line is shown in blue. Bottom

Right: Model point-biserial correlation (red line) compared to individual subjects across

all three videos (grey bars).
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that surprising or unpredicted stimuli will produce event boundaries is axiomatic. The

model is sensitive to both prediction error and the uncertainty of prediction, a property

that can be derived analytically (see Eqn 7).

Less apparent, however, is how the model responds to other types of statistical

structure. At first glance, the role of predictive inference in event segmentation might

suggest that humans rely strictly on surprising outcomes to drive segmentation.

However, Schapiro et al. (2013) identified community structure as a feature that drives

human event segmentation, even when controlling for predictability. In this context, a

community refers to a group of nodes in a graph that are densely interconnected.

Schapiro et al. (2013) showed subjects a sequence of stimuli drawn from a graph that

had multiple communities, and subjects were asked to note transition points between

stimuli. An important feature of the task is that transitions were equated for

probability, such that a community transition was no more or less likely than any other

individual transition. This was done to rule out the possibility that subjects rely solely

on unpredictability in the environment to identify event boundaries.

Nonetheless, subjects preferentially marked event boundaries at community

transition points, respecting the graph structure. Schapiro and colleagues further

demonstrated that a recurrent neural network trained on the same sequence of stimuli

developed internal representations that were similar for community members. Within

the network, representational similarity between sequential items decreases at event

boundaries, potentially acting as a signal that a boundary has occurred.

Like the Schapiro model, SEM is also sensitive to community structure. To

demonstrate this, we simulated the model on 1400 stimuli generated by a random walk

on the graph used in Schapiro et al. (2013) in a sequence exposure phase, followed by

600 stimuli from randomly drawn Hamiltonian paths in a parsing phase.3 Consistent

with the previously reported human behavior and the Schapiro model, SEM has higher

boundary probability for a community transition than a non-community transition,

across both the training trials and in the Hamiltonian paths of the parsing phase

3 A Hamiltonian path is a path through the graph that visits each node exactly once.
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(Figure 5b).

It is important to note that boundary probability and prediction error are related

in SEM, such that more surprising scenes are more likely to lead to an event boundary

(Figure 5c). Consequently, the average log probability of each successive scene, a

Bayesian measure of prediction error,4 is lower at community transitions than at other

transitions, meaning that community transitions are more “surprising” than

non-community transitions (Figure 5d). This might be seen as surprising giving the

equating of transition probability in the task. However, predictability in the

environment is not the same as predictability from the point of view of an agent, and

SEM’s generative model is not equivalent to the generative process of the task.

Furthermore, the recurrent neural network model proposed by Schapiro and colleagues

relies on similar computational principles as the recurrent neural network we used to

model event dynamics. Thus, the two should be sensitive to similar features of the task.

As such, we don’t view the prediction error account of event segmentation (Reynolds et

al., 2007) as incompatible with that of temporal community structure.

Generalizing structure

Above, we hypothesized that events capture an underlying structure that is to

some extent invariant to the surface features of scenes. This is motivated both by the

computational goal of generalization, as well as the empirical observation that people

tend to remember the surface features of an event less well across time while

nonetheless maintaining an accurate memory of the situation (Kintsch, Welsch,

Schmalhofer, & Zimny, 1990; Radvansky & Zacks, 2014).

As a preliminary demonstration of the model’s ability to generalize structure, we

present here a simple example: imagine an event structure that is defined by (1) a

person asking a second person a question, followed by (2) the second person responding

to the first person. Symbolically, we can represent this event as

Ask(Tom, Charan) → Answer(Charan, Tom), where we have named the two people

4 Formally, this is defined with the density function Pr(xt+1|x1:t, θ̂) =


et
Pr(xt+1|x1:t, et, θ̂).
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Figure 5 . Event boundaries at graph community boundaries. (a) The graph

structure of the transition matrix, adapted from (Schapiro et al., 2013). Sequences of

stimuli were generated by drawing from walks through this graph. (b) The probability

of a parse (event boundary) is shown between pairs of items that reflect a community

transition (dark grey) or within a community (light grey) in all trials in the simulation

(left) and segregated for Hamiltonian paths through the graph (right). (c) Pearson’s r

coefficient between the log posterior predictive density of each scene and the boundary

probability is shown for the sample of simulations. (d) The log posterior predictive

density for each scene. Lower values correspond to greater surprise under the model.
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“Tom” and “Charan” and the expression means that Tom asks the question and Charan

answers (Figure 6).5 One question we can ask is whether SEM can learn this structure

and generalize it to new fillers (i.e., other people) that it has not encountered.

Specifically, we can asses whether the model is sensitive to the structural form of the

event, without regard to role/filler assignments.

Figure 6 . HRR of the question/answer task. Each filler is bound to its role by

circular convolution. Scenes are composed of role/filler bindings with vector addition.

To probe this, we examined the probability of an event boundary between

Ask(A, B) and Answer(B, A) for arbitrary fillers of A and B. As we are concerned here

with the use of relational structure to delineate event boundaries, we pre-trained SEM

with examples of the sequence Ask(A, B), Answer(B, A). This simulates event

structures that are already known. SEM was pre-trained on 3 unique sequences of

Ask(A, B), Answer(B, A) with 6 unique fillers. Each scene vector was composed using

5 We can interpret this structure linguistically but we do not have to – this symbolic representation is

valid whether we are watching the event occur or reading about it in a text.
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the HRR as previously described. Each independent feature was represented with a

spherical, zero-mean, Gaussian random vector (x ∼ N (0, d−2I)) and similarity between

fillers was encoded with a shared component. Due to the simplicity of the event

dynamics, we estimated the event dynamics without recursion and replaced the GRU

layer in our function approximator with a non-recurrent, but otherwise equivalent, layer.

We simulated SEM on four test sequences, probing the event boundary probability

between the first and second scenes. We also probe the probability that the second

scene belongs to a new event (as opposed to a new instance of the previously

experienced event). The first sequence, Ask(Tom, Charan) → Answer(Charan, Tom),

was included in the pre-training sequences and acts as a negative control, as SEM

should assign a low event boundary probability. A second sequence

Ask(Tom, Charan) → Chase(Dog, Cat) deviates from the event structure and acts as a

positive control. As expected, SEM assigns a low boundary probability to the probe

Answer(Charan, Tom) (Fig 7) and a high probability of both an event boundary and a

new event for the probe Chase(Dog, Cat).

Of particular interest is whether SEM generalizes the structure of the event to

arbitrary fillers. To test this, we provided SEM with the sequence Ask(Dick, Bruce) →

Answer(Bruce, Dick), which used fillers (“Dick” and “Bruce”) that were held out of

the pre-training set for this purpose. Here, SEM assigns a low, but non-zero, probability

both that an event boundary has occurred (18.0%) and that the probe belongs to a new

event (12.2%). Equivalently, this corresponds to a high probability that an event

boundary has not occurred (82%). This is because, although SEM does generalize the

structure of the event, it is sensitive to the non-structural features as well.

