
 

 
 

Electrical coupling controls dimensionality and chaotic firing of 1 

inferior olive neurons 2 

 3 

Huu Hoang1,9*, Eric J. Lang2, Yoshito Hirata3,4,5, Isao T. Tokuda6, Kazuyuki Aihara3,5, Keisuke 4 

Toyama1, Mitsuo Kawato1,7* and Nicolas Schweighofer8* 5 

 6 

1 Computational Neuroscience Laboratories, ATR Institute International, Kyoto, Japan 7 

2 Department of Neuroscience and Physiology, New York University School of Medicine, New 8 

York, USA 9 

3 Institute of Industrial Science, The University of Tokyo, Tokyo, Japan 10 

4 Mathematics and Informatics Center, The University of Tokyo, Tokyo, Japan 11 

5 International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, 12 

Tokyo, Japan 13 

6 Department of Mechanical Engineering, Ritsumeikan University, Shiga, Japan 14 

7 RIKEN Center for Advanced Intelligence Project, ATR Institute International, Kyoto, Japan 15 

8 Biokinesiology and Physical Therapy, University of Southern California, California, USA 16 

9 Lead contact 17 

* Corresponding authors: H.H (hoang@atr.jp), M.K (kawato@atr.jp) and N.S 18 

(schweigh@pt.usc.edu)  19 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2019. ; https://doi.org/10.1101/542183doi: bioRxiv preprint 

https://doi.org/10.1101/542183
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 

SUMMARY 20 

 21 

One of the main challenges facing online neural learning systems with numerous modifiable 22 

parameters (or “degrees-of-freedom”) such as the cerebellum, is how to avoid “overfitting”. We 23 

previously proposed that the cerebellum controls the degree-of-freedoms during learning by 24 

gradually modulating the electric coupling strength between inferior olive neurons. Here, we 25 

develop a modeling technique to estimate effective coupling strengths between inferior olive 26 

neurons from in vivo recordings of Purkinje cell complex spike activity in three different coupling 27 

conditions. We show that high coupling strengths induce synchronous firing and decrease the 28 

dimensionality of inferior olive firing dynamics. In contrast, intermediate coupling strengths 29 

induce chaotic firing and increase the dimensionality of firing dynamics. Our results thus support 30 

the hypothesis that effective coupling controls the dimensionality of inferior olive firing, which 31 

may allow the olivocerebellar system to learn effectively from a small training sample set despite 32 

the low firing frequency of inferior olive neurons.  33 
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INTRODUCTION 34 

 35 

Fifty years ago, David Marr proposed a theory that synaptic plasticity in the cerebellar cortex 36 

induces motor learning (Marr, 1969). Multiple experimental and computational studies have 37 

since supported this theory: climbing fiber afferents carry error signals (Bazzigaluppi et al., 38 

2012; Keating and Thach, 1995; Kitazawa et al., 1998; Kobayashi et al., 1998), that modify 39 

parallel-fiber-Purkinje-cell synapses (D’Angelo et al., 2016; Hansel et al., 2001; Ito, 2001; 40 

Kuroda et al., 2001), and drive learning of internal models for motor control (Bastian, 2006; 41 

Kawato and Gomi, 1992; Schweighofer et al., 1998; Tseng et al., 2007; Vinueza Veloz et al., 42 

2015; Herzfeld et al. 2018). A fundamental question remains unanswered, however: how does 43 

the cerebellum learn to control the high dimensional and nonlinear motor systems that are 44 

typical of vertebrates for complicated movement patterns, while even the most advanced robots 45 

fail to perform similar movements (Adolph et al., 2012; Atkeson et al., 2018)? Moreover, how 46 

does the cerebellum achieve such learning despite being constrained by the relatively small 47 

numbers of training samples and the low-firing frequency from the inferior olive (IO) neurons, 48 

which give rise to the climbing fiber inputs? Here, we address these questions at three distinct 49 

levels: computational, algorithmic, and implementational (Marr, 1982), and provide 50 

computational and experimental clues for possible answers. 51 

 52 

At the computational level, artificial learning systems that have many adjustable parameters 53 

require a proportionally large number of training samples to achieve adequate learning 54 

generalization (LeCun et al., 2015; Mnih et al., 2015; Silver et al. 2016). In contrast, if the 55 

number of training samples is lower than the number of parameters, severe overfitting to the 56 

noise in the data occurs. This creates a large generalization error, proportional to D/(2n), where 57 

n is the number of training samples and D is the number of degree-of-freedoms (DOFs), which 58 
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is the number of adjustable parameters in the learning system (Watanabe, 2009; Yamazaki, 59 

2014). Therefore, an online learning system, such as the cerebellum, must keep the number of 60 

DOFs small in the early stages of learning when the training sample set is small, and then 61 

increase it gradually during the course of learning (Schaal et al., 2002; Garrigues and Ghaoui, 62 

2009).  63 

 64 

At the algorithmic level, we earlier proposed that the number of cerebellar DOFs is modulated 65 

by the degree of synchrony between IO neurons (Kawato et al. 2011; Schweighofer et al. 2013; 66 

Tokuda et al. 2017). According to this proposal, early in learning, IO synchrony is high and 67 

groups of related neurons in the olivo-cerebellar system behave, in the limit, as a single-neuron 68 

chain, thus decreasing the number of DOFs. The resulting synchronous IO error signals would 69 

both significantly improve real-time motor control (Lang et al., 2016), and lead to massive 70 

changes in efficacies of the parallel-fiber-Purkinje-cell synapses, resulting in fast but crude 71 

learning. As learning of the motor act progresses, IO synchrony is decreased, potentially 72 

allowing the occurrence of chaotic resonance to enhance information transmission of the error 73 

signals (Schweighofer et al., 2004; Tokuda et al., 2010; Masuda and Aihara, 2002; Makarenko 74 

and Llinas, 2005; Nobukawa and Nishimura, 2016), which would overcome the constraint of low 75 

IO firing rates (Eccles et al., 1966; Llinás and Yarom, 1981). Specifically, chaotic resonance 76 

would increase the number of DOFs, and thereby allow more sophisticated learning, resulting in 77 

fine tuning of the motor act (Tokuda et al., 2010, 2013). 78 

 79 

At the implementational level, we propose that the distinctive features of the IO neurons, the 80 

source of the climbing fibers, and the anatomy of the loop formed by the Purkinje cells, deep 81 

cerebellar nucleus neurons, and IO neurons, allow modulation of the number of DOFs during 82 

learning. The IO neurons form the strongest electrically coupled neuronal network in the adult 83 
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mammalian brain (De Zeeuw et al., 1995; Condorelli et al., 1998; Belluardo et al., 2000), with 84 

electrical synapses driving synchronization when the coupling is strong (Blenkinsop and Lang, 85 

