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Abstract. An undesirable side effect of drugs are cardiac arrhythmias, in particular a condition

called torsades de pointes. Current paradigms for drug safety evaluation are costly, lengthy, and

conservative, and impede efficient drug development. Here we combine multiscale experiment

and simulation, high-performance computing, and machine learning to create an easy-to-use

risk assessment diagram to quickly and reliable stratify the pro-arrhythmic potential of new

and existing drugs. We capitalize on recent developments in machine learning and integrate

information across ten orders of magnitude in space and time to provide a holistic picture of

the effects of drugs, either individually or in combination with other drugs. We show, both

experimentally and computationally, that drug-induced arrhythmias are dominated by the interplay

of two currents with opposing effects: the rapid delayed rectifier potassium current and the L-type

calcium current. Using Gaussian process classification, we create a classifier that stratifies safe

and arrhythmic domains for any combinations of these two currents. We demonstrate that our

classifier correctly identifies the risk categories of 23 common drugs, exclusively on the basis of

their concentrations at 50% current block. Our new risk assessment diagram explains under which

conditions blocking the L-type calcium current can delay or even entirely suppress arrhythmogenic

events. Using machine learning in drug safety evaluation can provide a more accurate and

comprehensive mechanistic assessment of the pro-arrhythmic potential of new drugs. Our study

shapes the way towards establishing science-based criteria to accelerate drug development, design

safer drugs, and reduce heart rhythm disorders.

Keywords. Machine learning; drug screening; torsades de pointes; multiscale modeling; cardiac

electrophysiology
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1 Introduction

Developing a new drug is an expensive and lengthy process. The estimated average cost to

design and approve a new drug is $2.5 billion [1] and the time to market from the initial discovery

into the pharmacy is at least ten years [2]. Numerous drugs, not just cardiac drugs, interact

with specific ion channels in the heart and can induce serious rhythm disorders [3]. The current

gold standard to assess the pro-arrhythmic potential of a drug is to measure the block of a

specific potassium channel in single cell experiments [4] and the duration of ventricular activity

in animal models and healthy human volunteers [5]. Undeniably, pro-arrhythmic risk evaluation

is critical to avoid introducing dangerous drugs to the market, but the high cost and long time to

test new compounds often impedes the discovery of new drugs [6]. Also, the poor specificity of

potassium channel block alone to assess pro-arrhythmic potential generates a lot of false-positives

and prevents many potentially useful drugs from ever reaching the market [7]. Computational

modeling and machine learning could significantly accelerate the early stages of drug development,

guide the design of safe drugs, and help reduce drug-induced rhythm disorders.

Torsades de pointes is a serious side effect of many drugs

A common adverse reaction of many drugs is torsades de pointes, a ventricular arrhythmia char-

acterized by rapid, irregular patterns in the electrocardiogram [8]. Most episodes of torsades de

pointes begin spontaneously and revert to normal sinus rhythm within a few seconds; but some

persist, degenerate into ventricular fibrillation, and lead to sudden cardiac death, even in patients

with structurally normal hearts [9]. In the United States, more than 350,000 sudden cardiac

deaths occur each year, but the true incidence of torsades de pointes is largely unknown [10].

Increasing evidence suggests that early afterdepolarizations play a critical role in generating of

torsades de pointes [11]. Early afterdepolarizations are oscillations during the repolarization phase

of the cellular action potential that result from a reduced outward current, an increased inward
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current, or both [12]. The theory of nonlinear dynamics can help explain the ionic basis of early

afterdepolarizations [13]; yet, it remains unclear which ion channels have the strongest effect

on creating or suppressing early afterdepolarizations. A better quantitative understanding of the

relevant ionic currents would significantly reduce the design space and accelerate drug screening

in the early stages of drug development.

