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1 Abstract

Many biomolecular complexes exist in a flexible ensemble of states in solution which are necessary to perform
their biological function. Small angle scattering (SAS) measurements are a popular method for characterizing
these flexible molecules due to their relative ease of use and ability to simultaneously probe the full ensemble
of states. However, SAS data is typically low-dimensional and di�cult to interpret without the assistance
of additional structural models. In theory, experimental SAS curves can be reconstituted from a linear
combination of theoretical models, although this procedure carries significant risk of overfitting the inherently
low-dimensional SAS data. Previously, we developed a Bayesian-based method for fitting ensembles of model
structures to experimental SAS data that rigorously avoids overfitting. However, we have found that these
methods can be di�cult to incorporate into typical SAS modeling workflows, especially for users that are
not experts in computational modeling. To this end, we present the “Bayesian Ensemble Estimation from
SAS” (BEES) program. Two forks of BEES are available, the primary one existing as module for the
SASSIE webserver and a developmental version that is a standalone python program. BEES allows users
to exhaustively sample ensemble models constructed from a library of theoretical states and to interactively
analyze and compare each model’s performance. The fitting routine also allows for secondary data sets to
be supplied, thereby simultaneously fitting models to both SAS data as well as orthogonal information. The
flexible ensemble of K63-linked ubiquitin trimers is presented as an example of BEES’ capabilities.

2 Introduction

Biological molecules rely heavily on their conformational dynamics to conduct their cellular function, and
the characterization of these flexible ensembles of states remains a key challenge in modern biophysics1. As a
result, many di↵erent experimental and computational techniques have been developed to probe and model
configurational ensembles. Of these, small angle scattering (SAS) measurements are an increasingly popular
technique due to their relative ease of use and ability to simultaneously probe the full solution ensemble2,3.
Moreover, SAS measurements are able to probe systems at room temperature, free from packing forces
induced by the lattice and cryogenic e↵ects of crystallography, and they can measure the solution of states
in both equilibrium ensembles and time-dependent processes4, such as protein and RNA folding5,6, or the
allosteric coupling of enzymatic activity and large-scale domain movement7,8. However, the low-dimensional
nature of SAS data can often cause the interpretation of scattering profiles to be relatively di�cult, and
reconstituting a three-dimensional molecular structure solely from scattering curves can often be misleading,
as multiple reconstitutions of varying shapes may result from the same scattering profile.

In contrast, model structures can also be identified from all-atom or coarse-grained simulations, and
their calculated scattering profiles can be compared against empirical curves9–12. Since SAS profiles are
measurements of the full solution ensemble and therefore may not be fully described by a single structural
state, these in silico profiles can also serve as a basis set to construct an ensemble model through a linear
combination of states13–16. While this ensemble reconstitution approach is conceptually straightforward, in
practice it can be quite di�cult to identify the “best” ensemble model. For instance, it is not known a priori
what the number of underlying states should be in the ensemble. It is also possible for ensemble models to
overfit experimental data through the inclusion of too many underlying populations. Furthermore, altogether
di↵erent combinations of states may yield similarly performing models, in respect to their goodness-of-fit
values.

For these reasons, a Bayesian-based approach has many advantages over more traditional methods. For
instance, Markov Chain Monte Carlo posterior sampling methods will not only estimate model parameters
but will also allow for the direct assessment of their errors17. Moreover, Bayesian formalism allows for
the comparison of a population of models as a solution to parameterization, rather than only identifying a
single set of parameters18–21. This is exceptionally useful for SAS modeling, where information regarding
the model is underdetermined. However, the ability to construct a large population of solutions can also be
a disadvantage, as both the computational resources to construct a complete array of model parameters, as
well as tools for comparing models, can be daunting for many systems.
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To this end, we previously developed an iterative Bayesian method to use small angle scattering (SAS)
profiles, either of x-rays (SAXS) or of neutrons (SANS), to re-weight the population of states from simulated
models. This approach, which is an extension of the BSS-SAXS technique13, compares solution ensembles of
a variety of sub-ensembles from a combination of potential scattering states. Originally, we used this method
to fit ensembles of covalently linked ubiquitin trimers, and we observed that the algorithm could produce
ensemble models that robustly resisted overfitting22.