2006 Marshall et al., 2007; Lang 2002). In addition, presynaptic GABAergic terminals control the 86 

efficacy of electrical coupling (Llinas et al., 1974; Sotelo et al., 1974; Best and Regehr, 2009; 87 

Onizuka et al., 2013; Lefler et al., 2014). These GABAergic afferents largely arise from the deep 88 

cerebellar nucleus (de Zeeuw et al., 1989; Nelson and Mugnaini, 1989; Fredette and Mugnaini, 89 

1991), which are part of the anatomical closed-loops formed between corresponding regions of 90 

the IO, cerebellar cortex, and deep cerebellar nuclei (Sugihara and Shinoda, 2004, 2007; Apps 91 

and Hawkes, 2009; Sugihara et al., 2009). Thus, the Purkinje cells, via this feedback circuit, can 92 

regulate the synchrony levels of their corresponding climbing fiber inputs, through the double- 93 

inhibition within the feedback circuit (Marshall and Lang, 2009).  94 

 95 

Although we have shown in simulations that decreasing IO synchrony via modulation of 96 

electrical coupling enhances cerebellar learning (Schweighofer et al., 2004; Tokuda et al., 2010, 97 

2013), there are no experimental supports to the basic assumptions about how electrical 98 

coupling, synchrony, chaotic firing, and dimensionality of firing dynamics are linked. Here, we 99 

analyze the effect of coupling on the DOFs and on the induction of chaotic resonance by 100 

utilizing in vivo recordings of complex spikes under three coupling conditions.  Specifically, we 101 

examine two predictions of our previous hypotheses that 1) increasing the synchrony level, via 102 

increased electrical coupling between inferior olive neurons, decreases the dimensionality of the 103 

IO firing dynamics and 2) intermediate coupling induces chaotic spiking and maximizes the 104 

dimensionality of inferior-olive firing dynamics. 105 

 106 

RESULTS 107 
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 108 

Estimation of the effective coupling between IO neurons in vivo. 109 

To examine the effect of electrical coupling on dimensionality reduction and chaotic dynamics, 110 

we first need to estimate the range of effective coupling strengths between IO neurons. Direct 111 

quantitative measurement of electrical coupling in the IO has been obtained in slice 112 

preparations (Devor and Yarom, 2002; Hoge et al., 2011; Lefler et al., 2014); however, it 113 

remains technically impossible to measure in vivo.  We thus employed an indirect approach to 114 

estimate the coupling that involved comparing Purkinje cell complex spike activity recorded 115 

simultaneously from arrays of Purkinje cells (Blenkinsop and Lang, 2006; Lang, 2002; Lang et 116 

al., 1996) with simulated activity generated by a model of the IO using a Bayesian method, 117 

which we previously proposed and validated (Hoang et al., 2015)1. Here, we modified this 118 

method to further improve the robustness of the coupling estimations via Bayesian model-119 

averaging.  120 

 121 

Briefly, in the model, each IO neuron comprises a soma, a main dendrite, and four dendritic 122 

spine compartments, with these compartments having distinct ionic conductances. Most 123 

notably, the dendritic compartment has a high threshold calcium conductance and a calcium-124 

activated potassium conductance, which are responsible for the after-depolarization and after-125 

hyperpolarization sequence that follows each sodium spike and for the low firing rates of IO 126 

neurons (Schweighofer et al., 1999).  Each neuron was coupled to its neighboring neurons via 127 

electric coupling conductances on the spine compartments, with one inhibitory input 128 

conductance per spine. Synaptic noise was added to better account for stochastic process in IO 129 

                                                 
1 Purkinje cell complex spikes, as opposed to simple spikes that are due to the granule cell 
inputs, bear a one-to-one relationship to IO spikes. Thus, complex spikes can be used as a 
proxy for IO spikes (see Figure S1 for examples of complex spike recordings in these three 
conditions; see Methods for experimental procedures). 
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neurons - for review of IO anatomy and function, see (De Zeeuw et al., 1998) and of the model, 130 

see (Hoang et al., 2015; Onizuka et al., 2013).  131 

 132 

From the model, it is possible to derive the theoretical "effective" electrical coupling 133 

conductance geff as a function of the axial conductance of the spines gs, the electrical coupling 134 

conductance gc, and the GABAergic synaptic conductance gi (see Katori et al., 2010 and 135 

Experimental Procedures for details). Estimates for gc and gi, were obtained by comparing the 136 

model spike activity to the complex spike data sets (gs was held constant). However, initial 137 

simulations showed that the firing frequency of the synaptic noise inputs significantly affected 138 

the spiking behavior of the neurons in the model, thus the fit of the firing dynamics of the model 139 

to the data and the estimation results. To address this issue, we estimated gc and gi for different 140 

values of synaptic noise input frequencies via a model-averaging approach (Grueber et al., 141 

2011). Specifically, we first constructed a number of models with different frequencies of 142 

synaptic noise inputs, as observed in cerebellar slice data (Najac and Raman, 2015). We then 143 

obtained an estimate of gi and gc via the Bayesian estimation method from each model (Hoang 144 

et al., 2015; see Experimental Procedures for details). The final estimates of gi and gc were 145 

obtained by averaging these individual model estimates, weighted in proportion to the 146 

goodness-of-fit of the models via Bayesian model-averaging (see Figure S2 and Experimental 147 

Procedures for details).  148 

 149 

Following the procedures outlined above, estimates of gi and gc were obtained for three coupling 150 

conditions (low, control, high). The low coupling condition was generated by intra-IO injection of 151 

the gap junction blocker carbenoxolone (CBX), whereas the presumed high coupling condition 152 

was generated by intra-IO injection of the GABA blocker picrotoxin (PIX). Estimation results 153 

show that, as expected, the mean gi and gc were reduced approximately 20% and 22% under 154 
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the PIX and CBX from their own control (CON) values, respectively. When the two CON groups 155 

were combined, the estimated inhibitory conductance gi in the CON condition (Figure 1A – 1.11 156 

± 0.22 mS/cm2, n = 90 neurons) was significantly decreased in the PIX condition (0.84 ± 0.26 157 

mS/cm2, n = 46 neurons, PIX-CON: p < 0.0001) and was comparable to that in the CBX 158 

condition (1.02 ± 0.13 mS/cm2, n = 44 neurons, CBX-CON: p = 0.03). Similarly, the estimated 159 

gap-junctional conductance gc in the CBX condition (Figure 1B – 0.87 ± 0.23 mS/cm2, CBX-160 

