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Summary 

 

After more than 30 years of rigorous and intensive research since the identification of HIV-1, 

much progress has been made in understanding and controlling the pathogenesis of the virus. 

However, successful cure is currently unavailable. HIV-1 can remain undetected in various cell 

types, including memory T cells and macrophages, which make it difficult to achieve viral 

clearance without inciting cell death in infected cells. The “shock and kill” approach aims to 

reawaken dormant integrated virus and boosts host’s immune system for viral clearance in 

latently infected CD4+ T cells. However, to completely eradicate HIV in infected individuals, it 

is imperative to eliminate both CD4+ T cells and myeloid tissue reservoirs. Here we show that 

inhibition of the inhibitor of apoptosis (IAP) pathway, a cellular signalling pathway responsible 

for controlling cell death, by IAP inhibitors, smac mimetics can be utilized to kill HIV-infected 

macrophages. Deletion of cellular IAP proteins using smac mimetic, a synthetic anti-cancer 

compound currently being tested in several clinical trials, rendered HIV-infected macrophages 

susceptible to cell death. Herein, our results suggest that modulation of the IAP-associated 

signaling pathways may be a potential strategy for selective killing of HIV-infected 

macrophages. 
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Abstract:  

 

Latent viral reservoirs of HIV-1 that persist despite antiretroviral therapy (ART) are 

major barriers for a successful cure. Macrophages serve as viral reservoirs due to their 

resistance to apoptosis and HIV-cytopathic effects. We have previously shown that 

inhibitor of apoptosis proteins (IAPs) confer resistance to HIV-Vpr-induced apoptosis in 

normal macrophages. Herein, we show that second mitochondrial activator of caspases 

(SMAC)-mimetics (SM) specifically induce apoptosis of monocyte-derived macrophages 

(MDMs) infected in vitro with a R5-tropic laboratory strain expressing heat stable antigen, 

and GFP-expressing HIV, chronically infected U1 cells, and ex-vivo derived MDMs from 

naïve and ART-treated HIV patients. SM-induced cell death was found to be mediated by 

IAPs using IAP siRNAs, was independent of endogenously produced TNFα and was 

attributed to the concomitant downregulation of IAP-1/2 and the receptor interacting 

protein kinase-1 degradation following HIV infection. Altogether, modulation of the IAP 

pathways may be a potential strategy for selective killing of HIV-infected macrophages in 

vivo. 
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Introduction  

 

Macrophages (Mφ) are permissive to productive infection with HIV and a source of viral 

progeny for transmission to other cell types such as T cells [1–7]. HIV-infected Mφ are widely 

distributed in tissues such as gastrointestinal and other mucosal tissues, lymph nodes and within 

the central nervous system  where they have a life span extending from months to years [8–13]. 

In contrast to the characteristic depletion of CD4+ T cells, Mφ do not decline in number, are 

resistant to apoptosis, survive active viral replication, and harbor unintegrated and integrated 

viral DNA in a state of latency [1,2,14–23]. In patients on effective antiretroviral therapy (ART), 

Mφ serve as reservoirs as HIV persists in these cells, shielded against various host anti-viral 

responses and respond poorly to ART [1–3,15,24]. Moreover, infected Mφ accumulate and retain 

virions within unique compartments designated as virus-containing compartments (VCCs) 

[25,26]. The virions present in VCC are protected from neutralizing antibodies and are 

inaccessible to anti-viral drugs [27–29]. Since HIV-infected Mφ are not cleared by CD8+ T cells, 

neither current ART nor the immune system is able to effectively eliminate this reservoir [24].  

 While several recent studies support that Mφ serve as a major non-T cell HIV reservoir 

[30–38], the role of Mφ in HIV infection and persistence has been conclusively demonstrated by 

employing humanized BLT and myeloid only mice (MoM mice containing myeloid cells devoid 

of T cells). Honeycutt et al show that replication competent virus could be recovered from tissue 

Mφ, and the transfer of infected Mφ into uninfected animals resulted in sustained infection 

demonstrating that Mφ are genuine targets for HIV infection in vivo [3]. Further, they 

demonstrated that HIV persists in Mφ following suppressive ART in vivo in MoM model [39]. 
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Therefore, to completely eradicate HIV in individuals on ART, it is imperative to eliminate both 

CD4+ T cells and myeloid tissue reservoirs. Most research to date has focused on eliminating the 

latent reservoir of CD4+ T cells by employing strategies to reactivate HIV in T cells and 

elimination of reactivated HIV-infected cells by host immunity [40–42]. However, approaches 

towards killing of HIV-infected Mφ in vitro or in vivo are not well studied. Two recent studies 

have attempted to clear Mφ reservoir by targeting infected Mφ with CSF-1 receptor antagonists 

[43] and galactin-3 [44] with some success.  

In order to devise strategies to eliminate HIV-infected Mφ, it is imperative to identify 

apoptosis-related genes and signaling proteins involved in resistance of HIV-infected Mφ to 

apoptosis. The mechanism underlying resistance of infected Mφ to HIV-induced apoptosis may 

relate to the differential expression of pro- and anti-apoptotic genes including inhibitors of 

apoptosis (IAP) proteins [15,45]. The role of IAPs has been studied by employing antagonists of 

second mitochondria-derived activator of caspases (Smac), Smac mimetics (SM). SMs are small 

peptides that competitively inhibit Smac-IAP-1/2 interactions and repress anti-apoptotic 

functions of IAP proteins. Recently, IAP1/2 and survivin, another member of the IAP family 

were suggested to be involved in survival of HIV-infected CD4+ T cells [46,47]. In addition, 

IAPs have been implicated in protection against hepatitis B infection and in the reversal of HIV 

latency in CD4+ T cells [48,49]. Using HIV-Vpr as an apoptosis-inducing agent, we have shown 

a protective role for IAP genes in resistance to cell death in Mφ [50–52]. CpG-induced protection 

against apoptosis and mitochondrial depolarization in monocytic cells was shown to be mediated 

by c-IAP-2 induction [50,52]. Moreover, down regulation of IAP-1/2, by using siRNAs and SMs, 

sensitized Mφ to Vpr-induced apoptosis [51]. Therefore, strategies based on suppressing IAPs by 
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employing SMs, may be useful in killing HIV-infected Mφ. Herein, we show that SMs induced 

apoptosis in in vitro HIV-infected Mφ and that this may occur through the concomitant down 

regulation of both IAPs and receptor interacting protein kinase-1 (RIPK-1). 
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Results 

 

SMs induce cell death in HIV-infected myeloid U1 cells but not in counterpart uninfected 

U937 cells 

 

SMs bind to cIAP1/2 and promote their E3 ligase activity which leads to their auto-

ubiquitination, subsequent proteasome degradation and apoptosis [53,54]. We have previously 

shown that cIAP1/2 genes play a protective role in mediating survival of Mϕ in response to Vpr-

induced cell death [50–52]. To determine whether SMs impact apoptosis in HIV-infected Mϕ, 

chronically infected U1 cells and uninfected counterpart U937 cells were treated with SM-

LCL161 followed by assessment of cell death by PI staining and flow cytometry. SM treatment 

induced significant cell death in U1 cells but not in U937 cells (Fig 1A). To determine whether 

differentiation of U937 render these cells susceptible to SM-induced apoptosis, U937 and U1 

cells were differentiated with PMA. Similar to the effect of SM on undifferentiated U1 cells, SM 

-LCL161 induced significant cell death in differentiated U1 cells but not in differentiated U937 

cells (Fig 1B). Specific killing of HIV-infected U1 cells was further confirmed by showing 

cleavage of caspase-3 in U1 but not in U937 cells (Fig 1C).  

 

SMs induce cell death in in vitro HIV-infected MDMs and MDMs derived from HIV-

infected patients 

 

To validate above findings in primary MDMs, we first verified the functional activity of SM by 

treating HIV-infected MDMs with LCL161 and observed degradation of both cIAP1 and cIAP2 
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(Fig 2A) as reported earlier [51,55]. The in-vitro HIVCS204-infected MDMs were treated with SM-

LCL161 followed by assessment of cell death by PI staining and flow cytometry. SM-LCL161 

induced significant cell death of HIVCS204-infected MDMs but not in mock-infected MDMs (Fig 

2B). Representative histograms of the intracellular PI staining are shown (Fig. 2C). The p24 

values in MDMs infected with HIVCS204 for 7 days are shown in Fig 2D. Further, to determine 

whether Mϕ derived from HIV-infected individuals are similarly prone to SM-induced cell death, 

MDMs were generated from ART treated and ART naïve HIV-infected individuals and treated 

with SM-LCL161. Consistent with in vitro infection studies, ex vivo derived MDMs from 

treatment naïve and ART-treated HIV-infected individuals showed significantly increased 

susceptibility to SM-LCL161-induced cell death in a dose-dependent manner (Fig 2E).   

 Apoptosis has been shown to induce viral activation and replication in latently infected 

U1 and ACH2 cell lines [56]. In addition, Pache et al have shown that SMs can affect viral 

transcription in infected CD4+ T cells via NF-κB dependent signalling [49]. To determine if SMs 

affect HIV replication in Mϕ, in vitro HIV-infected MDM were treated with SM -LCL161 for 48 

hr followed by analysis of p24 secretion. Interestingly, virus replication in primary HIV-infected 

MDM (Fig 2F) and in HIV-infected U1 cells (Fig 2G) was not affected by SM treatment.    