Non-structural features are novel, and the probability of the previously learned event

under the model is relatively lower. SEM makes the empirical prediction that people

rely on both structural and non-structural features for segmentation, but as the

structure of the event is thought to be more predictable across time (Richmond &

Zacks, 2017), we would expect the event structure to dominate for familiar event types.

Finally, we look at how SEM reuses events multiple times. SEM uses Bayesian
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inference to identify events and supports re-using an event model following an event

boundary. To illustrate this, we provide SEM with the sequence

Ask(Tom, Charan) → Ask(Tom, Charan), in which the first item is repeated. Here,

SEM correctly infers an event boundary but does not assign the second item to a new

event. Instead SEM infers that the original event has been restarted. Interestingly, this

is a property of the structure of the event, and SEM will reuse an event following a

boundary based on this structure. This can be shown by providing SEM with the

sequence Ask(Tom, Charan) → Ask(Bruce, Dick), which reuses the event with a pair

of novel fillers. SEM infers an event boundary between the two items and re-uses the

previous event (i.e., infers a low probability of a new event), again showing structure

sensitivity. Taken together, these simulations predict that people group events with the

same relational structure. If subjects were trained on an event with relational structure,

we would expect subjects to delineate the same boundaries for a sequence of events with

the same relational structure but novel fillers.

Figure 7 . Generalization task. The probability assigned by the model for an event

boundary (light grey) and a new event (dark grey) are shown for four test events. Each

event begins with the scene Ask(Tom, Charan) and ends with the denoted scene,

except for the event Ask(Bruce, Dick) → Answer(Dick, Bruce), From left to right, the

probabilities are shown for an event in the training set, a structurally dissimilar event, a

structurally similar event with novel role/filler bindings, a control where the original

event was restarted, and the beginning of an structurally similar event with novel

role/filler bindings.
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Test Case 1st Scene 2nd Scene

Training example Ask(Tom, Charan) Answer(Charan, Tom)

Structure violation Ask(Tom, Charan) Chase(Dog, Cat)

Novel role/filler binding Ask(Bruce, Dick) Answer(Dick, Bruce)

Structure Re-use Ask(Tom, Charan) Ask(Tom, Charan)

Structure Re-use with novel fillers Ask(Tom, Charan) Ask(Bruce, Dick)
Table 1

Stimuli for generalization task. For each of the five test cases, the probability of an

event boundary was measured between the 1st and 2nd scenes.

Structured memory inference

We now turn to the memory predictions of the model. We first focus on false

memories, which have long been thought to be a consequence of reconstructive memory

(Bartlett, 1932; Roediger & McDermott, 1995), and are a natural prediction of the

reconstructive memory model.

In a classic finding, Bower et al. (1979) found that subjects who read multiple

similar stories drawn from the same “script” would falsely recall portions of the story

that weren’t present in the original story. For example, subjects might read a story in

which a character “John” goes to the doctor and reads a magazine before seeing the

doctor, and a second, similar story in which a character “Bill” goes to the dentist and

has to wait. Given these two stories, which shared a common event structure and were

drawn from the same script, a subject might falsely recall the detail that “John” has to

wait to see the doctor, a likely inference that was nonetheless not stated in the original

story. This tendency to recall unstated memory items increased with the number of

stories subjects read from the same script, suggesting that subjects were recombining

elements of stories with a shared event representation in the recall process. This process

may be adaptive to the degree that it reflects inferences about unexperienced scenes

that nonetheless occurred.

We use the reconstructive memory model to generate structured false memories
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Script 1st Scene 2nd Scene 3rd Scene 4th Scene

1 Goto(John, Doctor) Checkin(John) Read(John, Magazine) Treat(Doctor, John)

Goto(Bill, Dentist) Read(Bill, Magazine) Wait(Bill) Treat(Dentist, Bill)

Goto(Natasha, Chiropractor) Checkin(Natasha) Wait(Natasha) Treat(Chiropractor, Natasha)

2 BuyTicket(Jill, Movie) FindSeat(Jill) Buy(Jill, Popcorn) Watch(Jill, Movie)

3 Wakeup(Sarah) GetDressed(Sarah) Eat(Sarah, Toast) Leave(Sarah)
Table 2

Stimuli for Bower task. Each row denotes a story with comprised of four scenes,

representing a simplified narrative containing relational structure. Each of the stories in

script 1 contain common structural elements, with the same beginning and endings and

a shared 2nd or 3rd scene, but with different fillers in the roles.

with a paradigm similar to the one presented in Bower et al. (1979). In the original

stimulus set, stories with the same script had highly similar beginnings and endings, and

had a combination of structurally similar sentences and distinct, story specific sentences

in the middle that suggested a similar event trajectory. To model this, we defined a

simplified set of five stories from three different ‘scripts’, each of which was comprised of

four scenes (Table 2). Three stories belonged to the same script and shared a common

structure but used different fillers within the structure. These sentences all shared the

first and last scene, and any two of the three shared a third scene.

The manipulation of interest is whether providing SEM with multiple similar

stories will increase the probability of a script producing semantically valid false

memories under the reconstruction model. Concretely, we test for the reconstructive

memory probability of the probe cue Wait(John), a scene that does not incur in any

story, but is syntactically correct and consistent with the Goto(John, Doctor) story in

script 1 (Table 2).

We provided SEM with three stories, including either one, two or three stories

from script one. In our simulations, we used the HRR as previously described to encode

each scene but provided no pretraining or other semantic knowledge to the model.

Verbs (e.g., Goto) are encoded with a common feature as are agents (e.g., Natasha) and

objects (e.g., Popcorn). SEM was first provided the scenes for each story in order to
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learn the event dynamics and infer the event labels. Because we are not examining

segmentation with these simulations, all of the scenes from a single story were assumed

to belong to the event and SEM was tasked with inferring a single label for them. It is

worth noting the segmentation problem present in Bower et al. (1979) is trivial: stories

were presented with clear external cues for the beginning and ends with intervening

time between each story.

We then used the Gibbs sampling algorithm as previously described (see Table D1

for parameter values) to simulate reconstructive memory. We modeled a two alternative

forced choice recognition memory test, comparing the script-consistent false memory

probe Wait(John) with a syntactically valid but script-inconsistent memory probe

GetDressed(John). This memory score can be described as the expectation of the

comparison

[Pr(A|ỹ) > Pr(B|ỹ)] (17)

under the memory model, where A and B are memory probes. Let f(x) = Pr(x|ỹ) be

the recognition memory probability under the model, and the expectation above defined

as an expectation over f . Our reconstruction samples x̂ (equation 19) are drawn from

samples of f . Thus, if we assume a function g(x, x̂) to be monotonically related to a

sample of f , we can evaluate the ordinal comparison of the two memory probes on g

and approximate the memory score with the average of N samples:

[Pr(A|ỹ) > Pr(B|ỹ)] ≈ 1
N



x̂∈{x̂}1:n

I[g(xA, x̂) > g(xB], x̂) (18)

where I[·] = 1 when its argument is true, and 0 otherwise. Here, we choose

g(x, x̂) =  exp{−γ||x − x̂||2}.

Figure 8 shows the results of our simulations. The script-consistent false memory

probe Wait(John) was compared to the script-inconsistent probe GetDressed(John).