CON: p < 0.0001) was smaller than in the CON condition (1.22 ± 0.28 mS/cm2), but there was 161 

no significant difference between the PIX (1.29 ± 0.18 mS/cm2, PIX-CON: p = 0.23) and CON 162 

conditions.  163 

 164 

As a result of these changes in gi and gc, the estimated effective coupling strength, geff, 165 

calculated using Equation 1, differed across the three conditions (one-way ANOVA: p < 0.0001). 166 

It was smallest for the CBX condition (Figure 1C – geff = 0.030 ± 0.003 mS/cm2, CBX-CON: p < 167 

0.0001), intermediate for the CON condition (geff = 0.033 ± 0.003 mS/cm2) and largest for the 168 

PIX condition (geff = 0.037 ± 0.002 mS/cm2, PIX-CON: p < 0.0001). The estimated gi and gc 169 

parameters were then used in the neuronal network to generate simulated spike trains under all 170 

three conditions. In each case, the spike trains were comparable to those of the recorded 171 

complex-spike activity. In particular, the firing rates of neurons in the CBX condition were lower 172 

(see Figure 2A, firing rate of model 0.58 ± 0.55 Hz; data 0.59 ± 0.55 Hz) than in the CON 173 

condition (see Figure 2B, model 1.34 ± 0.77 Hz; data 1.36 ± 0.8 Hz), and firing rates in the PIX 174 

condition were higher (Figure 2C, model 2.42 ± 0.95 Hz; data 2.51 ± 1.05 Hz). 175 

 176 

Next, to examine whether the estimates for effective coupling strengths in the three conditions 177 

were biologically realistic, we computed the coupling coefficients (CCs) for the model neurons. 178 

We first hyperpolarized all model neurons to -69 mV by injection of Ihyp = -1 µA/ cm2 to make 179 
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them responsive to the stimulus. We then injected a step current Icmd = -1 µA/cm2 in the soma of 180 

the center neuron and computed the CCs as the average ratio of change in steady state 181 

membrane potentials of this “master” cell and its four neighboring cells in the network (Figure 182 

S3). As expected, CC was smaller in the CBX condition (Figure 1D – CC = 0.01 ± 0.005, CBX-183 

CON: p = 0.01) and larger in the PIX condition (CC = 0.02 ± 0.004, PIX-CON: p < 0.0001) than 184 

in the CON condition (CC = 0.014 ± 0.007). Furthermore, CCs are highly compatible with 185 

previously reported in vitro values (Lefler et al., 2014). In particular, our results showed that CCs 186 

in the PIX and CON conditions were comparable to those of the control (CC = 0.021 ± 0.02, cf. 187 

Table S1, Lefler et al., 2014) and light-activated (CC = 0.012 ± 0.013) conditions, respectively. 188 

In both cases, a larger (about double) CC value was found for the condition with less GABA 189 

activity (PIX in our experiments and control in Lefler et al, 2014).   190 

 191 

The dimensionality reduction by effective coupling 192 

To quantitatively investigate how synchrony and dimensionality change when effective coupling 193 

varies, we estimated the synchrony level and the dimensionality from the spike data of IO 194 

neurons in individual animals (see Experimental Procedures for more details).  In strong 195 

agreement with previous studies (Blenkinsop and Lang 2006; Lang 1996), the synchrony level 196 

in 1-ms bins increased 2-3 fold in the PIX condition (synchrony = 0.068 ± 0.051, t-test PIX-CON: 197 

p = 0.03, Fig 3A) and decreased about 70% in the CBX condition (synchrony = 0.008 ± 0.004, t-198 

test CBX-CON: p = 0.04) compared to the CON condition (synchrony = 0.025 ± 0.018). In 199 

addition, when plotting the synchrony as a function of effective coupling averaged for each 200 

animal, we found a significant correlation, as expected (regression model in Wilkinson notation 201 

(Wilkinson and Rogers, 1973): synchrony ~ 1 + geff, R
2 = 0.22, F-test: p = 0.04, Fig 3B) with a 202 

positive coefficient (mean ± sem, 5 ± 2).  203 

 204 
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Next, we estimated the dimensionality (d) of complex spike activity for selected neurons in each 205 

animal. Briefly, we extracted the average firing rates of neurons in 50-second long periods and 206 

applied principal component analysis (PCA) to compute the covariance of these firing rate 207 

vectors. d has been approximated (by Equation 5) as the minimal number of components 208 

accounting for 90% of variability in the data (Abbott et al., 2011). However, with this method, the 209 

dimensionality d is under-estimated for data with small numbers of neurons, as in our data 210 

(Mazzucato et al., 2015). We thus developed a new extrapolation method to correct the 211 

dimensionality estimation (see Experimental Procedures for more details). Results showed that 212 

d was significantly reduced by PIX (d = 1.8 ± 0.8, t-test PIX-CON: p = 0.02, Fig 3C) compared to 213 

the CON condition (d = 3.7 ± 1.2), but there was no significant difference between the CBX (d = 214 

3.5 ± 1.6, t-test CBX-CON: p = 0.7) and the CON conditions, probably because of a relatively 215 

small effect CBX had on complex spike firing rate. In addition, a regression analysis showed a 216 

strong correlation between geff and d (regression model: d ~ 1 + geff, R
2 = 0.28, F-test: p = 0.025, 217 

Fig 3D). Here the regression coefficient was negative (mean ± sem, -280 ± 113) and opposite to 218 

that of synchrony vs. geff (mean ± sem, 5 ± 2, see above), supporting our hypothesis that 219 

synchronization is a feasible mechanism for dimensionality reduction in IO neurons and that 220 

effective coupling is the control parameter for the IO to optimize the dimensionality of the olivo-221 

cerebellar system. 222 

 223 

Inverted U-shaped relationship between complexity entropy and effective coupling 224 

Finally, we addressed the question of whether physiological and intermediate coupling strengths 225 

maximize the chaotic level of IO activity. The Lyapunov exponents quantify the sensitivity of a 226 

dynamical system to initial conditions (Farmer and Sidorowich, 1987; Sano and Sawada, 1985), 227 

and are thus often used as indicators of chaos. However, methods to compute Lyapunov 228 
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exponents from time series data (Kantz, 1994; Rosenstein et al., 1993) are not applicable to our 229 

spike data sets, because the computation requires access to continuous variables. We therefore 230 

computed the complexity entropy (Letellier 2006; Hirata and Aihara, 2009, see Experimental 231 

