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Abstract

The hexagonal tessellation pattern of grid cells scales up progressively along
the dorsal-to-ventral axis of the medial entorhinal cortex (MEC) layer II.
This scaling gradient has been hypothesized to originate either from inter-
population synaptic dynamics as postulated by attractor networks, from pro-
jected theta frequencies to di↵erent axis levels, as in oscillatory models, or
from cellular dynamics dependent on hyperpolarization-activated cation cur-
rents. To test the hypothesis that intrinsic cellular properties account for
the scale gradient as well as the di↵erent oscillatory frequencies observed
along the dorsal-to-ventral axis, we have modeled and analyzed data from a
population of grid cells simulated with spiking neurons interacting through
low-dimensional attractor dynamics. To investigate the causal relationship
between oscillatory frequencies and grid scale increase, we analyzed the dom-
inant frequencies of the membrane potential for cells with distinct after-spike
dynamics. We observed that intrinsic neuronal membrane properties of sim-
ulated cells could induce an increase of grid scale when modulated by after-
spike reset values. Di↵erences in the membrane potential oscillatory fre-
quency were observed along the simulated dorsal-to-ventral axis, suggesting
that, rather than driving to the increase of grid scale as proposed by inter-
ference models of grid cells, they are the result of intrinsic cellular properties
of neurons at each axis level. Overall, our results suggest that the after-spike
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dynamics of cation currents may play a major role in determining the grid
cells’ scale and that oscillatory frequencies are a consequence of intrinsic cel-
lular properties that are specific to di↵erent levels of the dorsal-to-ventral
axis in the MEC layer II.

Keywords: grid cells, entorhinal, hyperpolarization, space

1. Introduction1

Grid cells found in layer II of the medial entorhinal cortex (MEC) present2

multiple regularly-spaced firing fields organized in a triangular tessellation3

that spans the entire explored environment [1, 2]. Functionally, grid cells4

represent a spatial metric system signaling the position of the animal in the5

environment. Together with sensory cells in the lateral entorhinal cortex6

(LEC), grid cells in MEC layer II project to both the dentate gyrus (DG)7

and CA3 neurons of the hippocampus proper [3, 4]. Thus, the mammalian8

hippocampus robustly encodes spatial representation using a combination of9

environment-related spatial and sensory information.10

Since the discovery of grid cells, several computational models have been11

proposed to describe the spatial and temporal properties of grid fields’ for-12

mation. Most of the proposed models can be categorized into two groups:13

oscillatory interference [5] and attractor dynamics [6, 7]. For the former14

group, the hexagonal grid pattern emerges from the interaction of multiple15

phase-synchronized oscillations that are based on the animal’s speed vector16

projected to MEC layer II from earlier MEC layers. Thus, at the computa-17

tional level, manipulating the amplitudes and phase di↵erences of these os-18

cillations would modulate the scale of the resulting grid cells. On the other19

hand, in the attractor-based models, the distribution of synaptic weights20

within an all-to-all network creates a characteristic “bump” of activity that21

converges to stable attractor points.22

The network weights configuration is updated according to the spatial23

motion of the agent at every time (t), which allows for the characteristic pe-24

riodic firing across the explored environment. Recent studies on the intrinsic25

cellular properties of grid cells support the idea of low-dimensional continu-26

ous attractor dynamics in the grid cells’ system, favoring the computational27

principles of attractor-based models of grid cells [8, 9].28

The size and spacing of grid cells’ firing fields have been shown to increase29

progressively along the dorsal-to-ventral axis of the MEC [1, 10, 11]. Func-30
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tionally, such a scale gradient has been suggested to operate as an accurate31

path-integration mechanism projecting to the DG and CA3 hippocampal32

sub-regions [10]. Moreover, the interaction between grid scales and other33

spatially tuned cells have been suggested to serve for minimizing errors in34

path integration [12].35

Despite observations on hyperpolarization-activated cyclic nucleotide-gated36

(HCN) channels’ disruption and its e↵ects on grid scale [13], the mechanism37

underlying the di↵erences in scale of such neural populations is still not clear.38