The recognition memory probability for the script-consistent probe increased

monotonically with the number of script instances in the stimuli, similar to the

behavioral finding of Bower et al. (1979). For a single script instance, this was below

chance, as the comparison probe GetDressed(John) was more reflective of the training
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Figure 8 . False memory simulations. The recognition memory probability for a

script-consistent false memory probe is shown as a function of the number of stories of

the same “script” during learning. Chance (50%) is denoted by a dotted black line.

set than the script consistent probe. Additionally, the reconstruction process improved

as a function of the number of script instances. This can be seen in the frequency with

which the original memory traces were included in the reconstruction sample, which

increased monotonically with the number of script instances (1 script instance: 0.82, 2

script instances: 0.88, 3 script instances: 0.92). Under SEM, these two effects are

related due to the regularizing effects of the reconstructive process.

Event boundaries and working memory

An empirical consequence of event boundaries is that items that occur in an

ongoing event are better remembered than items that occur immediately prior to an

event boundary (Pettijohn & Radvansky, 2016; Radvansky & Copeland, 2006;

Radvansky et al., 2011; Radvansky, Tamplin, & Krawietz, 2010). A study by

Radvansky and Copeland (2006) had subjects remember items in a virtual environment

as they moved from room to room. In each room, subjects put an item they were

carrying (but was not visible to them) on a table and picked up a second object, before
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carrying it to another room. Subjects were given a memory probe either immediately

after walking through a door (shift condition) or at an equidistant point in a larger

room (no-shift condition). Overall, subjects remembered items better in the no-shift

condition than in the shift condition, suggesting that the act of walking through a door

interfered with the item memory. This appears to be distinct from context-change

effects that have been observed in long-term memory (e.g. Godden & Baddeley, 1975),

because returning to the original room in the shift condition did not eliminate the

memory decrement (Radvansky et al., 2011).

One potential explanation of these effects put forth by Radvansky (2012) is that

an ongoing event is preferentially stored in working memory. During a memory probe

after an event boundary, two event models have to be represented at the same time to

complete the probe, causing memory interference previously described as a fan effect

(Anderson, 1974; Radvansky & Zacks, 2017). In our model, memory reconstruction acts

on a degraded set of features and a degraded event token simultaneously. As such, noise

from one event memory will affect the reconstruction of the other—i.e., memory

interference similar to the fan effect. If there is preferential access to the ongoing event,

then this reduces a source of noise in the reconstruction process by obviating the need

to infer the correct event.

We simulated the model on a simplified variant of the task in Radvansky and

Copeland (2006). In the original task, subjects navigated from room to room in a

virtual environment. We simplified this to a stereotyped set of scenes, using a similar

sequence of structured scenes as in the previous memory experiment and in the

generalization simulations. To model the interactions in each room, we provided SEM

with observations of (1) entering the room, (2) putting an object down (3) picking up

the next object and (4) leaving/crossing the room. Each of these scenes is composed of

a verb (e.g., “Enter”) and context that corresponds to an individual room (Table 3).

We assumed that the object to be picked up was observed in the first two scenes. For

balance, we assumed that the object that was put down was observed in the second two

scenes. We further assumed that the pickup object was bound to the verb “Pickup” in
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the third scene. Each of these scenes was encoded using a HRR as outlined in table 3

with Gaussian random vectors for each of the features.

Scene Features

1 Enter + Room + Object A

2 PutDown + Room + Object A

3 PickUp(Object A) + Room + Object B

4 Leave + Room + Object B
Table 3

Scene representation for Simulations of Radvansky and Copeland (2006).

Each scene was composed of vectors corresponding to the features in the scene.

The model was trained on a sequence of 15 rooms and given a memory test after

each room. We assumed that event boundaries corresponded to entering and exiting a

room, and constrained the model to infer an event boundary only at this time. The

model was free to choose to reuse an event model or infer a new one for each room.

Access to the current model was simulated by modulating the corruption noise, e,

associated with the event label. In the switch condition, e was equivalent for all scenes

in memory and set to a value of 0.25. In the no-switch condition, this corruption noise

was lowered by increasing the value of e = 0.75 for the scenes associated with the most

recent event, simulating privileged access to the current model. The reconstruction

process was otherwise equivalent. Error was assessed by the probability that a

corrupted memory trace was included in the reconstruction sample. Mirroring the

results in the human studies, the model had lower error in the no-shift condition than in

the shift condition (Figure 9).

Event boundaries improve overall recall

While these short term memory effects suggest that event boundaries interfere

with memory, the relationship between event structure and subsequent memory is not

always intuitive. Overall, extracting relevant event structure tends to improve memory,
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Figure 9 . Simulations of the task in Radvansky and Copeland (2006).

Reconstruction memory accuracy is shown for items both after an event boundary

(Switch) and before an event boundary (No-Switch).

as subjects with better segmentation judgements tend to have better subsequent recall

(Sargent et al., 2013; Zacks et al., 2006). Similarly, studying list of items or video-taped

lectures in multiple contexts leads to better overall memory (S. M. Smith, 1982, 1984;

S. M. Smith & Rothkopf, 1984). Within the context of SEM, event structure plays an

important role in the reconstruction memory process. Poor segmentation leads to a

more noisy reconstruction process and thus worse overall memory.

Interestingly, the benefits of event boundaries within the reconstructive memory

process extend to cases where the sequence of studied memory items are random and

where there is no clear relationship between events and studied items. In a series of

studies, Pettijohn and Radvansky (2016) demonstrated that when subjects were give a

list of items separated by a physical or virtual event boundary, subsequent recall was

higher overall. This suggests that segmentation itself influences memory is important

for overall memory irrespective of environmental statistics.

Here, we probe the model for these effects by simulating experiment 1 in Pettijohn

et al. (2016). In this experiment, subjects were given a list of 40 words to remember

while moving between four locations in physical space, divided into 4 ordered sub-lists

of 10 words each. Subjects read one sub-list (10 words), then moved to a new location
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in space, either in a new room (shift condition) or a new space in the same room

(no-shift condition) that was equated for physical distance, and read a second sub-list

(10 words). Subjects were then given a distractor task, and finally asked to recall as

many of the words as possible from both sub-lists. Subjects had higher recall accuracy

in the shift condition than in the no-shift condition.

We simulated these effects by generating a list of 20 items, each as a Gaussian

random vector. We trained the model on the list, either constraining the model to learn

all items within a single event (no-shift) or assuming a single event boundary halfway

though the list (shift). We then used the reconstruction procedure to create a

reconstructed memory trace and probed memory recall as the probability that each

corrupted memory item ỹi is included in the reconstructed trace, defined by

equation 15. Overall, the accuracy is higher in the switch than in the no-switch

condition (Fig 10), replicating the findings of Pettijohn et al. (2016). During the

reconstruction process, the uncertainty about a single item propagates to its neighbors

as a consequence of the dynamics of the event schema. In general, the event schemata

reduce the overall reconstruction uncertainty by regularizing the process, but they

nonetheless propagate uncertainty between noisy scene memories. Because the

dynamics end at boundaries, boundaries prevent the uncertainty from spreading.