Procedures for details), which has been shown to approximate the first Lyapunov exponents in 232 

simulations of the IO neurons (see Figure S6).  233 

 234 

For both the simulated IO spike and the experimental complex spike data sets, we investigated 235 

whether the relationship between complexity entropy and effective coupling formed an inverted 236 

U-shape, as previously shown in simulations (Schweighofer et al., 2004; Tokuda et al., 2010). 237 

For each of the experimental IO neurons, we computed the complexity entropy from the 238 

simulated spike data that was generated with the estimated coupling values that best fit the data 239 

in terms of the PCA error (difference between experimental and simulated spike data in the PCA 240 

space, see Figure S2A). For the IO model, the second order model entropy ~ 1 + geff + geff
2, 241 

where entropy is the complexity entropy, had a negative coefficient of the second order term 242 

(mean ± sem, -246 ± 46), and better fit the simulated spikes in the three conditions than the 243 

first-order linear model (entropy ~ 1 + geff) (Figure 4A, the Log likelihood ratio (LLR): p < 244 

0.0001). For the IO data (Figure 4B), a mixed effect regression model analysis, with Animal as a 245 

random intercept accounting for repeated measures within the same animal, showed that the 246 

second order model entropy ~ 1 + geff + geff
2 + (1 | Animal), where (1 | Animal) is the random 247 

intercept, had a negative fixed-effect coefficient of the second order term (mean ± sem, -217 ± 248 

63), and provided a better fit than the linear model (entropy ~ 1 + geff + (1 | Animal), LLR: p = 249 

0.0007). Thus, for both the IO model (Figure 4A) and the experimental data (Figure 4B), an 250 

inverted U-curve that peaks at around geff = 0.032 was found, indicating that similar intermediate 251 

coupling strengths induce chaotic behavior in both the model and the experimental data. It 252 

should be noted that the relatively small changes in the complexity entropy that we observed in 253 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2019. ; https://doi.org/10.1101/542183doi: bioRxiv preprint 

https://doi.org/10.1101/542183
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

12 

the model and data induce significant changes in firing dynamics, from synchronous and 254 

rhythmic firings (entropy = 0.24, λ1 = 20 bits/second, cf. Figure S6B) to chaotic firings (entropy = 255 

0.29, λ1 = 50 bits/second).  256 

 257 

 258 

DISCUSSION 259 

 260 

We developed a novel technique that combines computational modeling, Bayesian inference 261 

and model-averaging to estimate the effective coupling from rat in vivo complex spike data. The 262 

estimated effective coupling strengths of the three data conditions were consistent with the 263 

physiological effects of the drugs, i.e., increased by PIX and decreased by CBX. Notably, the 264 

coupling coefficients estimated from our simulations were highly compatible with in vitro values 265 

observed in (Lefler et al., 2014). In both studies, an approximate doubling of the CC was found 266 

for the conditions where GABA activity was lower or blocked. Such compatibility validates the 267 

estimation of coupling strengths in our study. 268 

 269 

Our analysis of complex-spike data shows that increased electrical coupling between IO 270 

neurons decreases the dimensionality of the IO firing dynamics. Dimensionality reduction has 271 

long been considered one of the core computations in the brain (Pillow et al., 2008; 272 

Cunningham and Yu, 2014; Churchland et al. 2010; Rigotti et al., 2013; Mazzucato et al., 2016). 273 

Our study provides direct evidence that electrical coupling among neurons can control the 274 

dimensionality of the population activity by modulating the synchrony of the neural code. No 275 

significant difference of dimensionality between CBX and CON conditions was found, probably 276 

because of the incomplete effect of CBX in de-synchronizing complex spike activity (Blenkinsop 277 
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and Lang, 2006). Quantitatively, the approximately two-fold reduction in dimensionality from the 278 

PIX to the CON condition was highly comparable to that of stimuli-evoked activity of cortical 279 

neurons under different stimulus conditions and in varied tasks (Mazzucato et al., 2016; 280 

Churchland et al. 2010). We note, however, that additional mechanisms could work in parallel to 281 

effectively control the DOFs, such as pruning of irrelevant inputs (Cortese et al. 2018). In the 282 

olivo-cerebellar system, in particular, climbing fiber-Purkinje-cell synapses are gradually 283 

eliminated based on IO activity during development (Schweighofer, 1998; Good et al., 2017). 284 

Further experimental and computational analyses are required to elucidate the interplay 285 

between possible mechanisms in controlling the DOFs of the olivo-cerebellar system.  286 

 287 

Our results also show that intermediate ranges of electrical coupling induce chaotic dynamics. 288 

In contrast, weak or strong coupling decrease the complexity entropy. The finding of an inverted 289 

U curve of complexity entropy as a function of effective coupling in both the model and 290 

experimental data are consistent with the “chaotic resonance” hypothesis, according to which 291 

chaotic firing increases information transmission despite the low firing rates of IO neurons 292 

(Schweighofer et al., 2004). We have previously proposed, and shown in simulations, that such 293 

chaotic firing may be useful to enhance cerebellar learning by increasing the error transmission 294 

capability of the olivocerebellar system (Tokuda et al., 2010). In agreement with this view, a 295 

previous study showed that the entropy of neural activity and mutual information between 296 

stimulus and response are maximized in balanced excitatory/inhibitory cortical networks (Shew 297 

et al., 2011). 298 

 299 

Experimental data supporting the importance of electrical coupling for cerebellar learning comes 300 

from mice mutants which, due to lacking of electrotonic coupling between IO cells, exhibit 301 

deficits in learning-dependent motor tasks (Van Der Giessen et al., 2008). Similarly, humans 302 
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with reduced IO coupling show motor learning impairments (Van Essen et al., 2010). Because 303 

the inhibitory neurons controlling the strength of coupling between IO cells are largely located in 304 

the deep cerebellar nuclei (Fredette and Mugnaini, 1991; De Zeeuw et al., 1989), the major 305 

output station of the cerebellum, the strength of effective coupling, and thus the level of chaotic 306 

behavior, presumably depends on the modulation of the deep cerebellar nuclear neurons via 307 

plastic processes in the cerebellar cortex and nuclei (Best and Regehr, 2009; Chaumont et al., 308 

2013; DeGruijl et al., 2014; Lefler et al., 2014; Turecek et al., 2014; Witter et al., 2013). Indeed, 309 

changes in simple spike levels produce significant changes in complex spike synchrony 310 