Di↵erent sub-threshold theta oscillatory frequencies have been measured in39

vitro in neurons along the dorsal-to-ventral axis, suggesting that individ-40

ual cells’ intrinsic frequencies might play a key role on grid cells’ scale [14].41

Moreover, it has been shown that the distance from the dorsal surface is42

accompanied by a decrease in oscillatory frequency in MEC layer II [15].43

From the continuous attractor model perspective, di↵erent scales are often44

obtained by manipulating the variance of the Gaussian synaptic distributions.45

However, given recent insight on the e↵ects of HCN channels disruption in46

grid cells’ metrics, the distribution of synaptic weights might not be the main47

factor accounting for grid scale and stability of the network activity.48

Coherent with such idea, previous computational models of grid cells [16]49

have explicitly pointed out that di↵erences in grid cells’ scale along the dorsal-50

to-ventral axis are linked to di↵erences in the cells’ intrinsic frequencies.51

Indeed, a systematic topographical change in time constants of hyperpolarization-52

activated cation currents (Ih) of stellate cells has been observed in vitro [14].53

Moreover, those topographical changes correlate with membrane potential54

oscillation frequency and di↵erences in the time constant of the sag response.55

This suggests that di↵erent Ih kinetics, which are regulated by the HCN fam-56

ily proteins, may play a critical role in the change of oscillatory frequencies57

along the dorsal-to-ventral axis and the topographical expansion of grid scale58

[15]. Forebrain-specific knockout of the HCN1 subcomponent in mice has59

been shown to selectively a↵ect the Y-intercept of the grid scale, indicating60

that those elements of the HCN family are involved in grid scale modulation61

[13, 17].62

Previous studies have addressed the question of how intrinsic cell’s fre-63

quency a↵ects the grid scale along the dorsal-to-ventral axis [18]. Specifi-64

cally, they proposed a model where the addition of physiologically plausible65

after-spike dynamics modulates the observed increase in grid scale along the66

dorsal-ventral axis of MEC.67

Whether the membrane potential oscillatory frequency is su�cient to68

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 8, 2019. ; https://doi.org/10.1101/544882doi: bioRxiv preprint 

https://doi.org/10.1101/544882
http://creativecommons.org/licenses/by-nc-nd/4.0/


determine the grid scale is still unclear. In attractor models of grid cells’69

formation, the scale of the grid is modulated by a gain parameter a↵ecting70

the synaptic connectivity of the network and thus the speed at which the71

activity bump moves along the network as well [18, 19]. However, there is no72

biological evidence for such connectivity matrix discretization. In interfer-73

ence models, the di↵erences in grid scale are generated due to amplitude and74

phase changes in the oscillatory inputs to the grid cells network. Despite the75

fact that di↵erences in the oscillatory frequencies are observable in biological76

systems, it is not clear whether it emerges from intrinsic or extrinsic network77

dynamics. The fact that knocking out HCN family type genes disrupts the78

normal progressive scale increase raises the question as to whether such scale79

gradient is a network or a cellular property. We address this by presenting a80

simplified spiking computational model that describes the generation of the81

spatial and temporal properties of grid cells found in physiological studies.82

2. Materials and methods83

In order to explore the e↵ects of intrinsic cellular properties on di↵erences84

in spatial grid scale found in the dorsal-to-ventral axis of MEC layer II and the85

impact on the oscillatory frequency at each axis level, we created a simulated86

environment where a virtual agent was randomly exploring either a 1D linear87

track or a 2D square arena (see Fig. 1). In both environments, the agent’s88

speed vector was fed into an ensemble of simulated neuronal populations89

(described below). Keeping in line with the findings from Yoon et al. [9]90

regarding the evidence of low-continuous attractor dynamics in grid cells’91

populations, we built on elements of a previously presented grid cells model92

based on attractor dynamics [19] and translated it to a spiking neuronal93

model, approximating the spiking behavior of MEC layer II stellate cells. At94

the topological level, the network is based on the twisted toroidal architecture95