 

Smac mimetics specifically kill HIV-infected MDMs    

 

Based on above results, it is unclear if SMs are killing HIV-infected and/or bystander uninfected 

HIV-exposed MDM. To examine this, we employed a R5 laboratory strain of HIV-1, HIV-Bal-

HSA, expressing mouse HSA (CD24). Expression of CD24 by HIV-infected cells can be used to 

identify infected cells by flow cytometry using FITC-conjugated anti-mouse HSA antibody [57].  
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MDMs were infected with HIV-Bal-HSA for 7 days followed by treatment with SM-AEG 40730 

for another two days. Specific killing of HSA-expressing (HIV-infected) cells by SM-AEG 

40730 was quantified by counter staining with Annexin-V labelled with BV-711.  To rule out 

non-specific low level fluorescence by dead cells/debris, highly intense FITC positive HSA-

expressing cells were gated and further quantified for Annexin-V expression.  The gating 

strategy is shown in Fig. 3A. Quantification of Annexin-V positive, total (HSA+ and HSA-; Fig 

3B, left panel) and intensely HSA+ MDMs (Fig 3C, left panel) revealed that SM-AEG 40730 

killed significantly higher number of total HIV-infected (HSA+ and HSA-) and high HSA-

expressing MDMs compared to the DMSO-treated HIV-infected cells. Representative histogram 

showing killing of total HSA+ and HSA- (Fig 3B, right panel) and intensely positive (Fig 3C, 

right panel) HSA-expressing cells is shown.    

 To determine whether SMs killed uninfected HIV-exposed bystander cells, MDM were 

infected with HIV-Bal-HSA for 7 days followed by treatment with either SM-AEG40730 or SM-

LCL161 for another two days. Specific killing of HSA-expressing (ie HIV-infected) and HSA-

negative (HIV uninfected) cells by SM-AEG 40730 or SM-LCL161 was quantified by counter 

staining with BV-711 labelled Annexin-V as above. SM-AEG40730 and SM-LCL161 killed 

significantly high numbers of HIV-HSA-expressing (HIV-infected) cells compared to either the 

mock or HSA-negative (HIV-uninfected/bystander, HIV-exposed) cells (Fig 3 D). However, 

killing of HSA-negative (HIV-uninfected/bystander) cells was relatively higher than mock-

infected cells but was not significant suggesting that SMs specifically kill HIV-infected Mφ.        

Similar experiments were performed with a GFP-expressing HIV strain, HIV-eGFP. 

MDMs were infected with HIV-eGFP for 7 days followed by treatment with SM-AEG 40730 for 

two days. Expression of GFP by HIV-infected cells can be visualized by flow cytometry to 
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identify infected cells. Specific killing of GFP-expressing (HIV-infected) cells by SM was 

quantified by counter staining with BV-711 labelled Annexin-V. Highly intense GFP positive 

cells were gated and further quantified for Annexin-V expression. The gating strategy is shown 

in Fig 4A. MDMs infected with HIV-GFP for 1-2 days could be detected by flow cytometry; 

however, MDMs infected for 7 days could not be detected as the virus multiplied for one round 

only (data not shown). Interestingly, treatment of HIV-GFP-infected cells with SM-AEG 40730 

revealed killing of significantly high number of total HIV-GFP+ and GFP- MDMs compared to 

the DMSO-treated HIV-GFP-infected MDMs (Fig 4B, left panel). Specific killing of HIV-GFP 

infected cells by SM-AEG 40730 by gating dual GFP-positive and Annexin-V+ MDMs revealed 

that SM-AEG 40730 killed significantly higher number of intensely GFP+ HIV-infected cells 

compared to the DMSO-treated HIV-infected cells (Fig 4C, left panel). Representative histogram 

showing killing of total GFP+ and GFP- MDMs (Fig 4B right panel) and intensely GFP+, HIV-

GFP-infected cells (Fig 4C, right panel) by SM-AEG40730 is shown.  

 

Knocking down IAP genes results in specific killing of HIV-infected MDM    

 

To confirm the involvement of IAPs in SM-mediated killing of HIV-infected MDMs, we 

employed IAP-1/2 siRNAs as shown previously [50–52]. MDMs generated from PBMC from 

healthy donors were infected with HIV-Bal-HSA for 7 days followed by treatment with either 

non-targeting siRNA or IAP siRNAs for 72 hrs. Killing of HIV-infected cells in the presence of 

IAP siRNA treated cells was analyzed by staining with Annexin-V labelled with BV-711 as 

above. MDMs intensely expressing HSA and Annexin-V were gated and quantified as described 

above. The gating strategy is shown in Fig 5A.  Quantification of Annexin-V positive total 
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HSA+ and HSA- and intensely HSA-positive MDMs revealed that knocking down IAPs by 

siRNAs killed significantly higher number of total HIV-HSA+ and HSA- (HIV infected) MDMs 

(Fig 5B, left panel) and intensely HSA+ MDMs (Fig 5C, left panel) compared to the control 

HIV-HSA-infected cells treated with non-targeting siRNAs. Representative histogram showing 

killing of total HSA+ and HSA- (Fig 5B, right panel) and intensely HSA positive (Fig 5C, right 

panel) MDMs is shown.  

 

SM-induced cell death in HIV-infected MDM is mediated by apoptosis  

 

To determine whether SM-induced cell death in in vitro HIV-infected MDM is due to apoptosis, 

caspase activation was quantified based on the fluorescent signal of cleaved caspase substrates. 

Treatment of HIVcs204-infected MDM with SM-LCL161 showed activation of caspases 3, 8, and 

9 in contrast to the mock-infected MDM (Fig 6A-6C). Moreover, prior treatment with zVAD-

FMK, a pan-caspase inhibitor, reduced the activation of caspase-8 and 9 after SM-LCL161 

treatment (Fig 6B-C). A representative histogram for the induction of caspase 3, 8 and 9 

following SM treatment of HIV-infected MDM is shown (supp. Fig 1).  

 

TNF-α mediates SM-induced apoptosis in U1 cells but not in primary HIV-infected MDM   

 

SM-induced cell death of various tumor cells is mediated by endogenously produced TNF- 

following SM treatment through the activation of the non-canonical NF-κB pathway [58,59]. To 

determine if SM-induced apoptosis in HIV-infected MDM is due to endogenous TNFα 

production, SM-LCL161-treated U937, U1 cells and in vitro HIV-infected primary MDM were 
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analyzed for TNF-α secretion. SM-LCL161 treatment resulted in low level although significant 

TNF-α production in undifferentiated and differentiated U937 and U1 cells (Fig 7A-D) in 

contrast to both in vitro mock- and HIV-infected MDM (Fig 7E). Similarly, ex vivo derived 

MDM from HIV-infected patients did not produce significantly higher levels of TNF-α 

following SM-LCL161 treatment compared to the untreated negative controls (Fig 7F).  

To evaluate the impact of TNF-α in SM-induced apoptosis of primary MDM, SM-

LCL161-treated MDM were stimulated with rTNF-α followed by analysis of cell death by PI 

staining. Treatment of MDMs with SM-LCL161 and TNFα did not result in cell death (Fig 7G). 

In contrast, rTNF-α either alone or in combination with SM-LCL161 induced significant cell 

death in U937 and U1 cells (Fig 7H, I) similar to that observed in various tumor cells [60,61]. 

These results suggest that SM-mediated killing of HIV-infected MDM is independent of TNFα.    

 

HIV-infected MDM do not develop M1 phenotype before or after SM treatment  

 

Macrophages polarized with IFNγ develop a M1 phenotype which is highly susceptible to SM-

induced cell death (Supp. Fig 2). Therefore, it is possible that SM-induced cell death of HIV-

infected MDMs is due to the development of M1 phenotype following HIV infection. To 

determine whether HIV-infected MDM develop M1 phenotype before or after SM treatment, 

cytokine array analysis for the following cytokines was performed: IL-17F, GM-CSF, IFNγ, IL-

10, CCL20/MIP3a, IL-12p70, IL-13, IL-15, IL-17a, IL-22, IL-9, IL-1β, IL-33, IL-21, IL-23, IL-

5, IL-6, IL-17ε/IL-25, IL-27, IL-31, TNFα, TNFβ, and IL-28A. HIV-infected MDM secreted 

significantly high levels of CCL20/MIP3α, IL-6, and TNFα compared to the mock control. 

There was no significant difference in the secretion of IL-10, IL-21, IL-13, and IL-23 between 
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the HIV-infected and mock-infected controls (Supp. Fig 3). Remaining cytokines were not 

detected in either group suggesting that HIV infection of MDMs does not result in the 

upregulation of cytokines related to M1 phenotype. SM treatment did not affect the secretion of 

above mentioned cytokines including CCL20/MIP3α, IL-6, IL-23, IL-10, IL-21, IL-13, and 

TNFα in in-vitro HIV-infected MDMs (Supp. Fig 4) or in ex-vivo derived MDMs from HIV-

infected patients (Supp. Fig 5). These results suggest that in-vitro HIV-infected MDM either 

before or after SM treatment did not express M1 phenotype and SM-mediated apoptosis of HIV-

infected MDM is independent of M1-polarization.   