Machine learning can help accelerate drug development

Leading pharmaceutical companies have long recognized the potential of machine learning, es-

pecially during the early stages of drug development: On the protein and cellular levels, machine

learning can help identify efficient drug targets, confirm hits, optimize leads, and explain the

molecular basis of therapeutic activity [14]. On the tissue and organ levels, machine learning

can guide pharmacological profiling and predict how a drug that was designed in the lab will

affect an entire organ [15]. While using machine learning in the early stages of drug design, tar-

get selection, and high throughput screening is almost standard today, the potential of machine

learning in the later stages of drug development, toxicity screening, and risk stratification has not

been recognized to full extent [16]. A promising application of machine learning in the context

of cardiotoxicity is to combine several experimentally measured and computationally simulated

features into a unifying classifier for torsadogenic risk assessment [17]. A recent study demon-

strated that a machine learning classifier that combines cellular action potentials and intracellular

calcium waveforms provides a better torsadogenic risk prediction than potassium channel block

alone [18]. While there is a general agreement between clinical researchers, pharmaceutical com-

panies, and regulatory agencies that computational tools should play a more central role in the

pro-arrhythmic risk assessment of new drugs [19], current efforts focus exclusively on classifiers

at the single cell level and ignore ventricular heterogeneity and the interaction of different cell

types across the entire heart [20]. We have recently proposed a novel exposure-response simu-

lator that allows us to quickly and reliably visualize how different drugs–either individually or in
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combination–modulate ion channel dynamics, cellular electrophysiology, and electrocardiogram

recordings across ten orders of magnitude in space and time [21]. Combining this simulator

with machine learning techniques [22] would allow us to seamlessly integrate experimental and

computational data from the protein, cellular, tissue, and organ scales to assess cardiac toxicity

during pharmacological profiling [23].

Figure 1: Hybrid computational-experimental approach to quickly and reliably charac-
terize the pro-arrhythmic potential of existing and new drugs. We characterize calcium
transients in ventricular cardiomyocytes in response to drugs, both computationally (top) and
experimentally (bottom) and identify the ion channels that most likely generate early afterdepo-
larizations (left). We then screen the concentration space of the two most relevant channels and
identify the classification boundary between the arrhythmic and non-arrhythmic domains using
high performance computing and machine learning (center). We validate our approach using
electrocardiograms, both computationally and experimentally, in whole heart simulations and ex-
cised Langendorff perfused hearts (right). We demonstrate the potential of our new classifier by
risk stratifying 23 common drugs and comparing the result against the reported risk categories
of these compounds.
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Figure 1 illustrates how we use machine learning to combine computational (top) and experimen-

tal (bottom) tools and technologies at the single cell (left) and whole heart (right) levels. First, we

probe how different ion channels modulate early afterdepolarizations on the single cell level. Using

a hybrid computational and experimental approach, we identify the two most relevant channels

and systematically screen the two-channel parameter space to quantify the critical blockage that

initiates torasdes de pointes. Then, we use high performance computing and machine learning to

identify the classification boundary between the arrhythmic and non-arrhythmic domains in this

space. We validate our approach using computational and experimental electrocardiograms from

whole heart simulations and excised Langendorff perfused hearts. Finally, we demonstrate the

potential of our classifier by risk stratifying 23 common drugs and comparing the result against

the reported risk categories from the literature.

Results

IKr and ICaL enhance and prevent early afterdepolarizations

Increasing evidence suggests that early afterdepolarizations are a precursor of torsades de pointes

at the cellular level [13]. To identify which ion channels have the most significant impact on the

appearance of early afterdepolarizations, we perform 500 simulations of single midwall cells and

systematically blocked seven ion channels: the L-type calcium current ICaL, the inward rectifier

potassium current IK1, the rapid and slow delayed rectifier potassium currents IKr and IKs,

the fast and late sodium currents INaP and INaL, and the transient outward potassium current

Ito. Figure 2 illustrates these seven ion channels within the O’Hara Rudy model for ventricular

cardiomyocytes [42]. After determining the presence or absence of early afterdepolarizations for

all simulations, we fit a logistic regression and extracted the marginal effects, a measure that

quantifies the effect of each channel blockage on the probability of early afterdepolarizations.