Here, we present an update to this method as an open source program called “Bayesian Ensemble Esti-
mation from SAS” (BEES, henceforth). Two versions of this code have been developed. The primary version
is an open-access module on the SASSIE-web server (http://sassie-web.chem.utk.edu/sassie2/), which
provides a graphical user interface for controlling the module23,24. The BEES-SASSIE module is designed
for users that are both new and experienced in biophysical modeling, and, through SASSIE, it provides
access to the computational resources required to calculate and analyze large combinations of states. The
second, developmental, version is a stand-alone python code that is designed to be run from the command
line, and is intended for experienced computational scientists. We also provide two example use cases, one
in which we fit profiles of K63-linked ubiquitin trimers to SAXS data alone and another in which we add a
second data set to the fitting procedure.

3 Methods

3.1 BEES Algorithm

The BEES algorithm is designed to find the theoretical solution ensemble that uses the fewest number of
populations to accurately describes the experimental data. This algorithm is briefly presented here (Fig
1), but further details can be found in the supplemental text and elsewhere22. In short, experimental data
are gathered and post-processed prior to using the BEES module. For example, users may wish to screen
their data for low-q beam smearing e↵ects or to extrapolate their scattering profile to I(0). A collection
of theoretical profiles for candidate solution states are also input to BEES, which can be computed by
standalone programs such as Crysol25 or FoXS26, in SASSIE via the “SasCalc” module27, or from many
other scattering prediction software28–31.

Once initiated, the BEES routine first determines the goodness-of-fit values of each individual profile. It
then identifies all possible sub-bases containing combinations of two theoretical profiles, and it conducts a
Bayesian Monte Carlo routine on each combination to identify the population of states in each sub-basis. Each
Monte Carlo routine is conducted according to user-defined parameters: number of independent Monte Carlo
parameter fittings per sub-basis, number of iterations per Monte Carlo fitting, and amount of population
change per iteration. Notably, the BEES likelihood function (L) includes the ability to simultaneously fit
the scattering profiles and an auxiliary set of measurements:

L = e��2
total/2.0 (1)

where the total model goodness-of-fit (�2
total) is the linear combination of the model scattering goodness-of-fit

(�2
SAS) and the model goodness-of-fit to the auxiliary data set (�2

aux): �
2
total = �2

SAS + �2
aux.

Once the ensemble of states for each two-member sub-basis has been identified, the best two-member state
is selected in accordance to the information criteria (IC) selected by the user, either the Akaike information
criterion32 or the Bayesian Information Criterion33 (see Section 3.2 for more details). If the IC value of
the best two-member state is worse than that of any single theoretical profile, then the module reports the
best single profile as the most likely model. However, if the IC value of this two-member state is instead an
improvement over all individual profiles, then the BEES module conducts the Bayesian Monte Carlo routine
on every three-member sub-basis, and the best three-state IC value is similarly compared to the two-state
ensemble. This iterative increase in sub-basis size and comparison of IC values is conducted until either
the IC metric does not improve or every possible combination of states is considered. Alternatively, users
also have the option to override the IC-comparison and force the construction of all combinations of sub-
ensembles. Once the desired number of models have been identified, the BEES module will also calculate
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Figure 1: Workflow schematic of the BEES routine. Users supply empirical data and the collection of theoretical

profiles for potential ensemble members, as well as set several parameters associated with the Bayesian Monte Carlo

(BMC) parameter search. After the performance of each individual theoretical state is evaluated, ensemble popula-

tions are fit by BMC routines conducted iteratively on increasing sized sub-ensembles, until the addition of another

member population does not improve the IC value and overfitting is observed. Alternatively, users can bypass the

IC-comparison step to compare all possible combinations of states. The routine then relays information regarding

the resulting models to the command terminal (stand-alone version) or GUI (SASSIE-web version) and further stores

model information in several file locations for further review by users.

each model’s “relative performance” metric to determine its likelihood over the best IC-identified model
(Section 3.2)34:

RP (m) = e(ICm�ICo)/2 (2)

where RP (m) and ICm are the the relative performance and IC values of model m, and ICo is the minimum
IC value of all observed models. The relative performance metric is more commonly known as the relative
likelihood of a model. Here, we opt for the changed nomenclature to assist non-experts in the interpretation of
the metric, as well as to avoid confusion with the likelihood function used by the Bayesian Monte Carlo fitting
routine. While the relative performance provides a quantitative result, it is admittedly an approximation of
the more rigorous Bayes Factor33,35. As such, it is intended to be interpreted loosely and to assist the user
in applying their intuition toward the performance of alternative ensembles to the best identified one.