and synaptic weights are dependent on the Cartesian distance of each cell96

to its postsynaptic cells and updated according to the speed vector of the97

simulated agent moving within the virtual environment (see [19] for more98

details).99

A total of 19 populations of grid cells were created, each containing100

100 neurons connected in an all-to-all fashion (Fig. 1A). The model was101

implemented in the NEST neural networks simulator [20], and all the analy-102

ses were done using the SciPy python scientific library [21]. The simulations103

used the simplified Izhikevich’s spiking model [22], which allows for the direct104
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manipulation of the resonant properties a↵ected by HCN channels in biolog-105

ical stellate cells [13] through a single parameter. In the model, parameters106

were tuned to reproduce the bursting behavior of MEC layer II grid cells ob-107

served experimentally in stellate cells recordings [22, 23, 24]. The activation108

function of each neuron in the network was defined by a system of ordinary109

di↵erential equations given by:110

dv/dt = 0.04v2 + 5v + 140� u+ I (1)

du/dt = a(bv � u) (2)

where 0.04v2+5v+140 mimics the spike initiation dynamics of a neuron,111

I represents synaptic currents or injected DC-currents, v represents the cell’s112

membrane potential and u describes the membrane recovery variable. a de-113

scribes the time scale of the recovery variable u and b describes the sensitivity114

of the recovery variable u to the subthreshold fluctuations of the membrane115

potential v.116

The after-spike resetting mechanism is given by:117

if v30 mV , then { v  cu u+ d (3)

where c and d describe the after-spike membrane value and recovery vari-118

able, respectively.119

To test whether the modulation of HCN channels is su�cient to trigger120

changes in grid cells’ scale, the after-spike reset value of cation currents d121

was varied across populations in the range 0.2 - 3.8 mV/ms with linearly122

increasing steps (Fig. 1B). The parametric space was defined in order to123

maintain the spiking behavior of stellate cells (Fig. 1C-D). All the other124

model parameters were kept constant over all the neuronal populations.125

The parameter a, which describes the cell’s current recovery variable time126

scale, was set to 0.03. The parameter b, describing the cell’s current recovery,127

was set to 0.2. The parameter c, describing the after-spike reset value of the128

cell’s membrane potential, was set to -50 mV. The spike train activity of each129

cell was recorded and used for the subsequent analysis.130

The virtual agent’s method of exploration was set to exhibit two di↵erent131

behaviors depending on the environment. In order to analyze di↵erences in132

periodicity and size of grid cells’ firing fields for populations with di↵erent133

Ih currents, the first behavior of the agent was to run back-and-forth in a134
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Figure 1: Illustrative description of the methods used in this study. A. A virtual

agent is set to randomly explore a squared virtual arena. During exploration, 19 popula-

tions of grid cells are activated and all receive inputs from the vestibular system encoding

the speed vector of the virtual agent. Each population of grid cells was initialized with

specific cell model parameters as shown in B. The spatial rate map of each cell belonging

to each population was stored for further analysis. B. Izhikevich model parameters used

per each population (condition). Every parameter value was kept constant for every pop-

ulation, with the exception of the d parameter ranging from 0.2 to 3.8 in steps of 0.2. C.

Number of spikes as a function of the d parameter. With all the other cell’s parameters

maintained constant a plateau is observed for reset values larger than 3. D. Simulations

of hippocampal stellate neurons for the 19 populations included in the model by varying

the d parameter.

linear track environment. For the second environment, the square arena, the135

agent would explore the arena randomly. Thus, in the second environment,136

the characteristic 2D rate maps of grid cells can be depicted.137

Grid cell’s activity was initialized with random activity between 0 and138

1/N (number of neurons in each grid-cell module) and was modulated by139

the speed vector of the agent’s translation at each time step.140

The network’s input is reliant on the speed vector of the simulated agent’s141

exploration, s := (sx, sy), allowing the activity bump of the network shifts142

along the neural sheet when the agent moves according to its speed vector.143

Whereas in the original grid cell model proposed by [19] the speed vector s144

is susceptible of modulation via a gain parameter, a↵ecting the grid scale, in145
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our simulations, the speed vector was kept constant throughout the simulated146

conditions.147

The synaptic weights distribution was defined as:148

wij(t) = I ⇤ exp
✓
� kci � cj + s(t)k2tri

�2

◆
� T (4)