Our results in Figure 2 show that of the seven channels, the rapid delayed rectifier potassium
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Figure 2: Effect of different ion channels on the probability of early after depolarizations.
Positive values imply that blocking this ion channel enhances early afterdepolarizations; negative
values imply that blocking prevents early afterdepolarizations. Blocking the rapid delayed rectifier
potassium current IKr and the L-type calcium current ICaL has the strongest effect on enhancing
and preventing early afterdepolarizations.

current IKr and the L-type calcium current ICaL have the most pronounced effects on early

afterdepolarizations. Yet, these two currents display opposite effects: The rapid delayed rectifier

potassium current IKr significantly increased the risk of early afterdepolarizations, while the L-type

calcium current ICaL decreases the risk.

IKr blockage triggers early afterdepolarizations invsimulation and experiment

To validate our findings of the computational model, we use isolated rat ventricular cardiomy-

ocytes and expose them to the drug dofetilide, which selectively blocks the rapid delayed rectifier

potassium current IKr. We record intracellular calcium signaling and compare it to the calicium

transients predicted by the computational model of human ventricular endocardial cells. Figure 3

shows the development of early afterdepolarizations in the presence of the drug dofetilide, both in

isolated rat cardiomyocytes and in the single cell model. In both cases, the relationship between
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the probability of early afterdepolarizations and the concentration of the drug is dose-dependent:

Increasing the dose of dofetilide increases the probability of early afterdepolarizations.
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Figure 3: Early after depolarizations in single cell simulation and experiment. Isolated
rat cardiomyocyte, top left, and probability to develop early afterdepolarizations in response to
the drug dofetilide at concentrations of 4nM, 8nM, 16nM, 38nM, 130nM (n=6 cells each), top
right. Calcium transients in response to the drug dofetilide at 0nM, 16nM, and 130nM in the
computational simulation, bottom left, and experiment, bottom right.

Machine learning classifies boundary beyond which arrhythmias develop

According to our simulated probability of early after depolarizations at the single cell level in

Figure 2, we select the two ion channels, which most strongly enhance and prevent early after-

depolarizations, the rapid delayed rectifier potassium current IKr and the L-type calcium current

ICaL. We use our high fidelity human heart model [39] to simulate the effect of combined IKr

and ICaL block at different concentrations [21]. Our human heart model has 7.5M global de-

grees of freedom and 0.3G internal variables and runs 1.0M time steps for a simulation window

of 5s, which typically takes 40 hours using 160 CPUs. To alleviate the computational cost, we

turn to machine learning techniques and adopt a particle learning Gaussian process classifier with
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adaptive sampling to efficiently explore the parameter space. We randomly perform the first ten

simulations and then adaptively sample the points of maximum information entropy determined

by our classifier.
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Figure 4: Pro-arrhythmic risk classification. Screening the parameter space of rapid delayed
rectifier potassium current IKr and the L-type calcium current ICaL block reveals the classification
boundary beyond which arrhythmias spontaneously develop. Blue electrocardiograms associated
with the blue region displayed a regular heartbeat without fibrillation; red electrocardiograms
associated with the red regions spontaneously developed an episode of torsades de pointes.

Figure 4 summarizes the results of our pro-arrhythmic risk classification. The blue electrocardio-

grams were sampled at points in the blue region and display a regular heartbeat without fibrillation.