Once the best model has been identified, BEES outputs information regarding ensemble members of the
IC-identified model, its model population weights, goodness-of-fit information for the full ensemble model
and each individual, and the IC value of the model. Beyond the best identified model, information regarding
every model identified for each sub-basis is also saved. Plots of the model ensemble fit to the experimental
data, along with the associated residual errors, are automatically created once the fitting routine is completed.
These plots are included in a multi-tab HTML page that which provides graphical and table presentations
to allow users the ability to compare di↵erent models and performances.

3.2 Comparing Model Perfomances with Information Criteria

The rigorous comparison of theoretical ensembles to experimental data requires creating models that are
rich enough to describe the underlying physical structures that generated the data while simultaneously
avoiding overfitting. Biomolecules exist in an ensemble of conformations in solution, therefore an ensemble
of theoretical structures is typically required to interpret SAS data. However, it is imperative that the
final model does not achieve a strong goodness-of-fit value through inclusion of an arbitrary number of

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 9, 2019. ; https://doi.org/10.1101/400168doi: bioRxiv preprint 

https://doi.org/10.1101/400168
http://creativecommons.org/licenses/by-nc-nd/4.0/


parameters (here, the number of scattering profiles). As a result, the true “best model” must be a balance
between optimizing the goodness-of-fit metric and minimizing the number of underlying scattering states. To
this end, the BEES module utilizes “Information Criterion” (IC) in order to penalize model goodness-of-fit
values according to their ensemble size. Users have the option to use one of two di↵erent IC metrics during
fitting — the Akaike Information Criterion (AIC) or the Bayesian Information Criterion (BIC)32,33:

AIC = 2k � 2 · log
⇣
L̂
⌘

(3)

BIC = log(n) · k � 2 · log
⇣
L̂
⌘

(4)

Here, k is the number of model parameters (number of scattering states), L̂ is the maximum observed
likelihood value during the Bayesian Monte Carlo parameter fitting, and n is the number of points in the
experimental data set.

Both the BIC and AIC have forms that reward models with improved experimental fits (higher values
of L̂) and penalize those with more parameters (higher values of k). The BIC is closely related to the AIC;
however, it is derived from Bayesian principles rather than the frequentist foundation of the AIC. In both
metrics, smaller values are indicative of better model performance, with the defining separation between
them being the strength of the penalty term. In the AIC, the penalty is always double the number of states,
whereas the BIC penalty will become increasingly larger for a larger number of data points. In reality,
both metrics are an approximate way to identify the true model, and the AIC may be more prone to false
positive estimations (including too many states), while the BIC metric may be more prone to false negatives
(rejecting too many states), depending on the number of experimental data points. However, it is often
possible that both metrics converge upon the same solution, as is the case with the K63 example presented
here.

The model with the minimum IC value can be interpreted as the most likely, best performing, model.
While it may be tempting to accept this model and reject all others, Bayesian principles dictate that there
is a possibility that one of these other models might actually be more accurate to the true nature of the
system, even though each one possesses a weaker IC value. The probability that a model is, in fact, a
better assessment of the data can be calculated by comparing the model IC values to the lowest IC value,
as previously stated (Eqn 2)34.

Because the BIC and AIC apply di↵erent penalties to the number of states, they may also produce
di↵erent relative performance values for the same set of models. Depending on the number of independent
data points, the BIC will produce relative performance values for competing models that are either closer to
(n  7) or further from (n � 8) the performance of the model with the lowest BIC. That is, if the number of
independent data points is seven or fewer, then more models will have a relative performance closer to 1.0
than if evaluated by AIC. On the other hand, if the number of observed data points is greater than eight,
then more models will have relative performances closer to 0.0 if they are evaluated by the BIC in place
of the AIC. In the end, the choice of BIC vs AIC evaluation is up to the user, and it may sometimes be
appropriate to use both to determine upper and lower bounds for relative model performances.

4 Results

Here, we describe a sample usage of BEES and its resulting data. The necessary data files for this
test set are included in the Supporting Information. Users can thereby re-create the analyses presented
here by unpacking the archive locally and uploading the relevant files for each case to the BEES mod-
ule in SASSIE-web, or by following the shell scripts provided alongside the stand-alone version (https:
//github.com/WereszczynskiGroup/BEES/tree/master/examples). In the first example, we model the
populations of states of K63-linked ubiquitin trimers using clusters identified from accelerated molecular
dynamics trajectories22. In the second example, we showcase the e↵ects of simultaneously fitting the SAS
spectra and an auxiliary data set by including simulated measurements of an inter-domain distance and
angle.
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A B

Figure 2: (a) Example of output from BEES program, as used on SASSIE-web GUI. (top) Text output displaying

the contributing populations of the best IC-identified ensemble and the associated error in population estimates, as

well as goodness-of-fit for each member. Total model goodness-of-fit and IC value are also printed by the module.