 

HIV-infection downregulates RIPK1 in MDMs 

 

SM-induced apoptosis of HIV-infected macrophages may be ascribed to the impaired expression 

of IAP-associated signalling kinases such as RIPK-1 [62,63]. RIPK-1 plays a key role in the 

regulation of various cellular processes such as NF-κB signalling and apoptosis [64]. Moreover 

RIPK-1 is a target substrate for HIV protease, a viral protein that is synthesized late in the viral 

life cycle and inactivates RIPK1 in HIV-infected primary CD4+ T cells [65]. To determine 

whether RIPK1 is similarly cleaved and inactivated in HIV-infected MDMs, in vitro mock and 

HIVCS204-infected MDMs for 7 days were treated with SM -LCL161 for 2 days followed by 

immunoprobing for RIPK-1. HIV infection resulted in the downregulation of RIPK-1 in the 

presence and absence of SM-LCL161 compared to the mock infected controls (Fig 8A). This 

was also demonstrated by in vitro infection of MDMs with HIVCS204 for 2-8 days. Infection with 

HIVCS204 resulted in cleavage of RIPK1 with a relative decrease in full length RIPK1 while the 

cleaved RIPK1product gradually increased over time (Fig 8B).   
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To confirm the downregulation of RIPK-1 in HIV-infected MDM, MDMs were infected 

with HIV-Bal-HSA. After 9 days of infection, HIV-infected HSA-expressing MDMs were 

harvested by magnetic column separation based on HSA expression followed by immunoblotting 

for RIPK-1 analysis [57]. The negative fraction represents HIV-exposed uninfected cells that do 

not express HSA on their surface, and hence get eluted after the first passing of the labelled cells. 

Waste fraction represents cells that are eluted during the column wash prior to the collection of 

the HSA-selected MDM. The positive fraction represents the HIV-infected HSA-expressing cells 

retained in the magnetic column that are eluted at the end of the HSA-selection protocol. The 

gating strategy for detection of HIV-HSA infected macrophages is shown in Fig 8C left panel. 

The positively selected MDM infected with HIV-HSA showed ~70% purity while the negatively 

selected HIV-uninfected cells and waste fractions had ~7% and ~10% contaminating HSA 

expressing MDMs, respectively (Fig 8C, right panel). The results show that RIPK1 was 

downregulated in the positively selected HIV-HSA enriched fraction compared to the mock 

infected and negatively selected HIV-uninfected MDM (Fig 8D). These results indicate that 

RIPK1 degradation is a consequence of HIV infection of primary MDM.  

 

SM treatment of HIV-infected MDMs downregulates apoptosis associated signalling 

molecules TRAF-1 and Bid 

 

In addition to RIPK-1, the process of apoptosis requires the fine-tuned functionality of several 

signalling molecules including TRAF-1/2, as well as proteins that regulate homeostasis of 

mitochondria such as Bid and Bax [64,66–68]. We determined the expression of these signalling 

molecules in response to SM-LCL161 treatment of in vitro HIVCS204-infected MDM. HIV 
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infection resulted in the down regulation of TRAF-1 (Fig 8E, lanes 1 and 4). Treatment of HIV-

infected MDM with SM-LCL161 also resulted in the downregulation of TRAF-1 compared to 

the mock infected and SM-treated MDMs (Fig 8E lanes 2, 3 and 5). However, TRAF-2 and Bax 

did not show a significant change in their expression in mock- and HIV-infected MDM as well 

as between SM-LCL161 treated mock and HIV-infected MDMs (Fig 8E). Bid was 

downregulated with increasing concentration of SM-LCL161 in the HIV-infected MDM but not 

in mock-infected MDM (Fig 8E). Overall, these results suggest that SM dysregulates the 

expression of apoptosis-associated TRAF-1 and Bid in HIV-infected MDM. 

 

cIAP1/2 and RIPK-1 are essential for survival of MDM   

 

The above results showing inactivation of RIPK1 in settings where cIAPs are absent, may affect 

the viability of MDM. To determine the combined impact of knockdown of cIAPs and RIPK-1 in 

the survival of MDM, MDMs from healthy donors were pretreated with necrostatin-1, a specific 

RIPK-1 inhibitor, for 2 hr followed by treatment with SM-LCL161 and analysis for cell death. 

Treatment with SM-LCL161 or necrostatin-1 alone did not induce significant cell death of 

normal primary MDMs. However, combination treatment of SM-LCL161 and necrostatin-1 

resulted in significant increase in cell death of primary MDM (Fig 9A). Figure 9B shows 

representative histograms of the intracellular PI stain. Moreover, treatment with necrostatin-1 

alone did not show cleavage of PARP or caspases-8 and 9 although treatment with SM-LCL161 

alone did show their minimal cleavage (Fig 9C). However, treatment with both necrostatin-1 and 

SM-LCL161 revealed significantly enhanced cleavage of the three caspases as well as PARP. 

These results suggest that cIAP1/2 and RIPK-1 play an important role in regulating viability of 
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primary human MDM. Since HIV infection down regulates RIPK-1 in MDMs and degradation 

of IAPs with SM-LCL161 results in death of HIV-infected MDM suggest that RIPK-1 and IAPs 

play crucial roles in SMs-induced cell death of HIV-infected MDM.    
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Discussion 

  

In this study, we investigated the role of IAPs in resistance to apoptosis of HIV-infected Mφ. We 

show that although cIAP1/2 are dispensable host factors for the viability of Mφ, it plays a critical 

role in the survival of HIV-infected Mφ. This is illustrated by the observation that SMs induce 

apoptosis of chronically HIV-infected U1 cell line, in vitro HIV-infected MDMs, and ex-vivo 

derived MDMs from naïve and ART-treated HIV patients. SMs were shown to specifically kill 

HIV-infected MDMs by employing a HSA expressing R5-laboratory strain, HIV-Bal-HSA, and 

GFP-expressing, HIV-eGFP. The involvement of IAPs was confirmed by employing IAP 

siRNAs that resulted in killing of HIV-infected MDMs. Our data suggests that SM-induced 

apoptosis of HIV-infected Mφ is mediated by apoptosis, is independent of TNF-α and the 

establishment of M1 polarization. Furthermore, SM-induced apoptosis of HIV-infected Mφ may 

be due to RIPK-1 degradation which in concert with IAP1/2 degradation results in apoptosis of 

HIV-infected Mφ.   

To achieve eradication of HIV-1 in patients undergoing suppressive ART, it is imperative 

to devise strategies to eliminate HIV reservoirs in cell targets other than T cells such as Mφ. 

Recently, IAPs were shown as a potent negative regulator of LTR-dependent HIV-1 transcription 

and leading to the reversal of HIV latency in JLat latency model system and primary T cells [49]. 

In addition, IAP1/2 and survivin, another member of the IAP family were suggested to be 

involved in survival of HIV-infected CD4+ T cells [46,47]. SM activate the non-canonical NF-

κB pathway by virtue of RelA:p50 and RelB:p52 transcription factors which bind to the HIV-1 

LTR region and results in the induction of virus transcription in latently infected JLat cell lines 
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[49,69]. In addition, XIAP down regulation by flavopiridol, a cyclin-dependent kinase 9 (CDK-

9) inhibitor, resulted in increased apoptosis of ACH2 cells (a chronically HIV-infected T cell 

line) [70]. Additionally, ablation of cIAP1/2 by SMs cleared hepatitis B virus in immune 

competent mouse models [48]. We and others have previously shown that ablation of cIAP1/2 by 

SMs does not affect survival of normal primary human Mϕ [51,71]. However, resistance of Mϕ 

to apoptogenic HIV-Vpr was attributed to cIAP1/2 [51]. These observations suggest that 

targeting of IAPs may represent a possible strategy for killing of HIV-infected Mϕ. Herein, we 

show that in vitro HIV-infected MDM and MDM generated ex vivo from ART-treated or naïve 

HIV-infected patients were highly susceptibility to SM-mediated cell death. Induction of 

apoptosis was confirmed by using monomeric (LCL161) and dimeric (AEG40730) SMs as well 

as IAP-siRNAs and three different M-tropic strains including HIVcs204 (clinical), HIV-eGFP and 

HIV-Bal-HSA. The high variability in the degree of SM-mediated killing of ex vivo generated 

MDM in ART-treated and naïve untreated groups may be due to the effects of antiretroviral 

drugs on mitochondrial function and highly variable percentage of HIV-infected monocytes in 

the patients [72,73]. The CD16+ monocytes in the ART-treated patients are significantly higher 

compared to the untreated group and CD16+ monocytes  are more permissive to infection and 

preferentially harbors HIV-1 in vivo [7].   