where kci � cjk2tri denotes the Cartesian distance between cells ci and cj149

in the network matrix, I (= 0.3) defines the synaptic strength, � (= 0.48)150

modulates the width of the synaptic weight distribution and T (= 0.05) is151

the excitatory and inhibitory distance threshold.152

2.1. Data analysis153

Occupancy maps were calculated as the total time an agent spent in154

each spatial bin (50 ⇥ 50 pixels) within the virtual arena. Rate maps were155

then obtained by normalizing each cell’s spiking activity within a spatial bin156

with the agent’s occupancy map. Autocorrelograms were then obtained by157

the spatial autocorrelation of the rate map of each cell in the 2-dimensional158

plane.159

Frequency analyses were obtained by averaging the dominant frequency160

provided by the power spectral density (PSD). To compute the dominant161

membrane potential oscillation frequency, continuous, contiguous and non-162

overlapping windows of 10 seconds were extracted from each cell membrane163

potential and their PSD was computed. The second highest peak of the164

averaged PSD was considered the dominant frequency for a given cell.165

An Ipython notebook with the complete model’s code is available at the166

following repository: https://osf.io/w96fq/.167

3. Results168

To verify that the manipulation of the intrinsic cellular properties in the169

chosen cell model simulation would not a↵ect the attractor mechanism of170

the networks, we set every simulation to be a random state of activity and171

visually ensured that an activation bump was formed and remained stable172

throughout the virtual agent navigation. The formation of the activity bump173

during the initial simulation steps for three representative populations with174

di↵erent after-spike reset values are shown in Fig. S1.175
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3.1. Grid scale is modulated by Ih176

3.1.1. Linear track simulation177

The virtual agent was set to run along a linear track environment, mea-178

suring 200 virtual units, at a constant speed of 20 virtual units/second. A179

total of 1900 spike trains were recorded.180

Figure 2: Progressive increase in grid scale from dorsal to ventral MEC. Spike-
trains of four representative cells from dorsal (A) to ventral (D) axis populations. Left

trajectories (red) and right trajectories (blue) are di↵erentiated. Top subplots represent

the raw spikes against the position of the linear track per each run. Middle subplots

represent the spike density per position (same color code as in top plot). Bottom subplots

show the correlations of spike density along the linear track. Higher to lower oscillation of

spike density and correlation is observed from dorsal to ventral levels.

To test whether the modulation of HCN channels is su�cient to trigger181

changes in grid cells’ scale, the after-spike reset values of cation currents182

d were varied across populations. Fig. 2 illustrates the e↵ects of varying183
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the after-spike dynamics on the firing fields of 4 representative cells from184

the simulated dorsal-to-ventral axis level conditions (d = 3.6, 2.2, 1.2, 0.2).185

Within the linear track, spike activity relative to the agent’s position in the186

environment points to an increase in firing-fields size and distance that is187

dependent on the value of d. The e↵ect appears more evident from the188

spike density plots (Fig. 2 middle subplots) and by the periodic regions of189

high activity observed in the spike density autocorrelations (Fig. 2 bottom190

subplots).191

Figure 3: Grid field sizes and spatial distance in simulations run with varying
after-spike-reset values. Top: Firing field distance (left) and size (right) decrease along

the simulated conditions for larger d. Data points represent the average ± SD of all cells

in a simulated neuronal population.

To quantify the increase in grid scale at the population level, we have192

quantified each simulated cell firing field’s size and distance (Fig. 3). To do so,193

we obtained the firing rate, spike count, at each position of the linear track as194
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in Fig. 2 (bin size = 5 virtual points). A peak detection algorithm was applied195

to identify the firing fields. Firing fields whose peak rate was larger than 1.2196

standard deviations (z-scored) were included in the sample and the averaged197

distance between consecutive fields of each cell was computed. Increasing the198

hyperpolarization reset value d caused a decrease in the averaged firing field199

distance (Pearson r = �0.34, p < 0.01, Fig. 3-top left). Similarly, in order to200

quantify each cell’s firing field size, we obtained the spatial distance between201

the two firing rate points on each side of its peak whose first derivative was202