(middle) Ensemble scattering profile of the best identified model, shown in blue, fit to the experimental spectrum,

shown in black. (bottom) Residual errors of the best model against the experiment. (b) The third tab of the

BEES-output HTML file (“Compare All Models”), which contains the relative performances histogram as well as a

table of all the constructed ensemble models and their relative performance, ensemble size, selected IC metric, and

goodness-of-fit values. Selecting a particular model in the table will also visualize the constituent populations on the

bar graph below (best identified model selected here). The full interactive HTML file can be accessed by downloading

the “K63 sas only plots.html” file from the example files contained within the Supporting Material. A similar file

for the inclusion of auxiliary data can be found in “K63 with aux.html”, also included in the Supporting Material

example files.
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d

�

Figure 3: A visual representation of the two auxiliary measurements included in the second BEES routine. Both the

distal monomer separation distance (d) and angle (j) are measured in accordance to each monomer’s center-of-mass.

4.1 Building Ensembles of SAS Data

BEES requires the user to supply the experimental scattering curve along with theoretical scattering curves
for candidate structures. In addition to providing this data, users must also define the Dmax of the molecule,
which can be determined from the experimental profile using pre-existing software36. Here, a Dmax of 83.6
Å was determined using the Shanum program of the ATSAS package37. Furthermore, five Monte Carlo
walkers were used for each sub-basis ensemble, and each walker was conducted for 10,000 iterations. The
first 1,000 iterations were neglected when determining the model populations so as to remove any influence
of the randomly selected initial values from the final result. Parallel processing can also be used (here, six
processors were used), but using multiple processors will only enhance the speed of the calculation and has
no e↵ect on the final result (see Supporting Information for more information). In addition, the full array of
sub-ensembles has been calculated to display the depth of analysis available. In this example, truncation of
the algorithm via the IC parameter would save a significant amount of computational time without e↵ecting
the best IC-identified model; however, models with lower q2free would not have been observed. At the
conclusion of the BEES routine, the best identified model is reported (Fig 2A), and an interactive plot
interface is created (Fig 2B).

In this example, the best model is a two-state solution that is approximately equal parts clusters 2 and
9. This model has a q2free of 0.79 and a BIC value of 5.55. While this is the best model according to BIC
comparisons, roughly 50 models of varying sizes possess better q2free values, and the model with the best
goodness-of-fit (q2free = 0.74) is a 4-member state comprised of clusters 2 (⇠45%), 4 (⇠22%), 10 (⇠15%),
and 11 (⇠18%). This lowest q2free model has an IC value of 8.47, which yields a relative performance of
0.23 when compared to the IC-identified two-state model. As such, the improved q2free value of this model
is unwarranted, as it is likely the result of overfitting by too many basis members. Indeed, inspection of
the model performance histogram (Figure 2B, top) shows that the best performing models are largely two-
state solutions, but some three-state solutions perform moderately well. Furthermore, many of the two- and
three-state solutions are a significant improvement over each of the single-state models.

4.2 Building Ensembles with Auxiliary Data

Some users may desire to use BEES to build theoretical solution states by fitting solely to SAS data, and
then use these states to predict measurements of future experiments. However, others may already possess
such data and may prefer to create models that are consistent with both these measurements as well as the
observed SAS profiles. For example, an experimenter may desire to simultaneously model both a scattering
profile and a catalogue of NMR-derived distances. For the benefit of this class of users, we have included
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this functionality within BEES. To demonstrate how including such data might a↵ect the modeling results,
we discuss here an extension of the previous tri-ubquitin example in which we provide a simulated data set
that contains the ensemble-averaged center-of-mass distance between distal monomers and the angle formed
by the trimer arrangement (Fig 3). These data were created by taking the ensemble-averaged measures of
the best model from the previous example with the inclusion of a Gaussian noise factor, resulting in a target
distance of 53.0 ± 1.6 Å and a target angle of 117.7 ± 8.3�. Inputs to the BEES routine are identical to the
previous example, with the exception of the auxiliary data set.

With the addition of the distance and angle measurements, we find a shift in the best IC-identified model.
While still a two-state solution, the contributing members are now clusters 3 (43 ± 5%) and 4 (56 ± 5%).
This model yields a q2total of 0.80, with a q2SAS of 0.96 and a q2aux of 0.38. As was the case in the last
example, there are a plethora of models containing three or more members in which better goodness-of-fits
are observed, and the best goodness-of-fit model is a mixture of clusters 2, 4, and 11 and has a q2total of
0.65. While this model is arguably a better fit to the data than the two-state ensemble of clusters 3 and 4,
the IC value of this model is larger due to the addition of a third population. As such, this model is only
the eighth most probable model, and possesses a relative performance of 0.63.