The number of HIV infected Mϕ in in vitro infected MDMs is around 5-10% due partly 

to a milieu of HIV restriction factors that limit the virus life cycle [57,74–76]. However, some of 

our experiments show killing of around 30% of Mϕ suggesting that SM may cause non-specific 

killing of bystander MDMs. Since SM did not significantly inhibit virus replication, it is possible 

that HIV proteins such as Vpr secreted in the supernatants [77] may prime bystander MDMs to 

SM-mediated killing [50–52]. By employing HIV-Bal-HSA and HIV-GFP strains, our results 
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show that SMs are specifically killing HIV-infected macrophages. Although SM are killing 

relatively higher number of HIV-HSA-negative MDMs compared to mock-infected MDMs, the 

differences were not significant. Moreover, SMs killed significantly higher number of HIV-

HSA-infected MDMs compared to the HIV-HSA-negative MDMs further suggests the 

specificity of SMs towards killing of HIV-infected macrophages. cIAP1 was shown to be a 

negative regulator of LTR-dependent HIV-1 transcription in latently infected primary memory T 

cells [49]. However, SM did not affect HIV transcription in U1 cells and in vitro HIV-infected 

MDM. We have previously shown that SM treatment alone did not activate either classical or 

alternative NF-κB pathways in Mϕ [55] that may explain SM’s inability to impact virus 

replication in Mϕ.   

Our results suggest that the mechanism of SM-mediated killing of HIV-infected MDMs 

is independent of endogenous TNF-α. SM-mediated killing has been attributed to endogenous 

TNF-α in cancer cells [58,59]; however, it has been reported to be independent of TNF-α in 

some cancer cells [78]. Given that Mϕ produce high levels of TNFα, the possibility that SM-

mediated killing of HIV-1-infected MDM could be attributed to TNF-α was investigated. TNF-α 

mediated SM-induced killing of myeloid U1 and U937 undifferentiated and PMA-differentiated 

cells in contrast to that of primary MDMs   Although the in vitro HIV-infected MDM produced 

significant amounts of TNFα compared to the mock-infected MDMs, SM treatment did not 

affect TNF-α secretion in either uninfected or HIV-infected MDM. Moreover, rTNF-α failed to 

induce cell death in SM-treated MDM suggesting that SM-induced cell death in Mϕ contrary to 

the cancer cells is independent of TNF-α further displaying dichotomy in the effects of SMs on 

leukemic myeloid cells and primary macrophages.   

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 6, 2019. ; https://doi.org/10.1101/543017doi: bioRxiv preprint 

https://doi.org/10.1101/543017
http://creativecommons.org/licenses/by/4.0/


20 

 

HIV infection results in dysregulation of cytokine profile in vivo and in vitro [79] and can 

possibly affect the polarization state of Mϕ. Since IFNγ-generated M1 Mϕ are highly susceptible 

to SM-mediated cell death, the possibility of in vitro HIV-1 infection to polarize Mϕ into M1 

phenotype making these cells susceptible to SM-induced apoptosis was studied. We show that in 

vitro infected and ex vivo derived MDM exposed to SM were not polarized into M1 phenotype 

suggesting that SM-mediated killing of HIV infected Mϕ was not due to M1 polarization.    

Our results suggest that the mechanism of SM-mediated selective killing of U1 cells and 

primary MDM infected with the clinical strain, HIVcs204 is via apoptosis. The pathways of 

apoptosis are regulated by RIPK-1 [64,67]. In TNFα-mediated signalling, RIPK-1 is recruited in 

a multiprotein complex I along with TRADD, TRAF2, and cIAP1/2 to promote transcription of 

genes with anti-apoptotic properties such as cIAP1/2 [67]. RIPK1 is also recruited in a protein 

complex composed of TRADD, FADD, and caspase-8, which depending on additional proteins 

recruited, can induce apoptosis or necroptosis [67]. Recently, HIV infection of primary activated 

CD4+ T cells was shown to downregulate RIPK-1 through HIV-1 protease [65]. RIPK-1 

modification in response to human rhinovirus and Newcastle disease virus infection has also 

been reported [80,81]. Herein, we show that infection of MDM with HIV-CS204 or with HIV-Bal-

HSA caused downregulation and cleavage of RIPK-1. Given that down regulation of IAPs alone 

by SM LCL161 or of RIPK-1 alone by necrostatin did not induce cell death in uninfected MDM, 

suggests that RIPK-1 and IAP1/2 are dispensable in survival of Mϕ. However, inactivation of 

RIPK-1 by necrostatin-1 following IAP degradation by SM resulted in a dramatic increase in cell 

death, cleavage of caspases and PARP in normal MDM suggesting that RIPK-1 may play a key 

role in SM-induced killing of HIV-infected Mϕ. The role of RIPK-1 degradation during HIV-1 

infection of Mϕ needs further investigation.   
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TRAF1 is an important  receptor interacting protein that forms a complex with TRAF2 to 

transduce TNFα-induced MAPK and NF-κB activation [82]. TRAF2 is also a key determinant 

for SM-induced degradation of cIAP1/2 [82]. Our results show that in vitro HIV infection as well 

as SM-treatment of HIV-infected MDM resulted in downregulation of TRAF-1 but not of 

TRAF2. In addition, Bid, a proapoptotic protein, is downregulated in SM-treated MDM. Bid is 

localized in an inactive form in the cytosol which becomes activated by proteolytic cleavage of 

active caspase-8 [68]. Upon activation, cleaved Bid translocates to mitochondria and forms a 

complex with Bax to disrupt its integrity resulting in the release of apoptogenic factors, caspase-

3 activation and cell death. How SMs cause down regulation of Bid and TRAF-1 in HIV-infected 

macrophages is not clear. We have shown previously that HIV-Vpr targets Bid, TRAF1 and 

TRAF2 for proteosomal degradation leading ultimately to mitochondrial outer membrane 

depolarization and apoptosis [52]. Since SM did not inhibit virus replication and that HIV-Vpr is 

one of the early genes expressed in virus life cycle, and HIV-Vpr is released following in vitro 

infection of Mϕ, the interplay between Vpr and SM-mediated effect may lead to down regulation 

of Bid and TRAF-1 and cell death of HIV-infected Mϕ. The functional relevance of the 

modulation of apoptosis related genes in response to SM-treatment of HIV-infected Mϕ needs 

further investigation.  

In summary, the results of this study suggest the potential significance of SM in killing of 

HIV-infected Mφ in vivo. In the event SM are able to kill HIV-infected Mφ in vivo, they have the 

potential to be translated into clinical interventions aimed at eradicating HIV infection by 

directly targeting HIV-infected Mφ.   
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Materials and methods  

 

Generation of human monocyte-derived macrophages (MDM), cell lines and reagents   

 

Human peripheral blood mononuclear cells (PBMCs) were isolated by density gradient 

centrifugation using Ficoll Paque (GE Healthcare Life Sciences Buckingmshire, UK) from the 

blood of healthy donors. Human MDMs were generated from monocytes via adherence methods 

as previously described [55]. Briefly, 2.0x106 PBMCs/well were allowed to adhere for 3 hr and 

non-adherent cells were washed off. Adherent monocytes were cultured for 7 days in complete 

DMEM (Wisent Inc., St. Bruno, Quebec) medium supplemented with 10% fetal bovine serum 

(FBS; GE Healthcare), penicillin and streptomycin and 10 ng/mL MCSF (R&D Systems, 

Minneapolis, MN, USA). MCSF-containing media was replaced every 2 days until the 7th day at 

which point the monocytes differentiated into macrophages. Purity of macrophages as assessed 

by measuring CD14 expression by flow cytometry was 100%.  

U937 and U1 cells were obtained from NIH AIDS reagent program and were cultured in 

complete DMEM media. For differentiation, 5.0x105 U937 and U1 cells were treated with 20 nM 

PMA (Sigma Aldrich, St. Louis, Missouri, USA) for 2 days. The smac mimetics (SM) LCL161 

(Active BIochem, Hongkong), and AEG40730 (Tocris Bioscience, Bristol, UK), necrostatin-1 

(ApexBio, Houston, TX, USA), staurosporine (ApexBio, Houston, Texas, USA), and LPS 

(Sigma Aldrich, St. Louis, Missouri, USA) were purchased.  
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HIV-1 production and infection of MDMs 

 

The dual tropic HIV-CS204 was a gift from Dr. J. Angel (The Ottawa Hospital, Ottawa, ON, 

Canada). HIVCS204 stocks were produced in CD8+ depleted PBMCs from healthy donors as 

described earlier [83]. Stocks of mock virus were produced under similar conditions but in the 

absence of HIV. HIV growth was determined by measuring p24 using HIV-1 p24CA capture kit 

as per the manufacturer’ directions (AIDS & Cancer Virus Program, NCI, Fredrick, MD).  

The plasmids HIV Gag-iGFP_JRFL (NIH) and pUC-19 (Thermo Fisher Scientific, Waltham, 

MA, USA) were purchased. The plasmid pNL4.3-Bal-IRES-HSA (provided by Dr M. Tremblay, 

Laval University, Quebec, Canada) was amplified using One Shot® Stbl3™ competent E. coli 

(Invitrogen, Carlsbad, CA, USA) and isolated using endotoxin-free plasmid DNA isolation mega 

kit (Thermo Fisher Scientific). To produce HIV-1-eGFP, HIVNL4.3-IRES-Bal-HSA (HIV-Bal-HSA) 

and mock viruses, 50 µg endotoxin-free plasmid DNA were transfected into 293T cells with 125 

µl of LipofectamineTM 2000 (Invitrogen) at a density of 18.0 x106 cells/T150 Dish. The 

supernatants harvested at 48 and 72 hr were combined and centrifuged at 2000 g for 15 min. 