(Marshall and Lang, 2009). Thus, the IO coupling strength during cerebellar learning could be 311 

adaptively modulated, with the Purkinje cell-cerebellar nuclei-inferior olive triangle acting to 312 

decrease coupling along the progress of cerebellar learning (Kawato et al., 2011; Schweighofer 313 

et al., 2013; Tokuda et al., 2013).  314 

 315 

According to this view, in the early phase of learning, the motor commands are strongly 316 

disturbed and far from the desired ones. The Purkinje cells, which are then strongly modulated 317 

by large sensory inputs and error signals, suppress the inhibitory effect of the neurons in 318 

cerebellar nuclei on the IO. Thus, the IO neurons are initially strongly coupled and the 319 

dimensionality is low. Because of this low dimensionality, the IO network would respond only to 320 

low-dimensional components of the error signals, which may convey only the gross features of 321 

the motor commands. However, the strong coupling allows a widespread synchrony among IO 322 

neurons and potentially leads to massive changes in the parallel-fiber-Purkinje-cell synaptic 323 

weights, resulting in fast but coarse learning. In addition to its effect on learning, such highly 324 

synchronized IO activity may have a downstream effect via a large network of synchronized 325 

Purkinje cells (Blenkinsop and Lang, 2011; Lang and Blenkinsop 2011; Tang et al., 2016), that 326 

could trigger an emergency or protective feedback motor commands in response to this error. In 327 
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contrast, in the late phase of learning, as the motor error becomes smaller, the Purkinje cell 328 

activity may become weaker, allowing increased activity of cerebellar nuclear neurons. This 329 

would result, in turn, in reduced IO coupling and higher dimensionality. At this stage, the 330 

moderate coupling strengths could induce chaotic IO spike activity that would transmit high 331 

dimensional error signals, resulting in more sophisticated learning (Shaikh et al., 2017). A 332 

further possibility is that these high dimensional signals would also be used for the fine grain 333 

motor control commands that are needed for precise motor coordination (Hoogland et al, 2015). 334 
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EXPERIMENTAL PROCEDURES 603 

 604 

The recording experiments were performed in accordance with the National Institute of Health 605 

Guide for the Care and Use of Laboratory Animals.  Experimental protocols were approved by 606 

the Institutional Animal Care and Use Committee of New York University School of Medicine. 607 

 608 

Experimental data 609 

The analyses were performed on a subset of data obtained in two prior series of experiments in 610 

ketamine/xylazine anesthetized female, Sprague-Dawley rats that involved either injection of 611 

picrotoxin (PIX) or carbenoxolone (CBX) to the IO to block GABA-A receptors or gap junctions, 612 

respectively (Blenkinsop and Lang, 2006; Lang, 2002; Lang et al., 1996). The specific 613 

experiments were chosen primarily on the basis of having typical complex spike activity in 614 

control and a large change in activity in response to the drug injection. 615 

 616 

Details of the experimental procedures can be found the original reports. In brief, a rectangular 617 

array of glass microelectrodes was implanted into the apical surface of crus 2a. The arrays 618 

typically contained 3-4 mediolaterally running rows and up to 10 rostrocaudally running 619 

columns, with an interelectrode spacing of ~250 µm. Electrodes were implanted to a depth of 620 

~100 µm below the brain surface such that complex spikes from individual Purkinje cells were 621 

recorded. In each experiment, spontaneous complex spike activity was recorded during an initial 622 

control period. Following the control (CON) period, the IO was located by lowering a 623 

microelectrode through the brainstem under stereotaxic guidance until activity characteristic of 624 

IO neurons was observed. The microelectrode was then replaced by an injection pipette 625 

containing the drug solution that was lowered to the same location as the site where IO activity 626 
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was found. A slow injection of drug solution was then performed (~1 µl over 5-10 min). The drug 627 

conditions analyzed were recorded after completion of the injection and a clear change in 628 

activity was observed. The multielectrode arrays recorded from 10 - 30 Purkinje cells in each of 629 

the CBX experiments (n = 6 animals), and from 16- 42 Purkinje cells in the PIX experiments (n = 630 

3 animals). 631 

 632 

The effect of CBX and PIX on complex spike activity often varied among cells within an 633 

experiment. This was likely due to the Purkinje cells in different parts of the array receiving 634 

climbing fibers from different regions of the IO, that the drugs were injected at a single point 635 

within the IO, and that drug concentration (and therefore potentially efficacy) will fall with 636 

distance from the injection site. Indeed, the IO is an extended structure (particularly in the 637 

rostrocaudal axis where it is ~2 mm long). We therefore considered the effects of the drugs 638 

when selecting the neurons for analysis. That is, Purkinje cells that exhibited significant changes 639 

in complex spike synchrony, measured as the coincidence of spikes in 1 ms time bins, between 640 

the control and drug conditions were selected. For CBX, the criterion was a 50% decrease and 641 

for PIX it was a 200% increase. In total, we analyzed spike train data from 500-second long 642 

periods for the control and drug conditions for each neuron (neurons/condition: control, n = 90; 643 

PIX, n = 46; CBX, n= 44).  644 

 645 

IO network model 646 

The IO neuron model is a conductance-based model (Schweighofer et al., 1999) extended via 647 

addition of glomerular compartments comprising electrically coupled spines (Onizuka et al., 648 

2013). The network model consisted of an array of 3x3 IO neurons, each of which was mutually 649 

connected to its four neighboring neurons by a gap junction from one of its spines to one of its 650 
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neighbor’s represented by the gap-junctional conductance gc. We simulated spike data of the 651 

nine cells with step-wise changes of two model parameters, i.e., inhibitory synaptic conductance 652 

gi, and coupling conductance gc. These two parameters were both varied in the range of 0–2.0 653 

mS/cm2 with an increment of 0.05 mS/cm2. We generated a total of 41x41=1681 sets of 500-654 

second long simulated spike trains. The simulated spike data for each variation of gi and gc was 655 

then compared with the actual spike data, and the parameters whose firing dynamics best fit to 656 

that of individual neurons in the control, PIX, and CBX conditions were selected as the 657 

estimated values. Because the effect of the axial conductance of the spines, gs, is equivalent to 658 

that of the gap-junctional conductance, gc, in determining the amount of current will flow across 659 

the gap junction, gs does not need to be estimated from the data and thus was fixed at 0.1 660 

mS/cm2 (Onizuka et al., 2013). To better account for excitability of the neurons in vivo, the 661 

inward sodium current conductance gNa was set as 110 mS/cm2, which has been shown to 662 

induce robust chaos in the model (Schweighofer et al., 2004).  663 

  664 

The segmental Bayes inference for estimating the effective coupling from a single model 665 