Sequential recall

Even as event boundaries improve memory performance overall, they introduce

specific deficits to sequential recall. Given narrative texts that include a temporal shift,

subjects are worse when remembering the next sentence immediately after a temporal

shift than immediately before (Ezzyat & Davachi, 2011). This impairment of sequential

order memory by boundaries occurs even in the absence of a naturalistic event structure

(DuBrow & Davachi, 2013, 2016) and is not associated with an impairment of

associative memory (Heusser et al., 2018). This suggests that the event structure that

subjects learn (as opposed to the structure of the task) is responsible for this memory

effect. In the context of the model, SEM continuously estimates the transition structure
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Figure 10 . Simulations from Pettijohn et al. (2016). Left: Human subjects have

been recall in the shift vs no-shift conditions (data reproduced from Pettijohn et al.,

2016). Right: Model has higher recall in shift vs no-shift condition.

between scenes as the event dynamics, irrespective of the regularity or unreliability of

that structure. Introducing a boundary disrupts learning an association between

successive scenes. This becomes apparent in the reconstruction process, where the

presence of boundaries disrupt sequential memory, even as they aid reconstruction

overall.

In order to demonstrate this, we simulated experiment 1 of DuBrow and Davachi

(2013). In the original experiment, subjects were presented with 400 items sequentially

(200 celebrity faces and 200 nameable objects) across 16 study-test rounds of 25 images

each, while performing a task in which subjects either made a male/female judgement

(faces) or a bigger/smaller judgment (nameable objects). Following each round,

subjects were asked to recall each item they saw in order. Sequential recall accuracy, as

measured by direct transitions between consecutive items, was higher for items

immediately before a task/category switch than immediately after.
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We simulated 5 events, alternating between two categories after the presentation

of 5 items each. Each item was embedded by combining an item-specific factor (i.e., a

random Gaussian vector) and a shared category feature (itself a random Gaussian

vector) with addition in order to encode the similarity relationship between items of the

same category. As in the previous memory simulations, the model inferred a single

event label the scenes within a single events and event boundary locations were

provided to the model as a simplifying assumption of the task. The reconstruction was

performed as previously described, and SEM inferred a reconstructed memory trace and

event label for each moment in time. Order memory was assessed by measuring the

probability that two sequential probe items were reconstructed in the correct sequential

order. Thus, if item “B” followed item “A” in the stimuli, it was scored as correct if it

appeared in this order in the reconstruction, regardless of the position of these items in

the reconstructed sequence.

Figure 11 summarizes the results of the model simulated on this task. As

expected, the model has higher serial recall accuracy for items studied immediately

prior to the category/task switch than after, mirroring previous empirical results.

Mechanistically, this occurs because the model learns the dynamics over the scenes

within an event, whereby each item is learned as a function of the previous item within

the event, but there is no direct association between sequential items in separate events.

It is worth noting that this occurs regardless of the structure of the task and reflects the

hypothesis that people are continually and automatically learning about temporal

structure. The reconstruction process, which regularizes the corrupted memory trace

with the learned dynamics, thus aids the formation of sequences within events. Overall

temporal information is not otherwise lost, as the identity of each event and the

within-event dynamics help order the entire sequence, but there is less of an association

between two sequential items across an event boundary in the reconstruction.
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Figure 11 . Serial recall across an event boundary. The proportion of correct

transitions between an item and the following item was worse across an event boundary

than immediately prior to the boundary.

Discussion

In this article, we have tackled the problem of learning and understanding events

through the lens of probabilistic reasoning. We have made 3 main contributions with

our model: first, we demonstrated that SEM can produce human-like segmentation of

naturalistic data, suggesting that the computational principles outlined here are scalable

to real-world problems; second, we have shown how events can capture generalizable

structure that can be used for multiple cognitive functions; and third, we have shown

that these principles are sufficient to explain a wide range of empirical phenomena.

Segmentation

In the current work, we have built on previous models of event segmentation and

shown that our model is able to produce human-like segmentation of naturalistic

datasets. While the low-dimensional and often non-ecological stimuli used to evaluate

previous computational models are diagnostic of computational principles, it is

important to show these principles are sufficient to account for naturalistic

environments. Without this demonstration, it is unclear whether the behavior produced

by the model is a consequence of the artificiality of the stimuli. Furthermore, as we are
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able to show that human event boundaries mirror the boundaries predicted by the

model, we can argue that human event segmentation is sensitive to the same underlying

regularities in the stimuli that the model is, further validating the model.

Previous computational models of events have, like SEM, used recurrent neural

networks to learn the event dynamics. Even as the models differ in the specifics of the

networks used, their similarity leads to qualitatively similar predictions. This is most

evident in our simulations of community structure (Fig. 5). SEM recreates the same

qualitative pattern of behavior as both the Schapiro et al. (2013) model and human

subjects. All three show increase tendency to delineate an event boundary at community

transition points. It is not surprising that SEM and the Schapiro model learn similar

event boundary points given the similar method of learning event dynamics.

Interestingly, these event boundaries in SEM correspond with increased prediction

error, even as the Schapiro task was designed to not elicit prediction errors at

community transition points. We note that this is a consequence of the distinction

between the generative process of the task (in which community transitions are equally

probable as other transitions) and the generative process assumed by the agent (i.e.,

SEM’s generative model). SEM embodies a set of assumptions and inductive biases that

differ from a direct inversion of the generative process of the Schapiro task. We would

expect this to hold true with people as well, as people generally do not have access to

the true generative process of an unknown task. As a consequence of these difference in

assumptions, SEM predicts an increase in prediction error at community transitions

points, even though this isn’t a feature of the task. Thus, we don’t view the prediction

error account of event segmentation (Reynolds et al., 2007; Zacks et al., 2007) as

incompatible with the community structure account proposed by Schapiro et al. (2013),

since we can demonstrate the both sensitivties within SEM.

Algorithmically, SEM is closely related to the model proposed by Reynolds et al.

(2007). Both models employ a hierarchical process where event dynamics are learned

with a recurrent neural network at the lower lever, and where a higher level “event”

constrains the lower-level model. These models are also similar in that prediction errors
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play a key role in determining the identity of the higher-level “event” (Equation 7).

Computationally, the type of gating mechanism used in the Reynolds model is similar

to non-parametric clustering with a Chinese Restaurant Process prior (Collins & Frank,

2013), and while we make different commitments and assumptions, similar

computational principles drive computation in both models. More broadly, using a

recurrent neural network to learn temporal dependencies is a powerful computational

tool, and has become more common recently in models of cognition. In a notable piece

of recent theoretical work, Wang et al. (2018, 2016) argue that an architecture of

stacked recurrent neural networks is sufficient to explain a host of empirical findings in

human reinforcement learning and serves as a good model for the prefrontal cortex.

Unlike SEM, their model requires extensive pre-training but nonetheless generalizes to

novel task-variants efficiently. A similar architecture was also employed by Butz, Bilkey,

Humaidan, Knott, and Otte (2018) to show that events are useful in goal-directed

planning. They trained an agent to learn a forward model of states using recurrent

neural networks and show that allowing these networks to be contextualized by events

leads to more efficient learning in an artificial domain.