PEG-itTM virus precipitation solution (SBI, Biotech, Japan) was used to precipitate viruses at 4°C 

for 24~48 hr and centrifuged at 2000 g for 30 min. The precipitates were resuspended in PBS 

with 0.05M HEPES and stored at −80°C. Viruses were quantified by HIV p24 ELISA as above.  

The MDMs were infected with 100 ng p24 per 1.0x106 cells supplemented with 5 µg/mL 

polybrene (Sigma Aldrich) for 16 hr following which cells were infected with HIVCS204, HIV-

Bal-HSA or HIV-eGFP for 7 days. The supernatants were assessed for p24 using HIV p24CA 

ELISA capture kit as above.  
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Treatment of MDM with SM or siRNA and assessment of apoptosis  

 

MDMs were cultured in complete media without antibiotics for 2 hr before treatment with 

various concentrations of SM-AEG40730 or SM-LCL161. For siRNA treatment, 20 nM of 

siRNA mixture (XIAP, cIAP1 and cIAP2) was added to 200 µl of Opti-MEM™ I Reduced 

Serum Medium with 1.0 µl DharmaFect 3 (Dharmacon, Colorado, USA). MDMs were evaluated 

for cell death by using intracellular PI staining as described [51,84]. Briefly, cells were washed 

with PBS and fixed with methanol for 15 min at 4 °C. Subsequently, cells were treated with 25 

μl of 10 μg/ml RNase A, followed by staining with 25 μl of 1 mg/ml PI solution (Sigma-Aldrich) 

at 4 °C for 1 h. The DNA content was analyzed using a FACSCanto flow cytometer (BD 

Biosciences, Franklin Lakes, NJ, USA) and the FACSDiva software. The subdiploid DNA peak 

(<2N DNA), immediately adjacent to the G0/G1peak (2N DNA), represents apoptotic cells and 

was quantified by histogram analyses. PI histograms figures were obtained with WinMDI 

version 2.8 software (J. Trotter, Scripps Institute, San Diego, CA).  

For quantification of apoptosis in HIV-HSA- or HIV-GFP-infected MDMs following 

treatment with either SM or siRNA transfection, cells were harvested after trypsinization with 

0.25% Trypsin-EDTA (Gibco, Dublin, Ireland) for 30 min. HIV-eGFP-infected MDMs were 

stained with 2.0 µl Annexin-V-APC (BD Biosciences) in 50 µl of PBS/0.5% BSA for 15 min, 

and fixed with 1% PFA (Affymetrix, Santa Clara, CA, USA). Cells were analyzed with flow 

cytometer (BD LSR FORTESSA X-20) in GFP and APC channels. HIV-Bal-HSA-infected 

MDMs were blocked with FcR blocking reagent (MACS Miltenyi Biotec, Auburn, CA, USA) in 

50µl of PBS/0.5% BSA, and stained with 2.0 µl of FITC conjugated anti-mouse CD24 antibody 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 6, 2019. ; https://doi.org/10.1101/543017doi: bioRxiv preprint 

https://doi.org/10.1101/543017
http://creativecommons.org/licenses/by/4.0/


25 

 

(BD Biosciences) for 20 min. Cells were washed and stained with Annexin-V-APC for 15 min, 

fixed with 1% PFA followed by analysis with flow cytometer at FITC and APC channels.  

 

Isolation of HIV-HSA-infected MDMs  

 

MDMs were infected with HIV-Bal-HSA for 9 days followed by magnetic sorting using HSA-

CD24 beads (MACS Miltenyi Biotec.) through column separation, as previously described [57]. 

Briefly, infected MDMs were detached with accutase (Innovative Cell Technologies, San Diego, 

CA), FcRγII receptors were blocked with FcR blocker (MACS Miltenyi Biotec), stained with 

primary CD24-biotin conjugated antibody and incubated with anti-biotin ultra pure microbeads 

(MACS Miltenyi Biotec). HSA-expressing cells were collected by positive selection in LS 

columns. The HSA-negative (negative fraction) cells were collected after passing the labelled 

cells through the column for the first time. The column was detached from the magnet and the 

HSA positively labelled cells were collected by plunging out the cells. Purity of the HSA-

infected macrophages was assessed by flow cytometry using anti-Biotin PECy7 antibody.   

 

Analysis of caspase activation 

 

Activation of caspase-3, -8, and -9 was measured as per Abcam’s Caspase staining kit protocol 

(Abcam, Toronto, Ontario, Canada) by flow cytometry. 

  

TNF-α ELISA and cytokine ELISA array 
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Human TNF-α duo set (R&D System) was used to quantify TNF-α as per the manufacturer 

recommendations. Briefly, the 96-well plates were preincubated with TNF-α capture antibody 

for 16 hr followed by blocking with 1% FBS. TNFα (1-1000 pg/mL) was used as standards. The 

samples were added to the plates for 16 hr followed by the detection antibodies for two hr. Next, 

100uL/well of substrate solution was added. The enzymatic reaction was stopped with 50 

uL/well of stop solution (BioFX Labs, Owing Mills, MD). The plates were read at 490 nM using 

iMark Microplate reader (Biorad, Mississauga, Ontario) using microplate manager 6 software.  

The levels of secreted cytokines were measured as per the directions in Milliplex map kit 

(Millipore, Etobicoke, ON, Canada). IL-17F, GM-CSF, IFNγ, IL-10, CCL20/MIP3a, IL-12p70, 

IL-13, IL-15, IL-17a, IL-22, IL-9, IL-1β, IL-33, IL-21, IL-23, IL-5, IL-6, IL-17ε/IL-25, IL-27, 

IL-31, TNFα, TNFβ, and IL-28A were detected using antibody-immobilized magnetic beads and 

were quantified by MAGPIX® multiplex with xPONENT® software (Luminex Corp.).   

 

Western immunoblot analysis  

 

The lysates were subjected to SDS-PAGE electrophoresis as described earlier [51,55,84]. 

Proteins were transferred onto polyvinylidene difluoride membrane (BioRad Laboratory, 

Hercules, CA) and probed with primary antibodies specific for cIAP1, cIAP2, XIAP, caspase-3, 

caspase-8, caspase-9, β-actin, PARP, Bax, TRAF-1, TRAF-2, and RIPK-1 (Cell Signalling Tech, 

Inc., Danvers, MA), followed by goat anti-rabbit or anti-mouse secondary polyclonal antibodies 

conjugated to horseradish peroxidase (BioRad Laboratory). Proteins were visualized by 

enhanced chemiluminescence (Amersham Bioscience, Little Chalfont, UK).  
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Statistical analysis  

 

Data was plotted using Graphpad Prism 5. Statistical significance was calculated using student t 

test or One-way Anova, followed by Dunnett post test. Plotted data represent the mean ± SD.  

 

Ethics statement 
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Figure Legends 

 

Figure 1. SM induces cell death of HIV-infected myeloid cells. (A) U937 (n=9) and 

chronically infected counterpart U1 cells (n=10) were treated with SM-LCL161 at 1, 2, and 4 

μM for 48 hr. (B) PMA differentiated U937 (n=7) and U1 cells (n=11) were treated with SM 

LCL161 at 1, 2, and 4 μM for 48 hr. Cell death was assessed by intracellular PI staining. The  p-

values were calculated using Mann-Whitney U test. (***p=<0.0001, **p=0.002).  (C) U937 and 

U1 were treated with increasing concentration of SM-LCL161 for 48 hr and cytosolic fractions 

were collected and subjected to Western immunoblotting. 30 µg of total proteins were loaded to 

the protein gels. The membranes were probed with antibodies specific for caspase-3. The figure 

shown is a representative of three experiments. 

 

Figure 2. SM induces cell death of HIV-infected MDMs (A). The HIV-infected MDMs were 

treated with increasing concentration of SM-LCL161 for 48 hr. The cytosolic fractions were 

subjected to Western immunoblotting. The membranes were probed with antibodies specific for 

human cIAP-1 and cIAP-2.  (B) Human MDMs were in vitro infected with HIV-CS204 (100 ng 

p24 / well) for 7 days. The cells were then treated with SM-LCL161 for 48 hr and cell death was 

assessed by PI staining and flow cytometry. The representative histograms are shown in (C). (D) 

After 7-days of infection, supernatants were analyzed for p24 by ELISA. (E) MDMs generated 

from naïve and ART-treated HIV-individuals were treated with SM-LCL161 for 48 hr. Cell 

death was assessed by PI staining and flow cytometry. Supernatants from SM-treated in vitro 

HIV-infected MDMs (F) and SM treated U1 cells (G) were analyzed for p24 secretion. The p-

values were calculated using Mann-Whitney U test.  
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Figure 3. SM specifically induces cell death of HIV-HSA-infected MDMs. (A) Gating 

strategy for the detection of apoptosis of HIV infected total (HSA+ and HSA- ) MDMs, and high 

HSA-expressing MDMs. (B) MDMs were in vitro infected with HIV-Bal-HSA for 9 days. Cells 

were treated with DMSO or 5µM AEG40730 for 72 hr. Cell death of total HIV-HSA+ and HIV-

HSA- MDMs was detected by Annexin-V-BV711 and flow cytometry (left panel). 