The red electrocardiograms were sampled at points in the red region and spontaneously develop

an episode of torsades de pointes. The white contour indicates the classification boundary. The

vertical axis reveals the pro-arrhythmic risk for a selective block of the the rapid delayed rectifier

potassium current IKr: At a critical IKr block of 70%, the risk classification changes from low,

shown in blue, to high, shown in red, and the heart will develop spontaneous episodes of torsades

de pointes. Moving horizontally to the right modulates the pro-arrhythmic risk for a combined

block with the L-type calcium current ICaL: When combining IKr and ICaL block, the critical IKr

block decreases below 70%. Strikingly, beyond an ICaL block of 60%, the heart will not develop

fibrillation, no matter how high the IKr block. In agreement with our observations on the cellular
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level in Figure 2, Figure 4 supports the notion that certain channels can have a positive effect

and mitigate torsadogenic risk upon rapid delayed rectifier potassium current block.

IKr and ICaL enhance and prevent ventricular arrhythmias

To explore the interaction between the rapid delayed rectifier potassium current IKr and the L-

type calcium current ICaL at the organ level, we combine computational modeling and isolated

Langendorff perfused rat heart preparations using two different drugs, dofetilide, which selectively

blocks the rapid delayed rectifier potassium current IKr and nifedipine, which selectively blocks the

L-type calcium current ICaL. We probe different concentrations of these two drugs and determine

the presence of arrhythmias from the computational and experimental electrocardiograms. Figure

5, top, illustrates our Langendorff perfused heart, our four drug concentrations visualized in the

pro-arrhythmic risk classification diagram, and the risk of premature ventricular contractions and

arrhythmias for these four cases. Figure 5, bottom, shows the electrocardiograms in response to

dofetilide at 0nM and 20nM combined with nifedipine at 0nM, 60nM, and 480nM both for the

computational simulation, left, and the experiment, right. For the baseline case without drugs,

both the computation and experiment display a regular excitation, first row. Blocking the rapid

delayed rectifier potassium current IKr by administering dofetilide beyond a critical concentration

induces arrhythmias both computationally and experimentally, second row, an observation that

agrees well with the single cell simulation and experiment in Figure 3. Additionally blocking the

L-type calcium current ICaL by co-administering a small concentration of nifedipine markedly

alters the excitation pattern both computationally and experimentally, but still triggers irregular

beats. Increasing the L-type calcium current ICaL block by co-administering a large concentration

of nifedipine removes the risk of arrhythmias both computationally and experimentally, the hearts

excite at a regular pattern, however at a slightly different rate than for the baseline case without

drugs.
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Figure 5: Ventricular arrhythmias in whole heart simulation and Langendorff perfused
hearts. Preparation of excised rat heart, top left, four drug concentrations visualized in the
pro-arrhythmic risk classification diagram, top middle, and risk of premature ventricular contrac-
tions and arrhythmias in response to varying concentrations of drugs dofetilide and nifedipine
(n≥6, ∗ p¡0.05 compared to 1©, # p¡0.05 compared to 2©), top right. Dofetilide selectively
blocks the rapid delayed rectifier potassium current IKr; nifedipine selectively blocks the L-type
calcium current ICaL. Electrocardiograms in response to dofetilide at 0nM and 20nM combined
with nifedipine at 0nM, 60nM, and 480nM in the computational simulation, bottom left, and
experiment, bottom right.
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Critical drug concentrations are a predictor of drug toxicity

To validate our approach, we calculate the critical concentrations for 23 common drugs–but now

without a complete simulation and without any additional knowledge–simply by identifying the

drug’s location in the risk assessment diagram in Figure 4 using reported IKr and ICaL block-

concentration characteristics for each drug [3, 45]. In essence, each drug defines a curve in the

risk-assessment diagram. The intersection of this curve with the classification boundary defines

the critical drug concentration. Curves that never cross the classification boundary indicate a

safe drug.
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Figure 6: Risk stratification of 23 drugs using our pro-arrythmic risk classification. Black
and white regions indicate fibrillating and non-fibrillating regimes; red and blue curves indicate
high and low risk drugs; gray dots and numbers indicate the critical concentration at which the
curves cross the classification boundary as predicted by our pro-arrythmic risk classification in
Figure 4. Numbers from 1 to 5 indicate the reported torsadogenic risk [19]; red and blue colors
of the numbers indicate torsadogenic and non-torsadogenic compounds [18].
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Figure 6 demonstrates that our classification boundary in Figure 4 can reliably stratify the risk