SEM is also related to computational techniques used to model sequential

processes by inferring latent states. The hidden Markov model (HMM) is an instructive

comparison because, like SEM, it assumes each observation is generated by a latent

process associated with a discrete latent variable (Bishop, 2006; Rabiner, 1989). The key

difference is that the HMM does not model the internal dynamics of the latent processes

across multiple time points. While this limits the HMM as a model of events, it is

nonetheless an empirically useful model. Recent work by Baldassano et al. (2017) used

HMMs to model event boundaries in human fMRI data, providing strong evidence that

people spontaneously generate hierarchical event boundaries with realistic experience.

SEM is also similar to the switching linear dynamical system (SLDS; Fox, Sudderth,

Jordan, & Willsky, 2010; Ghahramani & Hinton, 1996), a generalization of the HMM

that assumes the process associated with each discrete latent state is a linear dynamical

system. This assumption facilitates learning the types of dynamical processes that
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constitute events, albeit at the cost of strong constraints on the form of these dynamical

systems. SEM can be viewed as a form of switching nonlinear dynamical system.

Generalization

A key difference between SEM and other computational models of event cognition

is how SEM generalizes previously learned events to novel experiences. SEM

accomplishes this via non-parametric Bayesian inference, which allows SEM to learn

and reuse events as appropriate. Furthermore, because SEM assumes that events exist

in a structured and distributed representational space, this generalization applies not

only to the surface features of the event but also its underlying relational structure. As

such, SEM can generalize an event dynamic even when many of the features are

different, including role/filler bindings (Figure 7). The generalization of the relational

structure is advantageous because its dynamics are thought to be smoother and thus

easier to generalize than the surface features of a task (Radvansky & Zacks, 2011;

Richmond & Zacks, 2017).

This places the burden of encoding structure on the representational space (in our

case, an HRR), and allows the dynamics to be learned with a parametrized function.

While we do not make a strong commitment to how this representational system is

learned by neural systems, we note that the convolutions required to compute an HRR

are thought to be plausible in biological networks (Yamins & DiCarlo, 2016).

Regardless of how this representational space is learned, smooth functions are sufficient

to generalize because similar structures are represented with similar vectors. This allows

SEM to leverage relational structure when identifying the event boundaries and

consequently, learn more general event dynamics that abstract away some surface

features. Hence, the event dynamics SEM learns are consistent with previous theoretical

accounts in which events are encoded in terms of abstract, high-level features

(Radvansky & Zacks, 2011).

Neural and behavioral measures tend to support the claim that events represent

high-level information. A recent study by Baldassano, Hasson, and Norman (2018)
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found a neural representation for events that shared a high-level schematic structure

but otherwise had very different features. In this passive task, subjects either watched a

movie or listened to an audio narrative that followed a shared script, such as ordering

food in a restaurant, but varied the actors, genre and timing. Brain activity in the

medial prefrontal cortex was highly predictive of the script and could be used to align

the timing of events within the story, regardless of modality and other features. This

suggests that subjects maintained a form of structural information about the films

independent of their low-level features. More broadly, relational information is critical

to memory (Cohen, Poldrack, & Eichenbaum, 1997), and thus we would expect to see it

in event representations. This neural evidence is consistent with earlier memory studies

in which subjects tended to lose lower-level descriptive details of narrative texts (e.g.,

the exact words used in order) while nonetheless maintaining an accurate high-level

description of events (Kintsch et al., 1990; Zwaan, 1994).

A limitation of our model is that the use of structure is limited to within an event

model, and elements of structure cannot be combined across events. This contrasts with

human cognition, which is believed to be systematic, meaning that component pieces of

knowledge can be combined in a rule-like manner to give rise to novel thoughts (Fodor

& Pylyshyn, 1988; James, 1890). For example, an event representing a lunch meeting

could in theory be composed of events separately representing lunches and meetings.

This requires a different form of structure than the form outlined here. Specifically, this

form of productive inference requires compositional event representations.

Computationally, compositionality can introduce an adaptive statistical bias (Franklin

& Frank, 2018) and simplify representational demands by a combinatorial factor,

dramatically accelerating learning. As such, compositionality is likely to play an

important role in learning event dynamics.

How event dynamics can be composed and how their component knowledge may

be learned is an open question for future research. Notwithstanding, we can outline a

few possible mechanisms for a compositional system. Perhaps the simplest form of

compositionality would be to learn the dynamics of subsets of features independently
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and combine the independent predictions. As an intuitive example, the trajectory of a

bird flying is generally independent of the trajectory of cars stopping at an intersection.

If we observe both in the same scene, we might combine their previously learned

patterns independently to generate a single prediction for the next scene. In the

embedding space we’ve described, this is equivalent to linearly combining the

predictions of two different systems via vector addition. A second intriguing possibility

coming from machine learning and function learning is that of composable kernel

functions. Complex functions can often be decomposed into a combination of multiple,

simpler functions (e.g. linear or periodic functions) with kernel methods (e.g. Gaussian

processes or support vector machines; Duvenaud, Lloyd, Grosse, Tenenbaum, &

Ghahramani, 2013; Schulz, Tenenbaum, Duvenaud, Speekenbrink, & Gershman, 2017).

Conveniently, these compositions rely solely on matrix algebra. To the degree that we

expect event dynamics to resemble combinations of multiple simpler dynamics (e.g., the

movement of a ship tacking in the wind resembled a combination of a linear and

periodic function) then these compositions may provide a good model of how these

components are learned. It is interesting to note that the false memory paradigm

(Figure 8) does show aspects of a productive (or constructive) system, creating a novel

trace composed from distinct pieces. While there is no explicit mechanism for

generating these false memory traces, their probability under the model nonetheless

increases as an emergent property of reconstruction.

A second form of compositionality important for generalization is temporal

hierarchy, in which longer events are formed from a sequence of shorter events

(Radvansky & Zacks, 2011). When asked to judge coarse or fine events, subjects’ event

boundaries tend to line up such that the boundaries of longer (coarse) events closely

align in time with that of shorter (fine) events (Kurby & Zacks, 2011). Evidence for

event segmentation at multiple timescales is also present in neuroimaging data

(Baldassano et al., 2017). To provide an intuitive example, if washing dishes reliably

follows dinner, a model of event cognition should learn this relationship. We have not

directly addressed hierarchical events in the current work, but SEM can potentially
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solve this problem simply by learning multiple event representations at different time

scales (for example, learning a dinner event, a dish-washing event and a

dinner+dish-washing event). This is somewhat unsatisfying because a primary

computational motivation for learning events is to be able to compose multiple,

sequential events together as a forward prediction. This form of compositionality is

important for generalization but falls outside the capabilities of SEM as currently

instantiated. One potential solution is to learn the relationship between events over

time, but how this can be instantiated is a question for future research.