Under simplified assumptions, the effective coupling, geff, between two IO neurons was 666 

calculated from the axial conductance of the spines gs, inhibitory conductance gi and gap-667 

junctional conductance gc as in (Katori et al., 2010): 668 

���� � ��
��������� �� .     (1) 669 

This equation implies that to estimate the effective coupling geff, we need to estimate both the 670 

coupling conductance gc and the GABA conductance gi reliably for each of the three datasets 671 

CBX, CON, and PIX. For that purpose, we previously developed a Bayesian method that 672 

contains two steps (see Supplemental Materials for outlines of the Bayesian method, and 673 

Hoang et al., 2015). In the first step, the parameters are estimated for each 50-second time-674 
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segment of individual neurons, allowing the parameter values to vary in time. This compensates 675 

for inevitable mismatch in the firing patterns between the model and the data. In the second 676 

step, a single set of parameter values is estimated for the entire time-segments of individual 677 

neurons by a hierarchical Bayes framework. Below, we outline the segmental Bayes method (for 678 

a detailed description see, Hoang et al., 2015).   679 

 680 

First, the firing dynamics of the spike data were characterized by a feature vector composed of 681 

a total of sixty-eight spatiotemporal features, e.g., firing rate, local variation (Shinomoto et al., 682 

2005), cross-correlation, auto-correlation, and minimal distance (Hirata and Aihara, 2009). 683 

Principal component analysis (PCA) was then conducted to remove the redundancy of those 684 

features. The Bayesian inference aims to inversely estimate the conductance values from the 685 

top three-dimensional principal components, which accounted for 55% of the data variance. To 686 

compensate for the modeling errors, i.e. differences in the complexity of firing patterns between 687 

the model and actual neurons, we divided the spike data of each neuron into short time-688 

segments under the assumption that segmental estimates of individual neurons fluctuated 689 

around a single neuronal estimate with a normal (Gaussian) distribution. The conductance 690 

values of individual neurons can be estimated by a hierarchical Bayesian framework. Here, the 691 

segment size, 50 seconds, was optimized so that the variance of firing frequency across 692 

segments was minimal (Onizuka et al., 2013). In addition, we also introduced two physiological 693 

constraints on the estimates: a common gi for CBX and CON neurons in CBX experiments and 694 

a common gc for PIX and CON neurons in PIX experiments. The rationale for these constraints 695 

is that CBX and PIX are supposed to only reduce the gap-junctional conductance gc and 696 

inhibitory conductance gi, respectively.  697 

 698 

We have shown that the segmental Bayes algorithm minimizes the fitting between experimental 699 
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and simulated spike data (Hoang et al., 2015), and further confirmed, by simulations, that it 700 

indeed minimizes the estimation errors compared to other conventional methods – including the 701 

non-segmental Bayes inference, which finds the estimates once across the entire spike data, 702 

and the minimum-error algorithm, which directly finds the closest match in the feature space 703 

(data not shown). 704 

 705 

Model-averaging estimation of the effective coupling 706 

We found that the firing frequency of inhibitory synaptic noise inputs largely affect spiking 707 

behavior of the IO model and thus the estimation results. To reduce the uncertainty in estimates 708 

of gc and gi, we therefore adopted the segmental Bayes algorithm by a model-averaging 709 

approach as follows (for review, see Grueber et al., 2011). Due to the extremely expensive 710 

computation of the compartmental model (about a week for ten computer clusters to generate 711 

the spiking data of 1681 conductance values of a single model), we first simulated four models 712 

with the firing frequency of inhibitory synaptic inputs of 10, 20, 50 and 70 Hz, which are 713 

observed in slices of cerebellar nucleo-olivary neurons (Najac and Raman, 2015). Next, we 714 

conducted the segmental Bayes to estimate posterior probability of gi and gc for each model.  715 

���|�, 	�
 � ���|�, 	�
���
,     (2) 716 

where P(g | y, mi) is the posterior probability of the conductance g = (gi, gc), y is the feature 717 

vectors extracted from the spike data, and mi is the ith selected model (i = 1..4). We then mixed 718 

the posterior probabilities with the weights proportional to the model evidence as follows: 719 

���|�
 � ∑ ���|�, 	�
��	�|�
,��	:�
��	�|�
 � ���|	�
��	�
,

���|	�
 �  ���|�, 	�
���|	�
��� ,

��	�
  � 1,

     (3) 720 

where P(g | y) is the mixed probability for an individual neuron and P(y | mi) is the evidence of 721 
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the ith model. Here, all models are treated equally with a non-preference prior P(mi). Finally, the 722 

point estimates of gi and gc were computed by marginalizing the mixed posterior probabilities.  723 

 724 

Calculation of the synchrony for individual neurons 725 

The spike train of a neuron was binned into X(i), where i represents the time step (i = 1,…,T), 726 

with X(i) = 1 if the spike occurs in the ith time bin; otherwise,  X(i) = 0. The synchrony of two 727 

different neurons, x and y, was calculated as the cross-correlation coefficient at zero-time lag: 728 

��,� �
∑ �����������

���

�∑ �������
���

∑ �������
���

,    (4) 729 

����
 � ���
 �  	� ∑ ���
,   ���	 ����
 � ���
 � 	� ∑ ���
,   ���	   730 

where ����
  and ����
  are the normalized forms of X(i) and Y(i) to account for the firing 731 

frequency. Here, the two spikes were considered synchronous if their onsets occur in the same 732 

1 ms bin. The synchrony level of an individual neuron x was computed as the mean of Cx,y for 733 

all neurons y≠x in the same animal.  734 

 735 

Estimation of the dimensionality of neural firings 736 

The dimensionality can be considered as the minimal dimensions necessary to provide accurate 737 

description of neural dynamics. The principal component analysis (PCA) has become the most 738 

widely used approach because it enables to represent neural dynamics in a lower dimensional 739 

space (Mazzucato et al. 2016). Here, we adopted this approach for estimating the 740 

dimensionality of the IO firing activity in the presence of a small number of recorded neurons.  741 

 742 
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We first segmented the IO spike trains into time windows of 50 seconds, from which the firing 743 

rate vectors of all neurons were computed (see Fig S5A). Firing rate vector in each sampled 744 

window corresponds to an observation in the N-dimensional space, where N is the number of 745 

ensemble neurons. Then, PCA was applied to estimate the dimensionality as (Abbott et al. 746 