Representative histogram shows HIV-HSA-infected cells (middle panel) and cell death of total 

HSA+ and HSA- HIV-infected cells (right panel). (C) Intensely HSA positive HIV-infected cells 

were gated and analyzed for apoptosis by Annexin-V-BV711 staining and flow cytometry (left 

panel). Representative histogram shows intensely positive HIV-HSA-infected cells (middle 

panel) and cell death of high HSA+ cells (right panel). The p values in B and C were calculated 

using Mann-Whitney U test. (D) SM specifically kill HIV-HSA-infected cells but not HIV-HSA- 

MDM. MDMs were infected with HIV-HAS for 11 days followed by treatment with either SM-

LCL-161 (upper panel) or AEG40730 (lower panel) for another two hr followed by analysis of 

cell death by PI staining (n=5). The p-values were calculated using paired t test.  

 

Figure 4. SM specifically induces cell death of HIV-GFP-infected MDMs. (A) Gating 

strategy for the detection of apoptosis of total HIV-eGFP infected and specific high HIV-GFP 

expressing MDMs. (B) MDMs were in vitro infected with HIV-eGFP for 7 days. Cells were 

treated with DMSO or AEG40730 for 72 hr. The cell death of the total population of HIV-GFP-

infected MDMs was detected by Annexin-V-BV711 and flowcytometry (left panel). 

Representative histogram shows HIV-GFP-infected cells (middle panel) and cell death of total 

GFP+ and GFP- HIV-infected cells (right panel). (C) Intensely GFP-positive HIV-infected cells 
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were gated and analyzed for apoptosis by Annexin-V-BV711 staining and flow cytometry (left 

panel). Representative histogram showing intensely positive HIV-GFP-infected cells (middle 

panel) and cell death of high GFP+ cells (right panel). p-values were calculated using Mann 

Whitney U test (n=4).  

 

Figure 5. IAP siRNA specifically induces cell death of HIV-HSA-infected MDMs. (A) 

Gating strategy for the detection of apoptosis of total HIV-HSA infected MDMs, HSA-

expressing MDMs, and specific apoptosis of HIV-HSA infected MDMs. (B) MDMs were in 

vitro infected with HIVNL4.3-Bal-HSA for 9 days. The cells were transfected with non-targeting 

control siRNA or cIAP1/2 siRNA. After 72 hr of transfection, cell death of the total population 

of HIV-HSA-infected MDMs was detected by Annexin-V-BV711 and flow cytometry (left 

panel). Representative histogram showing HIV-HSA-infected cells (middle panel) and cell death 

of total (HSA+ and HSA- ) HIV-infected cells (right panel). (C) Intensely HIV-HSA positive 

HIV-infected cells were gated and analyzed for apoptosis by Annexin-V-BV711 staining and 

flow cytometry (left panel). Representative histogram showing intensely positive HIV-HSA-

infected cells (middle panel) and cell death of high HSA+ cells (right panel). p-values were 

calculated using Mann Whitney U test (n=4).  

 

Figure 6. SM-induced cell death of HIV-infected MDMs is mediated by apoptosis. In vitro 

HIV-infected MDM were treated with SM-LCL161 for 48 hr. The cells were treated with Z-Vad 

pan-caspase inhibitor for 2 hr prior to SM-LCL-161 (3 µM). The activation of caspases was 

detected by fluorescent caspase substrate (caspase-3, n=3; caspase-8, n=4; caspase-9, n=6).  The 

p values were calculated using Mann-Whitney U test.  
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Figure 7.  TNF-α mediates SM-induced apoptosis in U1 cells but not in primary HIV-

infected MDM  

SM induced cell death in U1 cells is regulated by r TNF-a.  SM induce TNFα secretion in 

undifferentiated and differentiated U937 and U1 cells (A-D). Undifferentiated U 937 (A), 

undifferentiated U1 (B), differentiated U937 (C) and differentiated U1 (D) cells were treated 

with various concentrations of SM-LCL161 for 48 hr. The supernatants were analyzed for TNF-

α production by ELISA. 

SM treatment of HIV-infected MDMs does not induce TNFα production. (E). Human MDMs 

were in vitro infected with HIV-CS204 (100 ng p24 / well) for 7 days followed by the addition of 

SM-LCL161 for 48 hr (n=3). (F) MDMs derived from HIV-patients were treated with SM-

LCL161 for 48 hr (n=4). Supernatants were analyzed for TNFα production by ELISA. U 937 (G) 

and U1 (H) were treated with either SM-LCL161 alone, rTNF-α alone or with SM-LCL161 and 

various concentrations of rTNF-α for 48 hr followed by analysis of cell death by PI staining and 

flow cytometry. (I) MDMs were treated with SM-LCL161 for 2 hr followed by the addition of 

rTNF-α for 48 hr.  Intracellular PI staining and flow cytometry were used to assessed levels of 

cell death (n=3).  p-values were calculated using paired t test or Mann-Whitney U test.   

 

Figure 8. HIV infection results in downregulation of RIPK1 in MDMs. (A) Human MDMs 

were in vitro infected with HIV-CS204 (100 ng p24 / well) for 7 days followed by the addition of 

SM-LCL161 for 48 hr. (B) Human MDMs were in vitro infected with HIV-CS204 (100 ng p24 / 

well) and cells were harvested on day 0, 2, 4, 6, and 8. Cell lysates were subjected to Western 
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immunoblotting for RIPK-1. The results shown are representative of 4 experiments (A) and 

twice for B.  (C) Gating strategy for detection of HIV-HSA infected macrophages. HIV-infected 

bulk MDMs were gated as singlets followed by staining for live cells using E450 live/dead 

staining kit (Invitrogen). HIV-HSA-infected cells were detected within the live cell population 

by using FITC-labelled anti-CD24 antibodies (left panel). MDM were in vitro infected with R5 

tropic HIV-Bal-HSA as above for 11 days following which cells were subjected to magnetic 

column separation using CD-24 (HSA)-biotin conjugated antibodies. The % of HIV-HSA-

infected MDM in isolated unsorted, negative, waste and positive fractions as assessed by flow 

cytometry is shown (right panel). (D) Isolated fractions of HIV-HSA, namely negative fraction 

(negative sort), waste fraction and positively isolated fraction (positive sort) were subjected to 

Western immunoblotting for analysis of RIPK-1 and pRIPK-1. (E). Human MDMs were in vitro 

infected with HIV-CS204 (100 ng p24 / well) for 7 days followed by the addition of SM-LCL161 

for 48 hr. Cell lysates were analyzed for TRAF-1, TRAF-2, Bid and Bax by Western 

immunoblotting. The results shown are a representative of two (upper panel) and 4 (lower panel) 

experiments respectively.  

        

Figure 9. Concomitant downregulation of cIAP1/2 and RIPK-1 in MDMs derived from 

healthy donors results in activation of apoptosis. (A) MDMs were treated with 10 μM 

necrostatin-1 for 2 hr followed by the addition of increasing concentration of SM- LCL161 for 

48 hr. Cell death was assessed by intracellular PI staining and flow cytometry. p-values were 

calculated using Mann-Whitney U test (n=4). (B) Representative histograms of the four 

experiments is shown. (C) MDMs treated as above with necrostatin-1 and SM-LCL161 were 
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harvested and subjected to Western immunoblotting for caspase-3, -8, -and 9, PARP, and beta-

actin. The blots shown is a representative of three experiments.  
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Online supporting information 

Supp Fig 1. SM induce the activation of caspases in HIV-infected MDMs. Human MDMs 

were in vitro infected with HIV-CS204 (100 ng p24 / well) for 7 days. The cells were then treated 

with SM-LCL161 for 48 hr.  The activation of the caspase-3, 8, and 9 were detected by 

intracellular caspases staining and flow cytometry. Representative histograms are shown. 

Supp Fig 2.  SMs induce cell death in M1 macrophages.  (A). M0 and M1 MDMs were 

treated with increasing concentration of SM-LCL161 48 hr (n=3). Cell death was assessed by 

intracellular PI staining and flow cytometry. The p-values were calculated using Mann-Whitney 

U test. (B) A representative histograms for cell death in M1 macrophages is shown.  