Memory

The memory component of our model builds on several previous probabilistic

models of memory. Most directly, it is an extension of the Dirichlet process-Kalman

filter model (DP-KF) proposed by Gershman et al. (2014), a model of memory using a

non-parametric form of the switching Kalman filter. In the DP-KF, observations were

assumed to be generated by a switching linear-Gaussian diffusion process, and memory

was modeled in terms of inference over this process. Our model is similar to the DP-KF

in some ways, and can be seen as an extension with learnable (vs random) dynamics

defining each event. This is critical for generalization (e.g., figure 7) and the

reconstruction of order memory (e.g., figure 11).

The role that dynamics play in event memory is critical for the simulations

presented here. This link has been well established empirically. Humans subjects learn

the sequential dependencies between stimuli when grouped together in a coherent event

(Avrahami & Kareev, 1994; DuBrow & Davachi, 2013, 2016; Heusser et al., 2018).

Furthermore, when asked to recall lists of items without constraints, recall can be

temporally organized even when participants are not constrained to recall items in order

(Kahana, 1996).

In our model, this sequential information corresponds to schema knowledge.

People tend to remember schema-typical information better than atypical information

(D. A. Smith & Graesser, 1981) and grammatical sequences better than agrammatical
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sequences (Botvinick & Bylsma, 2005), suggesting that sequential dependencies and

overall event knowledge play an important role in memory processing.

Event boundaries play an important role in our model by preventing information

from spreading between multiple events, which has previously been argued to be a type

of fan effect (Radvansky & Zacks, 2017). Because smoothing of event dynamics is

broken up by the event boundaries, reconstruction interference is prevented from

occurring between items in different events. A similar principle is present in the

DP-KF, which predicts that slowly drifting sensory stimuli will be pooled together,

whereas a punctate change-point will result in multiple segments (and thus, less

memory regularization). This account is supported by human behavioral data showing

less averaging of memory traces separated by a punctate change point (Gershman et al.,

2014). In our account, events facilitate a better partitioning of the sensory experience

by further relying on the dynamics of the process (which is inclusive of slowly drifting

processes). This partitioning leads to better reconstructive memory.

Our memory model shares several features with other memory models. SEM is

conceptually similar to the ‘schema-copy plus tag’ model, in which a memory trace is

composed of a corrupted copy of a schema and a set of schema a-typical features

(Graesser & Nakamura, 1982) The perspective of memory retrieval as inference over a

noisy memory trace is shared with the REM model (Shiffrin & Steyvers, 1997) and the

regularizing effect of the event dynamics is qualitatively similar to the category induced

bias proposed by Huttenlocher et al. (1991). The model is also similar to the temporal

context model (TCM; Howard, Fotedar, Datey, & Hasselmo, 2005; Howard & Kahana,

2002) and the related context maintenance and retrieval model (CMR; Polyn et al.,

2009) in that the posterior over events can be interpreted as a context that changes over

time (see also Socher et al., 2009). In TCM, a context vector that encodes an average of

recently seen items is bound to each new memory item, a strategy similar to grouping

the items of an event together in a set of learned dynamics. The CMR model adds to

this the property that task changes induce large context shifts, which partitions traces

from different contexts, another feature present in our model.
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Nevertheless, SEM offers a novel and complementary approach to reconstructive

memory that is meaningfully different from prior memory models. Broadly,

reconstructive memory can be thought of as the process by which we reconstruct the

past from fragmentary recollections. Neisser (1967) made a famous analogy about how

reconstructive memory is like a paleontologist making a dinosaur from dug-up bones.

Existing models (e.g., Norman & O’Reilly, 2003; Raaijmakers & Shiffrin, 1980; Shiffrin

& Steyvers, 1997), are concerned with which bones are found (how a memory fragment

is retrieved), whereas with SEM we take the perspective of the paleontologist and ask

how do we put the pieces together. These are two complementary problems in memory

and as such SEM complements other models of memory.

This difference between the reconstruction process of SEM and the generation of

memory traces of prior models is similar, but not equivalent, to the distinction between

semantic knowledge and episodic memory. The noisy memory trace SEM uses in the

reconstruction process can roughly be thought of as a form of episodic memory whereas

the event dynamics are more akin to semantic knowledge used to organize the during

reconstruction. This comparison breaks down when we consider that novel events have

episodic-like qualities; event dynamics for a newly learned event capture much more

detail about the specific event than would be expected for an event that has been

experienced multiple times. As an event is experienced multiple times, the learned

dynamics come to reflect the more generalize dynamics and average away the specific

features of an individual event. This leads to a transition of an episodic-like event

dynamic to a semantic-like event over time.

Neural Correlates

A further open question is how our model of events is implemented in the brain.

A growing body of evidence has linked the hippocampus and the posterior medial

network to event segmentation and memory (Ranganath & Ritchey, 2012). The

hippocampus plays a crucial role binding features and contextual information (Davachi,

2006; Diana, Yonelinas, & Ranganath, 2007; Eacott & Gaffan, 2005; Eichenbaum,
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Yonelinas, & Ranganath, 2007; Knierim, Lee, & Hargreaves, 2006; Ranganath, 2010),

and could therefore play a role in binding features of an event. Consistent with this

hypothesis, recognizing objects across an event boundary is associated with an increase

of hippocampal activity (Swallow et al., 2011), and event boundaries themselves are

linked to an increase in hippocampal signal (Baldassano et al., 2017).

The posterior medial network, a component of the default network, has

anatomical connections to the hippocampus and encompasses the parahippocampal,

posterior cingulate, retrosplenial, ventromedial prefrontal cortex, precuneus and the

angular gyrus (Ranganath & Ritchey, 2012). Hippocampal and PM regions consistently

co-activate during recall of experienced events, recollection of context, retrieval of

temporal sequences, imagination of future events, and spatial navigation (Ranganath &

Ritchey, 2012; Rugg & Vilberg, 2013; Spreng & Grady, 2010). A linking thread through

these tasks is the need for a constructed event representation. Consistent with this idea,

fMRI and electrocorticography studies have shown that regions of the PM network

integrates over long time scales (hundreds of seconds) (Hasson, Chen, & Honey, 2015),

and PM network activity is modulated by event boundaries (Kurby & Zacks, 2008).

Furthermore, event boundaries are identifiable in the angular gyrus and posterior

medial cortex in unsupervised fMRI analysis (Baldassano et al., 2017). In terms of

memory, medial prefrontal cortex brain activity has been associated with

schema-consistent memory (van Kesteren et al., 2013), further implicating the posterior

medial network in event processing. Integrating over these findings, we propose that

event dynamics could be learned and represented by the PM network (Figure 12). We

further propose that the ventromedial prefrontal cortex (vmPFC) encodes the posterior

probability distribution over event models, as the vmPFC has been previously

implicated in latent cause inference (Chan, Niv, & Norman, 2016) and the state

representation (Schuck, Cai, Wilson, & Niv, 2016; Wilson, Takahashi, Schoenbaum, &

Niv, 2014), two similar computational problems. Finally, we hypothesize that the

PM-hippocampal interactions are responsible for the reconstructive memory process, as

this process involved the reinstantiation of scene dynamics with memory traces.
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Hence, we would expect to see these regions modulated by events in different ways

as a function of the experimental paradigm. For example, we would expect to see

stronger modulation of the vmPFC in tasks where the strength of evidence for each

individual event model varies dramatically. Likewise, we might expect to see modulation

in the hippocampus and PM network in tasks that manipulate event reconstruction but

less modulation of vmPFC in such a task. We also might expect the relationship

between event segmentation and subsequent memory measures to increase following

sleep, reflecting prior research linking sleep and the increased semanticization of memory

(Dudai, Karni, & Born, 2015), and we would expect this to be reflected by hippocampal

replay. Although all of these predictions are strongly motivated by the existing

literature, our neural predictions are an open empirical question for future research.