� 0. As for distance, we found that firing fields size is negatively modulated203

by the after-spike reset parameter (Pearson r = �0.31, p < 0.01, Fig. 3-top204

right). We next asked whether firing fields size and distance were equally205

a↵ected by the hyperpolarization reset value of each condition. To do so, we206

averaged firing fields size and distance of cells belonging to the same condition207

(Fig. 3-bottom). A strong correlation between size and distance revealed208

significance (Pearson r = 0.79, p < 0.01). Moreover, the increase in these209

spatial measures was accompanied by a decrease in the hyperpolarization210

reset value (see Ih condition in Fig. 3-bottom, colorbar).211

Further, we analyzed the relationship between the size and the distance212

of the firing fields of every cell used in our simulations with the hyperpo-213

larization reset value of each condition through a generalized linear model214

(GLM). According to the output, firing field size was modeled accordingly215

by: logit(⇡i) = 5.3 � 0.1 ⇤ size, and variance = 0.019. Firing field dis-216

tance was modeled accordingly by: logit(⇡i) = 6.6 � 0.07 ⇤ distance, and217

variance = 0.012.218

3.1.2. 2D arena simulation219

With the linear track simulations, we have shown that the intrinsic prop-220

erties of grid cells can e↵ectively modulate firing field size and spacing. How-221

ever, testing such grid cell properties in a linear trajectory could fail to222

demonstrate possible deformations in the characteristic grid pattern.223

In order to observe the stereotypical pattern of grid cell and the accounts224

of after-spike hyperpolarization behavior in grid resolution, we have set the225

virtual agent to perform random exploration within a two-dimensional open226

field arena. Similar to the 1D runs, we recorded the membrane potentials of227

stellate cells belonging to di↵erent simulated dorsal-to-ventral axis levels. As228

expected, the firing properties of cells at the ventral level presented larger and229

further distributed firing-fields when compared with the ones at the dorsal230

level (Fig. 4)231
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In order to quantify the stability of our model in the grid cells’ spatial232

representation, we used the gridness score measure for every cell’s autocor-233

relogram using correlations of rotational symmetry [25], by comparing the234

spatial autocorrelation maps to the rotated versions of themselves with 30�235

rotations as:236

GS = min (Acorr60� , Acorr120�)�max (Acorr30� , Acorr90� , Acorr150�) (5)

Overall, rate maps along the simulated conditions revealed to be in the237

range of gridness scores observed in tessellation patterns activity (> 0.15) and238

were not a↵ected by the hyperpolarization reset value (Pearson r = 0.061, p =239

0.23), suggesting a stable spatial representation across the simulated dorsal-240

to-ventral axis.241

In order to quantify for di↵erences along dorsal-to-ventral levels, we have242

correlated membrane potentials of cells within each module. Lags calculated243

after correlating membrane potential signals were taken as a measure of the244

periodic increase in the amplitude of cells firing rate. Thus, high-resolution245

grid cell rate-maps at the dorsal level (smaller scale) should reveal shorter246

distances between firing fields and larger distances for the ones at the ven-247

tral level (larger scale). As expected, we observed a progressive decrease248

in membrane potential autocorrelations lags as a function of the after-spike249

parameter (Pearson r = �0.94, p < 0.01, Fig. 5-right). As grid cell hexag-250

onal tessellation patterns and membrane potentials are not dissociable, we251

have also quantified spatial lags in between firing fields. As for membrane252

potentials, lags between spatial firing-fields were larger for smaller hyper-253

polarization reset values (Pearson r = �0.91, p < 0.01, Fig. 5-left) as well254

as for rate maps spatial auto-correlation (Pearson r = �0.96, p < 0.01,255

Fig. 5-middle). Fig. S2 further illustrates pairwise distances between spatial256

observations.257

Despite spatial grid-cell scale distribution found along the dorsal-to-ventral258

axis levels of MEC layer II, the oscillatory properties of stellate grid cells are259

also organized on the same axis [10, 18]. To verify whether the hyperpolar-260

ization behavior accounting for the spatial resolution organization was also261

su�cient to modulate the dominant frequencies of simulated neurons, we262

have compared dominant frequencies of cells at multiple dorsal-to-ventral263

axis modules. As in [10], dominant frequencies were observed to decrease264

from dorsal to ventral modules, ranging 14-22 Hz (Pearson r = 0.45, p <265
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Figure 4: Single cell’s rate maps and autocorrelograms of neurons along dorsal-
to-ventral axis. Cell’s spatial activity from ventral (top) to dorsal (bottom) axis level.