of 23 common drugs. Fourteen drugs are classified as high risk drugs. Of those, thioridazine

and quinidine cross the classification boundary at the lowest concentrations of 0.1x and 0.3x;

chlorpromazine and amiodarone at the highest concentrations of 154.9x and 282.6x. Nine drugs

are classified as low risk drugs. Of those, propranolol crosses the classification boundary at 474.6x

and all other drugs never cross the classification boundary.

terfenadine 10x - 84% IKr / 11% ICaL block

500 ms-100 70
V [mV]

verapamil 10x - 79% IKr / 84% ICaL block

bepridil
4.9x

3

terfenadine
4.4x

2

verapamil

5

bepidril 10x - 86% IKr / 50% ICaL block

Figure 7: Computational validation of risk stratification for three drugs applied at the
same concentration. At 10x the effective free therapeutic concentration, terfenadine blocks
84% of IKr and 11% of ICaL, bepidril blocks 86% of IKr and 50% of ICaL, and verapamil blocks
79% of IKr and 84% of ICaL. The different degrees of blockage results in arrhythmic patterns
for terfenadine and bepidril, but not for verapamil, where the high degree of ICaL block prevents
the development of arrhythmia and slows the beating rate.

Figure 7 illustrates a computational validation of our risk stratification for three drugs, terfena-

dine, bepidril, and verapamil. Our stratification classifies terfenadine and bepidril as high risk and

verapamil as safe. To validate this classification, we apply all three drugs at 10x their effective

free therapeutic concentration. Terfenadine, with a critical concentration of 4.4x, triggers an
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arrhythmia immediately after the first beat; bepidril, with a critical concentration of 4.9x, trig-

gers an arrhythmia after the second beat; and verapamil, which never crosses the classification

boundary, is non-arrhythmogenic. While all three drugs initiate a similar degree of blockage of

the rapid delayed rectifier potassium current IKr of 84%, 86%, and 79%, their blockage of the

L-type calcium current ICaL of 11%, 50% and 84% varies significantly. These three examples,

now with a complete simulation, highlight the interaction of different channels, and confirm the

predictive power of our pro-arrhythmic risk assessment diagram in Figure 4 and its resulting risk

stratification in Figure 6.

Discussion

Current drug screening paradigms are expensive, time consuming, and conservative. Here we

propose a new approach that integrates knowledge from the ion channel, single cell, and whole

heart levels via computational modeling and machine learning to reliably predict the cardiac

toxicity of new and existing drugs. We combine multiscale experiments, multiscale simulation,

high-performance computing, and machine learning to create a risk assessment diagram that

allows us to quickly and reliably identify the pro-arrhythmic potential of existing and new drugs,

either in isolation or combined with other drugs. As a side aspect of these efforts, we determined

which ion channels play the most significant role in triggering arrhythmias. These new insights are

significant in the development of new compounds. Our efforts are in line with recent initiatives by

pharmaceutical industries, clinical researchers, and regulatory agencies with the common goal to

develop a new testing paradigm for a more accurate and comprehensive mechanistic assessment

of new drugs.
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Early afterdepolarizations are a multiple-channel phenomenon

At the single cell level, we have shown that early afterdepolarizations are triggered when the rapid

delayed rectifier potassium current IKr is blocked above a certain level. This is in line with the

current regulatory frame, which identifies this channel as the most relevant for torsades de pointes