A related issues is how the computational-level model relates to a circuit-level

implementation. We note that many key aspects of our theoretical account are neurally

plausible. Of primary interest is how event dynamics are learned by the PM system.

One component of this problem is learning an effective representational space, which

can dramatically simplify the problem of learning event dynamics. While the exact

representational format of scenes is an open question, Richmond and Zacks (2017)

argued that we should expect these representations to be smooth over time, as event

dynamics are consequently easier to learn and generalize. This mirrors techniques in

statistics and machine learning, where transformation from a complex representational

space to a simpler, intermediate representation is a commonly used tool (Bishop, 2006).

To learn the dynamics over these representations, we have used recurrent neural

networks as a function approximator. Gating mechanisms, the ability to selectively

store the internal state of the network, are a critical element of these networks and

make them well-suited to learning sequential dependencies (Hochreiter & Schmidhuber,

1997; LeCun et al., 2015). Gating mechanisms are common in biologically inspired

models of human rule learning and reinforcement learning (Collins & Frank, 2013;

Kriete, Noelle, Cohen, & O’Reilly, 2013; O’Reilly & Frank, 2006; Rougier, Noelle,

Braver, Cohen, & O’Reilly, 2005; Wang et al., 2018) and hypothesized to be supported
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Figure 12 . Neural Correlates of SEM Diagram of SEM architecture with

corresponding brain regions. Information about entities from the ventral visual areas is

fed into event models, which are instantiated in the PM network (blue) as recurrent

neural networks (RNNs). vmPFC (green) is hypothesized to select the currently relevant

event schema/RNN. The hippocampus is hypothesized to support storage and retrieval

of event-specific information (i.e., activity patterns in the currently-selected RNN).

by the midbrain dopamine system (Collins & Frank, 2013; Frank & Badre, 2011;

O’Reilly & Frank, 2006). In line with these models, one possibility is that the midbrain

dopamine system (including the ventral tegmental area and substantia nigra) provides

an error signal for learning event dynamics through a gating mechanism similar to the

ones found in artificial neural networks. This fits with the generalized view of dopamine

prediction errors recently espoused by Gardner, Schoenbaum, and Gershman (2018). As

an alternative possibility, the PM network may learn the event dynamics directly

through local connectivity and its own prediction errors. How this may occur is an open

question, but prior computational modeling work has suggested that gating mechanisms
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are consistent with cortical microcircuits (Costa, Assael, Shillingford, de Freitas, &

Vogels, 2017) and that neural oscillations may be sufficient to generate a training signal

(O’Reilly, Wyatte, & Rohrlich, 2014).

Language and other outstanding questions

In the current work, we have not considered tasks that rely on comprehension of

natural language texts. In the event cognition literature, many of the effects that have

been observed use narrative texts in their experimental design and measure reading

speeds (for review, see Radvansky & Zacks, 2014). For example, subjects show slower

reading speeds following a change in goals (Suh & Trabasso, 1993) or causes (Zwaan,

Langston, & Graesser, 1995) in narrative texts, an effect that has previously been

interpreted as reflecting an event boundary (Radvansky & Zacks, 2014). Memory for

specific sentences read in a narrative declines across time even as the memory of the

events described remains stable (Fletcher & Chrysler, 1990; Kintsch et al., 1990;

Schmalhofer & Glavanov, 1986). In principle, SEM could be applied to natural

language texts as long as these texts could be encoded into the logical scene description

language that we embed into vector space using HRRs.

More broadly, while our model of events included the ability to encode structured

representations, it is limited in its scope of semantic knowledge. We made this choice so

that we may better isolate the effects of events on perception and memory from that of

semantic knowledge, but ultimately we hope to outfit SEM with a richer semantic

database. For example, in our simulations on the video data from Zacks et al. (2006),

each of the videos that we examined concerned a single person completing an everyday

action. Our purpose was to demonstrate that SEM could generate human-like

segmentation from pixel-level data via unsupervised training alone and without access

to hand-tuned representations of objects. Nonetheless, the effectiveness of SEM on this

task was likely influenced by the simplicity of the videos. A video in which several

actors cooperate on a task, for example, or a video with background motion (cars in the

distance, birds moving around) might be much more difficult for the computational
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model. The model as implemented has no way of telling what the subject of a video is

and that it should ignore other irrelevant changes in the features. This limitation

becomes clear if we were to try to model natural language tasks, as the model would

require the semantic knowledge to properly represent the narratives. A full cognitive

model of event cognition would contain access to this structured semantic knowledge, as

well as a library of previously encountered events.
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Appendix A

Variational Autoencoder

A variational auto-encoder (Doersch, 2016; Kingma & Welling, 2013) is a

dimensionality reduction technique that employs two networks, an “encoder” and a

“decoder” network, to project the data into a lower-dimensional embedding space and

re-project it into the original space. A Gaussian prior is defined over the embedding

space and the network is trained to minimize the difference between the original image

and its reconstruction, subject to the embedding prior. We used a variant of the Deep

Convolutional Generative Adversarial Networks (DCGAN) architecture (Radford et al.,

2015) for our encoder and decoder networks and use a maximum mean discrepancy

kernel as a prior over our embedding space (Zhao, Song, & Ermon, 2017). Our encoder

network consisted of a five layers: three convolutional layers (with 64×3, 128×3 and

256×3 channels, respectively) and two fully connected layers. All of the layers used a

leaky, rectified linear activation function except the last layer, which was linear and

100-dimensional. Our decoder network reversed this process with a symmetrical

network. Prior to training, each frame was downsampled to a resolution of 64x64 using

linear interpolation. Randomly selected batches of frames were used with the ADAM

optimization algorithm (Kingma & Ba, 2014) to train the autoencoder. A PyTorch

implementation of our neural network is available at

https://github.com/ProjectSEM/VAE-video.
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Appendix B

Holographic reduced representation

Holographic reduced representations (HRR) leaves intact the similarity structure of the

composed vectors. HRRs consist of two operations, vector addition and circular

convolution. Vector addition preserves similarity, such that if a, b and c are vectors,

then then (a + c) and (b + c) are typically more similar to each other than a and b are

to each other. This is always true for zero-mean orthogonal vectors and is true in the

expectation for zero-mean random vectors in high dimensional space (e.g. x ∼ N (0, I))

To demonstrate this, compare the orthogonal vectors a, b and c with dot product as

our measure of vector similarity, then aTb = 0 while (a + c)T(b + c) = cTc. Likewise, if

we assume the two vectors x and y are similar to each other such that xTy ∕= 0, then

adding orthogonal features to them does not change their similarity. If x and y are also

orthogonal to a and b, then (x + a)T(y + b) = xTy. Thus adding random feature

vectors does not change the similarity between two vectors.