2011): 747 

� � 	
∑ ����

���

,    (5) 748 

where ��� � ��/�∑ ��� �  are the principal eigenvalues expressed as the amount of variance 749 

explained (see Fig S5A), and �� is the ith eigenvalue of the covariance matrix of the firing rate 750 

vectors.  751 

 752 

It is noted that the dimensionality was not sensitive to the length of sampled window (10-50 753 

seconds were analyzed but no significant different values were found, Fig S5B) probably 754 

because the IO firings are rather stable across the time course. However, it has been shown 755 

that dimensionality estimation depends on the number of ensemble neurons N. Specifically, d is 756 

underestimated for small N but becomes independent of N for sufficiently large N (Mazzucato et 757 

al., 2016). After data selection (see above), the number of IO neurons in each animal is n = 3-758 

22, which is likely to suffer from the under-sampling bias. To overcome such challenge, we 759 

computed the corrected values of dimensionality following the quadratic extrapolation method 760 

(Shew et al., 2011). First, we randomly selected a fraction f of N neurons. We then computed 761 

the dimensionality d, follows the Equation 5, for fractions f = 0.2 to 1 in steps of 0.2, repeated 50 762 

times for each f. Next, the average d versus f data was fitted by the following model (Fig S5C): 763 

���
 � �� � �
�� � �

�����   (6) 764 

The fit parameter d0 is the corrected estimate of the dimensionality and is reported in the text. 765 
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 766 

Computation of the complexity entropy 767 

The Lyapunov exponents quantify the sensitivity of a dynamical system to initial conditions, and 768 

thus are often used as indicators of chaos (Farmer and Sidorowich, 1987; Sano and Sawada, 769 

1985). A number of methods have been developed to compute the Lyapunov exponents from 770 

time series with a fixed sampling interval (Kantz, 1994; Rosenstein et al., 1993). Those 771 

methods, however, are not applicable for our IO data because computation of Lyapunov 772 

exponents requires access to continuous variables, which is not the case in our discrete IO 773 

spike sets. We therefore adopted a previously proposed approach (Hirata et al., 2008) that 774 

approximates the Lyapunov exponents via a recurrence plot by using the edit distance of spike 775 

trains (Victor and Purpura, 1997). Our method requires computing the modified edit distance of 776 

the spike trains (Hirata and Aihara, 2009) and its recurrence plot (Eckmann et al., 1987; Marwan 777 

et al., 2007).  The complexity entropy (Letellier, 2006) was computed from the distribution of the 778 

length of diagonal lines in the recurrence plot (see Figure S6 for illustration of the complexity 779 

method).  780 

 781 

We first sampled the spikes trains in windows of 20 seconds and computed the edit distance for 782 

all pairs of sampled windows. To resolve the issue of discontinuity induced by the difference in 783 

the number of spikes in two sampled windows, we adopted a modified version of edit distance 784 

computation as in Hirata and Aihara (2009). Briefly, for each sampled window, we took into 785 

account the spikes that occur immediately before and/or after the time window, thus resulting in 786 

four derived windows. We then computed the edit distance for a total of 16 (4x4) derived pairs of 787 

the two sampled windows and temporarily assigned the minimum value as edit distance 788 

between them. The edit distance of two derived windows is defined by a total minimal cost for 789 

converting one window to the other (Victor and Purpura, 1997). Allowed operations include 790 
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deletion or insertion of events (both cost 1 for each event), and shift of events (cost 20% the 791 

amount of shifting in second for each event). The edit distance for all pairs of sampled windows 792 

of 20 seconds with an interval of 2 seconds constitutes a two-dimensional distance matrix. We 793 

then updated the edit distance matrix by the shortest distance connecting any two sampled 794 

windows – see Figure S6A.  795 

 796 

The recurrence plot is constructed by binarizing the edit distance matrix, with the distance 797 

values smaller than a predefined threshold as 1, and the others else as 0 (Eckmann et al., 798 

1987). The threshold was determined so that 30% of data points in the distance matrix were 1, 799 

as in (Marwan et al., 2007). Next, we extracted the frequency distribution of the length of the 800 

points 1 that form diagonal lines in the recurrence plot. The Shannon entropy of that distribution 801 

has been shown to be inversely proportional to the largest Lyapunov exponent (Letellier, 2006). 802 

We thus used the inverse of Shannon entropy as a measure of chaos for the spike data. 803 

 804 

To validate that complexity entropy is an indicator of chaos, we generated noise-free simulation 805 

data and computed the correlations between complexity entropy and the Lyapunov indexes (c.f. 806 

Figure S6B-C). Note that this approach is possible for the simulation data because we have 807 

access to the continuous trace of the membrane potential. Specifically, we first removed the 808 

noise in the synaptic inputs, and simulated 500-second spike trains for more than 100 809 

conductance values (gi varied in 0–1.0 mS/cm2 and gc in 0–2.0 mS/cm2) and estimated the 810 

complexity entropy from the simulated spike trains. Next we computed the Lyapunov exponents 811 

of the IO model by the method of (Wolf et al., 1985), and then extracted the largest component, 812 

λ1, as well as the Lyapunov dimension, DKY, as these are two direct indicators of chaos (Kaplan 813 

and Yorke, 1970). 814 
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 815 

Statistical Analysis 816 

Unless specifically stated elsewhere, all data is reported as mean ± std. The non-parametric 817 

Kruskal-Wallis one-way analysis of variance was used to test whether data groups of different 818 

sizes originate from the same distribution. 819 

820 
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FIGURE LEGENDS 821 

 822 

Figure 1: Conductance and coupling coefficient estimation in three experimental 823 

conditions. A-B: boxplot with values of gi (A) and gc (B) estimates for the three experimental 824 

conditions: carbenoxolone (CBX, green box), control (CON, black box) and picrotoxin (PIX, red 825 

box). The color conventions are same for subsequent plots. C: the effective coupling geff 826 

computed as the equation (1) for the three conditions. D: the coupling coefficient (CC) estimated 827 

for the three conditions via simulations. Each boxplot shows white line as the mean, dark region 828 

as 95% CIs and light region as 1 std. Asterisks represent significance levels: ns p > 0.05, *p < 829 

0.05, ****p < 0.0001. 830 

 831 

Figure 2. Examples of inferior olive firing for the model and the data. Raster plot of ten 832 

representative inferior olive neurons of the model and the experimental complex spike data of 833 

three animals in the three conditions. A. Carbenoxolone (animal #1, repetitive spiking). B. 834 

Control (animal #7, chaotic) C. Picrotoxin (animal #9, highly synchronous spiking).  835 

 836 

Figure 3: The synchrony and the dimensionality in IO firings moderated by effective 837 

coupling. A-C: The synchrony estimated as coincidence of spikes in 1 ms bins (A) and 838 

estimation of dimensionality of IO firings (C) for 9 animals in the three data conditions. Error 839 

bars are STDs. Asterisks represent significance levels of t-tests: ns p > 0.05, *p < 0.05. B-D: 840 