Suppl. Fig 3. HIV infection of MDMs does not result in the upregulation of cytokines 

related to M1 phenotype. MDMs were in vitro infected with mock or HIVCS204. The 

supernatants collected after 7 days of infection were analyzed for the secretion of cytokines using 

Human Th17 magnetic panel cytokine array kit for 22 different cytokines (n=6). The p-values 

were calculated using Mann-Whitney U test 

Supp Fig 4. SM does not induce aberrant production of M1 cytokines in mock and HIV-

infected MDMs. The in vitro mock and HIVcs204-infected MDM for 7 days were treated with 

SM LCL161 for 48 hr. Supernatants were collected, and cytokine profile was analyzed through 

Human Th17 magnetic panel cytokine array kit (n=3) 

Supp 5. Supp Fig 6. SM does not induce cytokine production in MDMs generated from 

HIV-infected individuals. PBMC from ART-treated HIV+ patients were differentiated into 

macrophages for 7-days and subsequently treated with SM LCL161 for 48 hr. The supernatants 

were analyzed for cytokines through Human Th17 magnetic panel cytokine array. P-values were  

calculated using paired-T test (n=3) 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 6, 2019. ; https://doi.org/10.1101/543017doi: bioRxiv preprint 

https://doi.org/10.1101/543017
http://creativecommons.org/licenses/by/4.0/


43 

 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 6, 2019. ; https://doi.org/10.1101/543017doi: bioRxiv preprint 

https://doi.org/10.1101/543017
http://creativecommons.org/licenses/by/4.0/


Figure 1 

Undifferentiated U937

DMSO

SM 1u
M

SM 2u
M

SM 4u
M

0

5

10

15

20

25

%
 c

el
l d

ea
th

Undifferentiated U1

DMSO

SM 1u
M

SM2u
M

SM4u
M

0

5

10

15

20

25

***
***

**

%
 c

el
l d

ea
th

A 

Differentiated U937

DMSO

SM 1u
M

SM 2u
M

SM 4u
M

0

20

40

60

80

%
 c

el
l d

ea
th

Differentiated U1

DMSO

SM 1u
M

SM 2u
M

SM4 u
M

0

20

40

60

80

***
***

%
 c

el
l d

ea
th

B 

C 

Procaspase-3  

Cleaved-
caspase-3  

DMSO 1uM 2uM 4uM 

LCL161 U937 

β-actin 

35 kb 

20kb Cleaved-
caspase-3  

Procaspase-3 

DMSO 1uM 2uM 4uM 

LCL161 

β-actin 

U1 

35 kb 

20kb 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 6, 2019. ; https://doi.org/10.1101/543017doi: bioRxiv preprint 

https://doi.org/10.1101/543017
http://creativecommons.org/licenses/by/4.0/


Figure 2 

media SM 1uM SM 2uM SM 4uM 

Mock 

HIVCS204 

Propidium Iodide 

C
el

l c
ou

nt
 

3.62% 2.31% 2.76% 3.77% 

6.03% 11.0% 
16.4% 36.9% 

C 

MOCK

HIV
-C

S20
4

0

10000

20000

30000

40000

p
2
4
 c

o
n
c
e
n
tr

a
tio

n
 (

p
g
/m

L
)

D 

H IV  p a t ie n ts -  T r e a te d

M
ed ia

1 0 0  n
m

 S
M

5 0 0  n
m

 S
M

1  u
M

 S
M

0

2 0

4 0

6 0

8 0

1 0 0

%
 a

p
o

p
to

ti
c

 c
e

ll
s

***p=0.001 

**p=0.0043 

H IV -p a tie n ts  u n tr e a te d

A
p

o
p

to
s

is

0

1 0

2 0

3 0 **p=0.004 

E 

DMSO

SM1.0
uM

SM2.0
uM

SM4.0
uM

0

2000

4000

6000

8000

10000
NS

HIV-infected MDMs

p2
4 

co
nc

en
tra

tio
n 

(p
g/

m
L)

F 
U1

DMSO
SM1

SM2
SM4

0

500

1000

1500

2000
NS

p2
4 

co
nc

en
tra

tio
n 

(p
g/

m
L)

G 

A Un 0.5µM 1.0µM 

cIAP1 

cIAP2 

β-actin 

β-actin 

Mock CS20
4

HIV

0

10

20

30

40

Media SM1.0 µM

SM2.0 µM SM4.0 µM

**p=0.0026

*p=0.209

%
 c

el
l d

ea
th

B 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 6, 2019. ; https://doi.org/10.1101/543017doi: bioRxiv preprint 

https://doi.org/10.1101/543017
http://creativecommons.org/licenses/by/4.0/


A 

58.9
% 

MDMS 

1.0% 

Apoptosis of total  (HSA+ and HSA-) 
HSA+ cells 

Annexin-V BV711 

co
un t 

1.0% 

HIV-HSA Infection  

HSA FITC 

co
un t 

0.0% 

Gating of High HSA+ cells   

HSA FITC 

A
nn

ex
in

-V
 B

V
71

1 

0.0% 

Specific Apoptotis of 
HIV-infected MDMs 

Annexin-V BV711 

co
un

t 

UN Mµ

AEG 4

0

10

20

30

40

50
Mock
HSA-
HSA+

NS

0.0143

0.0273

NS

0.0146

0.0087

%
 a

nn
ex

in
 p

os
iti

ve
 c

el
ls

UN

LC
L 2

uM

LC
L 3

uM

LC
L 4

uM
0

10

20

30

40

50
Mock
HSA-
HSA+

NS0.0106

0.0045

0.0261

0.0232

NS

NS

NS

0.0283

0.0227
0.0350

0.0160

%
 a

nn
ex

in
 p

os
iti

ve
 c

el
ls

D 

DMSO
AEG

0

10

20

30

40 *p=0.0286

in vitro HIV-HSA infected

%
 a

po
pt

ot
is

 o
f 

to
ta

l
H

S
A

+ 
an

d 
H

S
A

- 
M

D
M

s

B 

DMSO 30.3% 

AEG 

56.7
% 

HIV-HSA Infection  

HSA FITC 

co
un

t 

31.9% 

1.3% 

Apoptosis of total  HSA+ 
and HSA- MDMs 

Annexin-V 
BV711 

co
un

t 

DMSO Mµ

AEG 5

0

20

40

60

80

100 *p=0.0286

in vitro HIV-HSA infection

%
 s

pe
ci

fic
 a

po
pt

ot
is

 o
f

 h
ig

h 
H

S
A

+ 
M

D
M

s

C 

DMSO 

AEG 

2.7
% 

63.
2% 

Specific Apoptotis of 
high HSA+  MDMs 

HSA FITC 

co
un

t 

28.
4% 

21.
7% 

Gating of High HSA+ 
MDMs  

HSA FITC 

A
nn

ex
in

-V
 B

V
71

1 

Figure 3 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 6, 2019. ; https://doi.org/10.1101/543017doi: bioRxiv preprint 

https://doi.org/10.1101/543017
http://creativecommons.org/licenses/by/4.0/


Figure 4.  

3.
8 

5.
8 

6.
3 2

3.
5 

DMS
O 

AEG 

HIV-eGFP 
Infection  

Apoptosis of total eGFP+ 
and eGFP- MDMs 

DMSO
AEG

0

5

10

15

20

25
*p=0.0286

in vitro HIV-GFP infected

%
 a

po
pt

ot
is

 o
f 

to
ta

l
eG

FP
+ 

an
d 

eG
FP

- 
M

D
M

s

B 

HIV-eGFP 

co
un

t 

Annexin-V 
BV711 

co
un

t 

DMSO
AEG

0

20

40

60

80 *p=0.0286

in vitro HIV-GFP infected

%
 s

pe
ci

fic
 a

po
pt

ot
is

 o
f

 h
ig

h 
eG

FP
+ 

M
DM

s

C 

DMSO 

AEG 

0.
5 

0.
5 

Gating of High 
eGFP+ MDMs   

HIV-eGFP 

A
nn

ex
in

-V
 B

V
71

1 

28
.1 

70
.0 

Specific apoptosis of 
high eGFP+ MDMs  

Annexin-V 
BV711 

co
un

t 

A 

MDMS 

HIV-eGFP Infection  

HIV-eGFP 

co
un

t 

Apoptosis of total 
eGFP+ cells 

Annexin-V BV711 

co
un

t 

Gating of High 
eGFP+ cells   

HIV-eGFP 

A
nn

ex
in

-V
 B

V
71

1 

Specific apoptosis of HIV-
infected MDMs  

Annexin-V 
BV711 

C
ou

nt
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 6, 2019. ; https://doi.org/10.1101/543017doi: bioRxiv preprint 

https://doi.org/10.1101/543017
http://creativecommons.org/licenses/by/4.0/


Figure 5 

cn
trl 

siR
NA

IA
Ps s

iR
NA

0

20

40

60

80

in vitro HIV-HSA infected

*p=0.0286

%
 a

po
pt

ot
is

 o
f 

to
ta

l
H

S
A

+ 
an

d 
 H

S
A

- 
M

D
M

s

B 

34
.8 

63.
2 

 cntrl 
siRNA 

IAPs 
siRNA 

HIV-HSA 
Infection  

Apoptosis of total HSA+ 
and HSA-MDMs 

14.3 37.
0 

HSA FITC 

co
un

t 

Annexin-V 
BV711 

co
un

t 

cn
trl 

siR
NA

IA
Ps s

iR
NA

0

10

20

30

in vitro HIV-HSA infected

*p=0.05

%
 s

pe
ci

fic
 a

po
pt

ot
is

 o
f

 h
ig

h 
HS

A
+ 

M
DM

s

C 
Gating of High 
HSA+ MDMs   

Specific apoptosis of 
High HSA+ MDMs  

11.1 
58.9 

12.1 27.3 

IAPs 
siRNA 

 cntrl 
siRNA 

11.1 
58.9 

12.1 27.3 

HSA FITC 

A
nn

ex
in

-V
 B

V
71

1 

Annexin-V 
BV711 

co
un

t 

A 

58.9
% 

MDMS 

1.0% 

Apoptosis of total  (HSA+ and HSA-) 
HSA+ cells 

Annexin-V BV711 

co
un t 

1.0% 

HIV-HSA Infection  

HSA FITC 

co
un t 

0.0% 

Gating of High HSA+ cells   

HSA FITC 

A
nn

ex
in

-V
 B

V
71

1 

0.0% 

Specific Apoptotis of 
HIV-infected MDMs 

Annexin-V BV711 

co
un

t 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 6, 2019. ; https://doi.org/10.1101/543017doi: bioRxiv preprint 