Using circular convolution as a binding operation also preserves the similarity

structure. That is, if two vectors are similar to each other in vector space, then their

convolution with a third vector will retain that similarity. We can show this by

approximating a circular convolution with a tensor product (Doumas & Hummel, 2005;

Plate, 1995), and noting that tensor operations are distributive, such that

(x + y) ⊗ z = x ⊗ z + y ⊗ z. If two vectors a and b share a common factor c such that

a = a0 + c, and b = b0 + c, where a0, b0 and c are orthogonal vectors, we can

decompose their tensor product with d into the sum of two separate tensors

a ⊗ d = a0 ⊗ d + c ⊗ d

and

b ⊗ d = b0 ⊗ d + c ⊗ d

provided that d is orthogonal to a and b. Because both tensors products share a

common tensor as a linear factor, we can use the arguments above to show that they

are similar to each other. Thus, taking the tensor product of two similar vectors and a
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third random vector will result in two similar tensor product. Since circular convolution

is a compressed tensor product operation (Doumas & Hummel, 2005; Plate, 1995), this

argument will hold generally for HRRs as well.
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Appendix C

Sampling reconstruction memory model

In order to sample the reconstructive memory model, we define a Gibbs sampling

algorithm. The algorithm has three interlocking pieces: (1) sampling reconstructed

estimates of the scene features x̂ conditioned on samples of ŷ and ê, (2) sampling

estimates of ŷ from conditioned on samples of x̂ and ê and (3) sampling estimates of ê

conditioned on samples of x̂ and ŷ. As each component is conditionally independent of

the other, they can be iteratively sampled until convergence.

To initialize, at each time n we either draw a sample of ŷn = (x̂, ê, n) from either ỹ

without replacement or assign it to be y0. The features of the scenes x̂ are initialized

from a normal distribution and the sequence of events e is initialized from the sCRP

prior.

Sampling Pr(x|ỹ, e). In the first step of the sampling algorithm, we draw

samples of the scene features conditioned on the corrupted memory trace ỹ and the

event label e. The probability of the feature vector x′ occurring at time n can be

recursively defined under the generative model as:

Pr(xn|x1:n−1, ỹn, en, θ) = N (x̄, λI) (19)

where the mean x̄n is a precision-weighted linear combination of the scene features of

the memory trace x̃n from the corrupted memory trace ỹn and the predicted location of

the embedded scene under the event model:

x̄n = uf(x1:n−1, et, θ) + (1 − u)x̃n (20)

where u = β−1/ (β−1 + τ−1) and λ = 1/ (β−1 + τ−1) are the mixture weights of the

mean and uncertainty of the distribution, respectively.

Sampling Pr(ỹ|x, e). The samples of the features vectors are then used to

sample ỹ and e. The corrupted memory traces ỹ are sampled to determine both the time

the occur as well as whether they are recalled at all. Samples of ỹ are drawn from the

conditional distribution of the memory trace given the reconstructed features and event
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labels, which is defined by inverting the corruption processes (Equations 12, 13 and 14):

Pr(ỹi|xn, en) =






0 if ei /∈ {en, e0}

/Z if ỹi = y0

|ñ−n|<bN (x̃′; xn, τ I)/Z otherwise

(21)

where ỹi = (x̃′, ẽ′, ñ), and where |ñ−n|<b is an indicator function that returns 1 if

|ñ − n| < b and 0 otherwise. Thus, the probability the corrupted memory item occurs at

time n is zero if the corrupted event label is mismatched, or if the corrupted time index

ñ is more than b steps away from n.

It is important to note that the probability of sampling a null event under this

process is both a function of  and the estimate of xn. This is because the normalizing

constant,

Z =  +


ỹi

|ñ−n|<bN (x̃′; xn, τ I) (22)

which will typically be larger as a function of ||x̂n − xn||, thus lowering the probability

of a ‘null’ event. Consequently, the quality of the reconstructed features will influence

the degree to which a ‘null’ token is included. It is also worth noting that the use of a

uniform prior over a restricted range greatly simplifies the sampling problem when

compared to, for example, a discretized normal distribution. Because we assume the

each memory token ỹi is sampled without replacement, there are less than 2N2b+1 valid

assignments of ŷ, where as an unbounded time corruption process leads to 2N ! valid

permutations.

Sampling Pr(e|x, ỹ). To complete the inference process, the samples of x̂ and ŷ

are used to update the estimate of the sequence of events. Conditioned on x, f and θ,

the probability of events e1:t under the generative process is recursively defined as:

Pr (e|x, e1:n−1) ∝ Pr(xt|x1:n−1, e) Pr(e = k|e1:n−1) (23)

As previously noted, we store a corrupted memory of the event label ẽi in the

memory trace ỹi. Conditioning on this memory trace, the reconstruction process is thus:

Pr(e|ỹi, x, en−1) =






Pr (e|x1:n−1, en−1, ) if ẽ′ = e0 or ỹi = y0

1 otherwise
(24)
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If the associated event memory ẽ′ is equal to the ‘null’ token e0, or if ỹi is the ‘null’

memory item y0, then the generative process (Equation 23) is sampled. Otherwise, the

memory label is taken from the estimated memory trace ŷn In the full Gibbs sampler,

we draw alternatively draw samples of x̂, ŷ and ê until convergence. To this sample, we

can apply different scoring rules to simulate different memory measures. For example,

we model recall by whether a trace ỹ is in the final sample. These measures are specific

to each simulation and we present each them with the relevant simulation.
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Appendix D

Parameter values

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 5, 2019. ; https://doi.org/10.1101/541607doi: bioRxiv preprint 

https://doi.org/10.1101/541607
http://creativecommons.org/licenses/by/4.0/


STRUCTURED EVENT MEMORY 82

Simulation Embedding Dim. ν0 s2
0 λ α β τ 

Zacks et al. (2006) 100 10 0.3 105 0.1 - - -

Schapiro et al. (2013) 25 1 1.0 105 1.0 - - -

Structured Event Boundaries 266 1.0 0.444 1.0 1.0 2 0.1 0.25

Bower et al. (1979) 185 10. 0.24 1.0 10.0 2 0.15 0.75

Radvansky & Copeland (2006) 100 25 0.2 1.0 1.0 2 0.1 0.25/0.75

Pettijohn & Radvansky (2016) 25 100 0.2 1.0 1.0 2 0.1 0.25

DuBrow & Davachi (2013, 2016) 100 25 0.2 1.0 1.0 2 0.1 0.25
Table D1

Model Parameter values The parameter values for each simulation is listed

separately in a row.
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learning rate β1 β2  decay n_batches

Parameter 0.01 0.9 0.999 1e-07 0.0 200
Table D2

Adam Parameters values used to train Gated-Recurrent units to estimate event

dynamics. Each simulation used the optimization algorithm to estimate their event

dynamics.
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