When we inspect the ten best ensembles, we once again find the best model from the previous example,
which possesses a q2total of 0.81, a q2SAS of 0.81, and a q2aux of 0.83. Di↵erences between the exact values
of the q2SAS metric in this example and the previous example are a result of the random-sampling nature
of the q2free metric, but these values are statistically indistinguishable. Similarly, the total goodness-of-fit
in the clusters 3 and 4 ensemble is comparable to the ensemble containing clusters 2 and 9. As both models
are two-state solutions, this results in very similar IC metrics and a relative performance value of 0.94,
which suggests that neither model is significantly more accurate than the other. However, the 3+4 ensemble
significantly outperforms the 2+9 ensemble in the context of the distance and angle measurements, while
the 2+9 ensemble is a better fit to the the scattering curve.

5 Discussion

Here, we have presented the Bayesian Ensemble Estimation from SAS (BEES) program and highlighted its
use with two example use cases. In the first example, we used the module to reweight states of K63-linked tri-
ubiquitin that were obtained from accelerated molecular dynamics simulations. The BEES module identified
a two-state solution as the model that best balanced the fit to experimental data with the fewest number
of states. However, the analysis also found a plethora of models that had improved goodness-of-fits to the
experimental scattering profile, but each of these models had more ensemble members than the two-state
solution. The BEES module provides users with a convenient interface to both find and compare these
other candidate ensembles with the IC-identified best state. This allows researchers the option to either
rigorously trust the IC statistics to identify the most appropriate scattering model or to use the “ensemble
of ensembles” constructed by the BEES module to guide their understanding of datasets separate from the
fitting procedure.

The second use case discussed here demonstrated how BEES performs when simultaneously fitting pop-
ulations to both SAXS and auxiliary data (here, simulated distance and angle measurements). In this
example, the best identified model was still a two-state solution. However, a three-member ensemble was
observed to have a better goodness-of-fit, but the improvement to q2total was not su�cient to also improve
the IC parameter, yielding a relative performance of 0.63. Since the two-state solution has strong agreement
with both measurements (q2free, q2aux < 1.0), this relative performance value suggests that a conservative
estimate for the solution ensemble would favor the two-state model over the q2 three-state case. However,
the performance is of high enough quality that this ensemble could also be considered as a solution for future
measurements. In this way, we emphasize that the relative performance metric should aide the intuition of
researchers, rather than completely replace it.

BEES seeks to identify the theoretical ensemble of states that uses the fewest number of populations
to accurately describe the experimentally measured solution ensemble. In doing so, BEES is biased toward
fitting the minimum amount of information contained within the experimental data, so as to avoid potential
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over-fitting. In contrast, other methods such as genetic algorithms and maximum entropy approaches will
seek to use the full information of each scattering point14,15,38. While these methods may result in over-
fitting, BEES is also susceptible to under-fitting when utilizing SAXS data alone. As a result, the most
accurate model to the true solution ensemble is likely one that is of a size between the smallest and largest
ensembles identified by these methods. Furthermore, accurate use of any of these fitting methods is reliant on
high-quality theoretical profiles; inaccurate theoretical states will likely lead to incorrect models. Therefore,
users should be very careful when selecting scattering calculator programs and parameters, and special
attention should be paid to accurately accounting for hydration layer e↵ects39.

BEES can be used to construct ensemble models of scattering data from a library of candidate states,
and the iterative algorithm of BEES quantitatively resists overfitting of the data from the addition of
unnecessary populations. The program is available as a module on SASSIE (https://sassie-web.chem.
utk.edu/sassie2/), as well as in a stand-alone form (https://github.com/WereszczynskiGroup/BEES).
BEES is designed for use by both new and expert users of computational ensemble modeling, and the GUI-
based module for the SASSIE-web platform provides structural and computational biophysicists with the
resources necessary to construct molecular models in a Bayesian-based manner. Furthermore, BEES provides
visual tools for quickly interpreting not only the quality of the best IC-identified model, but also for the full
ensemble of sub-basis models available from the candidate populations. This feature allows users to inspect
many di↵erent potential solutions and to compare their ability to model both SAS and auxiliary data sets.
In this way, BEES serves the intuition of structural researchers in building ensembles of states for their
systems of interest.
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