Hyperpolarization-reset value represented by d at left most side. Progressively decrease

of grid cell scale (left column), accompanied by its autocorrelogram (right column).

0.01, Fig. 6-left). Note that frequencies are not in a theta range as ex-266

pected in MEC, which could be due to the absence of inhibitory projec-267

tions either from within the MEC population or arriving from hippocampus268

proper feedback projections. However, there is evidence that modulation of269

hyperpolarization-after values is su�cient to explain a decrease of membrane270

potential frequency from dorsal to ventral levels. Thus, spatial scale and os-271

cillatory frequency might be explained by the intrinsic cell hyperpolarization272

mechanism.273

Discussion274

Grid cells in MEC layer II have been characterized by their grid scale,275

which progressively increases along the dorsal-to-ventral axis. So far, grid276

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 8, 2019. ; https://doi.org/10.1101/544882doi: bioRxiv preprint 

https://doi.org/10.1101/544882
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5: Spatial correlation lags from spike-train and membrane potential along
dorsal-to-ventral axis. Lags of correlation along most ventral (0.2) to most dorsal (3.8)

conditions. Left and middle plots represent lags of cross- and autocorrelation from 10 cells

at each condition. Right plot represents the lags of autocorrelation for membrane potential

of each cell. Increase of hyperpolarization-reset value is accompanied by the decrease of

lags from ventral to dorsal axis locations.

Figure 6: Increase of dominant frequencies from ventral (left) to dorsal (right).

cells’ computational models either use oscillatory interference or attractor-277

based dynamics to elicit the desired behaviors. Hybrid models have also been278

presented [26]. Regardless, the mathematical formulation to modulate grid279

scale has been attributed to network dynamics, in the case of attractor-based280

models, and to network inputs, in the case of interference-based models. In-281

terference models a↵ect its grid cell scale by modulating the frequency of282

oscillatory signals being projected to the ensemble of grid cells in the net-283

work [5]. Attractor dynamics-based grid cell models a↵ect grid cells scale by284

modulating the gain parameter which reflects how fast the bump of activity285
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in the network is translated to neighbor cells [19]. Despite the fact that both286

categories of grid cell models use network parameters to a↵ect grid cell scale,287

it is still unclear what is modulating grid cells’ scale in the hippocampus.288

Based on the findings by Giocomo et al. [14, 27], in this study, we hy-289

pothesized that grid cells’ scale can be modulated exclusively through single290

cell properties instead of network properties. To test our hypothesis, we have291

built upon a previously presented model for grid cells formation based on at-292

tractors dynamics [19], as has recently been observed in such cell type [8, 9].293

We used spiking neurons to mimic the properties of stellate grid cells and294

thus modulate their hyperpolarization behavior. We found that after-spike-295

reset scalars are su�cient to a↵ect both size and scale of grid cells at di↵erent296

axis levels in the medial entorhinal cortex layer II. Specifically, we observed297

changes in the firing fields’ size and scale, and their respective autocorrela-298