The synchrony (B) and the dimensionality (D) as functions of effective coupling strength 841 

averaged for selected neurons in individual animals confirming that effective coupling is a 842 

control parameter to optimize the synchrony and thus the dimensionality of IO firings.  Each type 843 

of symbol represents the data of an individual animal. The cyan solid lines show results of the 844 
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linear regression models and shaded regions are of 95% CIs. 845 

 846 

Figure 4: Inverted U-shaped relationship of the complexity versus effective coupling. A-B: 847 

Complexity entropy versus effective coupling. Upper panel: chaotic levels measured by the 848 

complexity entropy of the spike data as a function of effective coupling strength for the model 849 

(A) and real inferior olive neurons (B) confirming that moderate couplings induce chaos. Each 850 

value in the model (open symbols) is of the model neuron that best fits to the actual IO neuron 851 

in terms of the PCA error. Each type of symbol represents the data of an individual animal. The 852 

cyan solid lines indicate the second-order of linear model (A) and mixed-effects model (B) and 853 

shaded regions are of 95% CIs. Lower panel: spike trains of the representative neurons (located 854 

at dark arrows in the upper right plot) which show periodic and synchronous firings for either low 855 

or high couplings but exhibits chaotic firings for intermediate couplings. 856 

857 
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SUPPLEMENTAL INFORMATION 858 

 859 

Figure S1: Inferior olive firing data set for all animals. A: Spike data in 50 second of 10 860 

representative neurons in 9 animals with the physiological conditions (CBX and PIX) in the right 861 

and the control condition (CON) in the left columns.  862 

 863 

Figure S2: Improving the parameter estimates via Bayesian model-averaging. A: PCA 864 

error rates of the gi and gc estimates by the segmental Bayesian inference averaged for the 865 

entire IO neurons for CBX, CON, and PIX conditions for four different models (color bars) in 866 

comparison with the previous model (black bar, Onizuka et al., 2013). The error bars are of 95% 867 

CIs. B: Posterior probabilities of a representative IO neuron by individual models and the mixed 868 

posterior probability with the weights determined by the evidence of Bayesian inference.   869 

 870 

Figure S3: Estimation of the coupling coefficient (CC) by simulation. We injected a current 871 

pulse of -1 µA/cm2 to the cell #5 and recorded the steady-state voltage change of this “master” 872 

cell and its four post-junctional cells (left panel). We computed the CCs for hundreds of of gi and 873 

gc values in the range, in which the estimated conductance of the data distributed, and found a 874 

strong positive correlation between the effective coupling and the CC (right panel, R2 = 0.8, p < 875 

0.0001). It is noted that the non-linear fit represents the nature of deriving geff from gi and gc 876 

follow the Equation (1). 877 

 878 

Figure S4:  Validation of the inverted U-shaped curves. We investigated whether 879 

intermediate couplings maximize the complexity entropy by applying the two-linear regression 880 

models as follows. We first divided the data into two separate partitions by the intermediate 881 
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couplings around the mean geff = 0.032 (black dashed lines). Linear regressions were then 882 

conducted for the two partitions independently for both the model (A) and the data (B). Results 883 

show significant positive coefficients (mean ± sem, model: 2.3 ± 0.6, p = 0.0002; data: 1.8 ± 0.8, 884 

p = 0.03) for the left partitions and significant negative coefficients (mean ± sem, model: -2 ± 885 

0.4, p < 0.0001; data: -1.7 ± 0.6, p = 0.009) for the right ones. We further applied a non-886 

parametric Gaussian Process regression model, which does not assume an explicit relationship 887 

between the coupling and the complexity entropy. Still, we observed inverted U-shaped curves 888 

maximized at around geff = 0.032 for both the model (C) and the data (D). In sum, these results 889 

support the inverted U-shaped relationship between the effective coupling and complexity 890 

entropy. The right ordinates of C-D represent the first Lyapunov exponents approximated from 891 

the simulation data (c.f Figure S6B), indicating that intermediate couplings induce chaos. The 892 

shaded regions in A-B are of 95% CIs and those in C-D are of ±sem.  893 

 894 

Figure S5. Dimensionality estimation for the spike data of ensemble neurons. A: 895 

Illustration of the principal component analysis (PCA) for the firing rate vectors extracted from 896 

50-second windows of three neurons of Animal #6 in the CON condition. The estimated 897 

dimensionality d = 1.86 (dashed dark line, c.f Equation 5), indicates that the approximately 2-898 

dimensional subspace (shaded gray plane) can explain more than 90% of the variance of neural 899 

firing dynamics. B: Estimating dimensionality (Equation 5) with varied window lengths from 10-900 

50 seconds for 9 animals in the three data conditions showing the robustness of dimensionality 901 

estimation against the window length. C: under sampling correction of dimensionality estimation 902 

for the cases for which the number of recorded neurons is small by quadratic extrapolation 903 

fitting of the dimensionality d vs. fraction of selected neurons f. 904 

 905 
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Figure S6. Computation and validation of the complexity entropy method. A: Illustration of 906 

edit distance computation between two sampled spike windows shows a sequence of 907 

elementary steps that convert the spike window (a) into (b). Each bar represents one spike. 908 

Allowed operations include deletion of a spike (shown in red), insertion of a spike (shown in 909 

green), or shifting a spike in time (blue arrows). Computation of edit distance for continuous 910 

sampling windows for the entire spike train constitutes the edit distance matrix. Then, the 911 

recurrent plot is constructed by binarizing the edit distance matrix. The points whose values are 912 

smaller than the threshold were plotted as white dots, otherwise as black dots. Complexity 913 

entropy is computed as the inverse of Shannon entropy, in terms of frequency distribution of the 914 

length of the diagonal lines of white dots (Letellier, 2006). B-C: Complexity entropy measured 915 

for a total of a hundred of parameter values (black crosses) in noise-free simulations showed 916 

strong positive correlations with the largest Lyapunov exponent λ1 (regression model: λ1 ~ 1 + 917 

entropy, R2 = 0.4, F-test: p < 0.0001, Figure S6B) and the Lyapunov dimension DKY (DKY ~ 1 + 918 

entropy, R2 = 0.48, F-test: p < 0.0001, Figure S6C). Solid cyan lines represent the fit of linear 919 

models with 95% CIs (dashed cyan lines). 920 

921 
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Figure 1 922 

 923 

 924 
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Figure 2 926 

 927 
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Figure 3 929 
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Figure 4 933 
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Figure S1 937 
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Figure S2 942 
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Figure S3 946 
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Figure S4 950 
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Figure S5 954 
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Figure S6 958 
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