https://doi.org/10.1101/543017
http://creativecommons.org/licenses/by/4.0/


caspase-3

med
ia

SM 2u
M

0

10

20

30

40

%
 C

as
pa

se
-3

+  c
el

ls

caspase-9

med
ia

SM 1u
M

SM 2u
M

SM 3u
M

0

10

20

30

40

50

%
 C

as
pa

se
-9

+  
ce

lls

caspase-8

med
ia

SM 1u
M

SM 2u
M

SM 3u
M

0

10

20

30

40

%
 C

as
pa

se
-8

+  c
el

ls

caspase-8

med
ia

SM 1u
M

SM 2u
M

SM 3u
M

SM + ZVAD

0

10

20

30

40 *p=0.02

*p=0.03
%

 C
as

pa
se

-8
+  c

el
ls

caspase-9

med
ia

SM 1u
M

SM 2u
M

SM 3u
M

SM + ZVAD

0

10

20

30

40

50 **p=0.002

**p=0.02

**p=0.03

%
 C

as
pa

se
-9

+  c
el

ls

caspase-3

med
ia

SM 2u
M

0

10

20

30

40
*p=0.04

%
 C

as
pa

se
-3

+
ce

lls

Figure 6 

Mock-infected HIV-CS204-infected 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 6, 2019. ; https://doi.org/10.1101/543017doi: bioRxiv preprint 

https://doi.org/10.1101/543017
http://creativecommons.org/licenses/by/4.0/


HIV+ patient-derived MDMs

med
ia

SM 0.
5u

M

SM 1.
0u

M

0

10

20

30

40

50
TN

F-
α

 (p
g/

m
L)

Mock

med
ia

SM 0.
5u

M

SM 1.
0u

M

0

10

20

30

40

50

TN
F-
α

 (p
g/

m
L)

HIVCS204

med
ia

SM 0.
5u

M

SM 1.
0u

M

0

10

20

30

40

50

TN
F-
α

 (p
g/

m
L)

U937 differentiated

DMSO

SM 1u
M

SM 2u
M

SM 4u
M

0

50

100

150

200
***p=0.0007

TN
F-

a 
co

nc
en

tr
at

io
n 

(p
g/

m
L)

U1 differentiated

DMSO

SM 1u
M

SM 2u
M

SM 4u
M

0

50

100

150

200

***p=< 0.0001

TN
F-

a 
co

nc
en

tr
at

io
n 

(p
g/

m
L)

undifferentiated U937

DMSO

SM 1u
M

SM 2u
M

SM 4u
M

0

10

20

30

40

50 ***p=< 0.0001

TN
F-

a 
co

nc
en

tr
at

io
n 

(p
g/

m
L)

undifferentiated U1

DMSO

SM 1u
M

SM 2u
M

SM 4u
M

0

10

20

30

40

50
***p=< 0.0001

TN
F-

a 
co

nc
en

tr
at

io
n 

(p
g/

m
L)

A B 

C D 

E F 

        MDMs

DMSO

TN
Fa

 15
ng

SM0.5
uM

SM0.5
+T

NFa

SM1.0
uM

SM1+
TNFa

SM2u
M

SM2+
TNFa

0

20

40

60

NS NSNS%
 c

el
l d

ea
th

U937

UN
DMSO

SM 1.
0 u

M

rTNFa 2
.5n

g

SM+rTNFa 2
.5n

g

rTNFa 5
.0n

g

SM+rTNFa 5
.0n

g

rTNFa 1
0.0

ng

SM+rTNFa 1
0.0

ng

rTNFa 2
0.0

ng

SM+rTNFa 2
0.0

ng

0

20

40

60

NS

* **
*

*
* *

*

%
 c

el
l d

ea
th

U1

UN
DMSO

SM 1.
0 u

M

rTNFa 2
.5n

g

SM+rTNFa 2
.5n

g

rTNFa 5
.0n

g

SM+rTNFa 5
.0n

g

rTNFa 1
0.0

ng

SM+rTNFa 1
0.0

ng

rTNFa 2
0.0

ng

SM+rTNFa 2
0.0

ng

0

20

40

60

*

* * * *

* * * *

%
 c

el
l d

ea
th

G H I 

Figure 7 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 6, 2019. ; https://doi.org/10.1101/543017doi: bioRxiv preprint 

https://doi.org/10.1101/543017
http://creativecommons.org/licenses/by/4.0/


Figure 8 

MDMs Singlet Live  HSA population 

C 

Mock infected 
CD-24 stained 

1.05% 

HIV-HSA 
negative fraction 
CD-24 stained 

7.38% 

HIV-HSA 
waste fraction 
CD-24 stained 

3.87% 

HIV-HSA 
positive fraction 
CD-24 stained 

71.0% 

Moc
k

Uns
ort

ed
 Frac

tio
n

Neg
ati

ve
 Frac

tio
n

Was
te 

Frac
tio

n

Pos
itiv

e F
rac

tio
n

0

20

40

60

80

100

%
 H

SA
+  

M
DM

s

RIPK-1  

β-actin 

pRIPK  

Mock Negative sort Waste Positive sort 

HIV-HSA infection D 

78kb 

78kb 

E 

TRAF-1 

UN 0.5uM 1uM 

LCL161 

Mock 

UN 0.5uM 

LCL161 
HIV-CS204 

β-actin 

β-actin 

Bax 

1 2 3 4 5 

50kb 

20kb 

TRAF-2 

β-actin 

BID 

β-actin 

Un 1uM 1uM 2uM 2uM Un 

LCL161 LCL161 

Mock HIV-CS204 

50kb 

20kb 

Full length-
RIP1 

β-actin 

Un 1 1 2 3 2 3 Un 

LCL161 (µM) 

Mock HIV-CS204 

  
  

Cleaved RIP 

A 

  
  

78kb 

50kb 

LCL161 (µM) 

37kb 

MOCK 
Day 0  D0 D2 D4 D6 D8 

HIV-CS204 infection  

Full length RIP-1 

cleaved-RIP 

B 

78kb 

50kb 

37kb 

β-actin 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 6, 2019. ; https://doi.org/10.1101/543017doi: bioRxiv preprint 

https://doi.org/10.1101/543017
http://creativecommons.org/licenses/by/4.0/


Figure 9 

B DMSO Nec-1 SM 0.5 uM + 
Nec-1 

SM 0.5 uM 

SM 1.0 uM SM 1.0 uM + 
Nec-1 

SM 2.0 uM SM 2.0 uM + 
Nec-1 

C
el

l c
ou

nt
 

Propidium iodide  

2.30% 2.02% 6.43% 14.1% 

5.92% 41.7% 8.43% 44.9% 

DMSO Nec SM0.5 SM1 SM2 SM0.5 SM1 SM2 STS 

Nec-1 

Procaspase-8 

Cleaved caspase-8 

Cleaved caspase-8 

Cleaved-caspase-3 

Procaspase-3 

β-actin 

Full-length caspase-9 

Cleaved-caspase-9 

β-actin 

Cleaved PARP 

C 

35 kb 

25 kb 

50 kb 

37 kb 

37 kb 

50kb 

75kb 

100kb 

A 
Mφ

DMSO

nec-1
 10uM

SM 0.5uM

SM 0.5 + nec-1

SM 1.0uM

SM 1.0uM + nec-1

SM 2.0uM

SM 2.0uM + nec-1
0

20

40

60 *p=0.0286
*p=0.0286

NS

NS

NS NS
NS

%
 ce

ll d
ea

th
.CC-BY 4.0 International licensea

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 
The copyright holder for this preprint (which was notthis version posted February 6, 2019. ; https://doi.org/10.1101/543017doi: bioRxiv preprint 

https://doi.org/10.1101/543017
http://creativecommons.org/licenses/by/4.0/

	ramon.et al.2018.smac.mimeticsplos.plos.pathogen
	While several recent studies support that M( serve as a major non-T cell HIV reservoir [30–38], the role of M( in HIV infection and persistence has been conclusively demonstrated by employing humanized BLT and myeloid only mice (MoM mice containing m...
	In order to devise strategies to eliminate HIV-infected M(, it is imperative to identify apoptosis-related genes and signaling proteins involved in resistance of HIV-infected M( to apoptosis. The mechanism underlying resistance of infected M( to HIV-i...
	Results
	SMs induce cell death in in vitro HIV-infected MDMs and MDMs derived from HIV-infected patients
	SM-induced cell death in HIV-infected MDM is mediated by apoptosis
	HIV-infected MDM do not develop M1 phenotype before or after SM treatment

	Materials and methods
	Generation of human monocyte-derived macrophages (MDM), cell lines and reagents
	Isolation of HIV-HSA-infected MDMs
	TNF- ELISA and cytokine ELISA array
	Western immunoblot analysis
	Statistical analysis
	Ethics statement


	ramon.et al.2018.smac.mimetics.figures1to9plos1
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9