tion periodicity bumps from di↵erent after-spike-reset values conditions for299

linear track simulations.300

Contrary to Brun et al. [10], we found periodic activity events for the301

population vector activity analysis. Indeed, one should argue that grid cell302

periodicity must be noticed at the population level and, thus, whether such303

a phenomenon is accounted for in a living organism might depend on higher-304

level spatial encoding mechanisms such as environmental compartmentaliza-305

tion [28].306

Because wild rodents typically navigate within two-dimensional environ-307

ments, we have also tested our library in a virtual agent moving in a 2D308

arena. As in the 1D environment, the agent had no spatial target position309

or goal and simply moved at random within the squared arena. Again, the310

attractor-based network was set to form grid cells as in Guanella et al. [19]311

using the Izhikevich neuron model [22] to mimic stellate cells found in MEC312

layer II. The only parameter di↵ering among cells was the after-spike-reset313

values specific to each sub-population. As expected, size and scale of grid314

cells firing fields increased progressively along the simulated MEC layer II315

dorsal-to-ventral axis. In addition, 2D navigation simulations allow us to316

confirm that gridness remained stable and was not a↵ected by hyperpolar-317

ization related properties. Linear decays along simulated conditions were318

observed for both spatial and membrane potential correlations lag, allowing319

the quantification of firing-fields distances.320

In accordance with Brun et al. [10] and as hypothesized by Navratilova et al.321

[18], both oscillatory frequencies and spatial scale were a↵ected by cellular322

after-spike-reset parameters, suggesting that biophysical mechanisms alone323
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are su�cient to modulate multiple grid cell properties.324

The flexibility of the synaptic connections has been previously questioned325

and marked as an implausible mechanism to update the attractor activity326

bump in the biological brain (McNaughton, 2006). One possibility to over-327

come such constraint was also discussed in the same paper (McNaughton,328

2006), with the solution to rely on multiple networks of conjunctive cells329

whose activity is dependent on the animal motion. On the other hand, slower330

mechanisms of synaptic matrix changes might compromise the e�cacy of the331

model..332

We have addressed the question of whether MEC layer II grid cell scale333

was determined by the network synaptic connectivity distribution, as pre-334

dicted by low-continuous attractor models, or whether intrinsic properties of335

stellate cells accounting for individual cell’s hyperpolarization behavior was336

su�cient to modulate the rate-map resolution of explored environments. Our337

results suggest that biophysical grid-cell properties are responsible for their338

spatial scale.339

Despite the computational evidence, it is still not clear, however, what340

are the mechanisms determining the di↵erences in cells response along the341

dorsal-to-ventral axis level. During development, dorsal regions are formed342

earlier than the ones at ventral levels [29]. Similarly, as the animal’s develop-343

ment advances, so does its spatial exploration, covering bigger regions of the344

environment. Thus, it is still uncertain as to what are the causal relation-345

ships between behavioral components of exploration, such as the magnitude346

of environmental exploration, and cellular development and organization. In347

this line, the work of [14] presented di↵erences in the frequency of subthresh-348

old membrane potential oscillations in entorhinal cells. Moreover, in [13], the349

authors observed a modulation of the cell’s spatial scale in nucleotide-gated350

(HCN) channels knockout mice compared to sham. Suggesting the functional351

role of HCN in mediating the topographic organization of firing fields in the352

explored environment.353

Despite the fact that only excitatory cells are used in our implementa-354

tion, the low-continuous attractor mechanism defines the synaptic weight355

between cells accordingly to their Cartesian distance in the neural sheet in a356

range from strong excitation to neighboring cells to strong inhibition to fur-357

ther apart cells. Excitation and inhibition projections from the same neuron358

is definitely implausible in biological brains, however, that could be solved359

computationally by setting the synaptic weights to the excitatory range and360

adding a population of inhibitory interneurons mediating neuronal compe-361
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tition, as suggested by the E%-max winner-take-all mechanism of gamma362

frequencies (de Almeida et al., 2009)363

Along those lines, our work proposes specific physiological and develop-364

mental questions that could be tested experimentally. Specifically, character-365

ization of the bursting behavior observed in entorhinal stellate cells along the366

dorsal-ventral axis, as well as optogenetic stimulation modulating the neu-367

ron’s oscillatory dynamics could, potentially, support our modeling results.368

Moreover, at the computational level, this study proposes future work to un-369

veil the interactions between attractor dynamics and intrinsic properties of370

stellate cells in the MEC layer II.371
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Supporting information482

Figure S1: Evidence of attraction at the simulation initial steps. Every cell at

each population (assemble) starts with random activity. The bump of activity is formed

and attracted to a set of cells. A, B and C represents activity from population 1, 10 and

19, respectively.

Figure S2: Pairwise distances between spatial observations. Gaussian kernel sigma

of firing fields for ten cells at each condition is shown. Decrease of condensed distance

matrix against pairwise distances from ventral (left) to dorsal (right) conditions.
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