[4]. However, through computational modeling we have seen that early afterdepolarizations

are really a multi-channel phenomenon. Our sensitivity analysis in Figure 2 identifies the rapid

delayed rectifier potassium current IKr and the L-type calcium current ICaL as the most relevant

currents for the formation of early afterdepolarizations. These two channels have opposing effects:

blocking IKr can initiate and blocking ICaL can prevent early afterdepolarizations. In a recent

study, we have found a similar trend at the QT interval level [23], which is also considered in

current regulations [5]. These results are in line with other studies that have highlighted the

importance of altered calcium dynamics during early afterdepolarizations [13, 24, 25], and, more

recently, also during delayed afterdepolarizations [26]. These multi-channel effects between the

rapid delayed rectifier potassium current IKr and the L-type calcium current ICaL observed in

Figure 5 open the door towards a systematic search for blockage combinations that can offset

the torsadogenic effects of IKr block alone [27].

IKr and ICaL modulate the onset of torsades de pointes

Our study shows that the rapid delayed rectifier potassium current IKr and the L-type calcium

current ICaL not only determine the onset of early afterdepolarizations, but also the development

of torsades de pointes. Our results in Figure 5 suggest that blocking the L-type calcium current

ICaL can prevent the development of arrhythmias, even at high levels of rapid delayed rectifier

potassium current IKr blockage, both in our high resolution model and in isolated rat hearts.

Recent studies have pointed out this preventive role of ICaL. An analysis of 55 compounds

showed that adding the effects of ICaL blockage to IKr block improved the predictive potential,

while adding the effects of INaL did not [28]. However, this study only demonstrated correlation,
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without a mechanistic explanation. A recent machine-learning based approach suggested to

improve the risk prediction of torsades de pointes by include intracellular calcium currents [18].

This trend was confirmed by a recent study that classified drugs in terms of IKr and ICaL blockage

metrics [17]. This study also identified a classification boundary, to counteract the pro-arrhythmic

effects of blocking the rapid delayed rectifier potassium current IKr by blocking the L-type calcium

current ICaL. At the cellular level, these findings reflect the importance of these currents in the

development of early afterdepolarizations [13]. At the whole heart level, the presence of these

action potential abnormalities is a necessary but not sufficient condition to initiate torsades de

pointes; here heterogeneities [29, 30] and electrotonic effects [11, 20] play a major role in the

propagation of this type of arrhythmia.

The degree of toxicity correlates with the critical drug concentration

We have classified drugs based on their critical concentration, the concentration at which they

cross the classification boundary of our risk assessment diagram in Figure 4. Critical concentration

based methods have been used both in rabbit models [31] and in computational models [32]. Here,

succesfully employed this concept by inducing arrhythmias at elevated drug concentrations both

computationally and experimentally. Critical concentrations can be interpreted as the distance

from an event of torsades de pointes: The higher the normalized concentration, the further away

is the baseline concentration, and thus the safer the compound. When using the critical drug

concentration to stratify the risk of drugs in Figure 6, we correctly identify quinidine, bepridil,

dofetilide, chlorpromazine, cisapride, and terfenadine as high risk and diltiazem, mexiletine, and

verapamil as low risk drugs, similar to a classifier based on net current [33]. Figure 7 confirms the

high risk action of terfenadine and bepridil and the low risk action of verapamil, which is widely

known as a calcium channel blocker with antifibrillatory effects [34]. Moreover, we correctly

identified 22 compounds as high and low risk in Figure 6, compared to the reported high risk

categories 1-3 and low risk categories 4-5 [19]. For these 22 compounds, our classifier also
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agrees exactly with a recent machine learning classifier based on action potential duration and

diastolic calcium [18]. To eliminate sources of noise in the evaluation of our model, we have

only considered those drugs for which 70% or more of the published studies agreed on their risk

classification [50]. The only drug that our approach classifies incorrectly is propanolol, which has

a critical concentration of 474.6x of the effective free therapeutic concentration. Although Figure

6 suggests that this concentration is significantly higher than for all other high risk drugs, the

classifier is trained without any other compound similar to propanolol when performing leave-one-

out cross validation. If more data were available, the predictive power of our classifier could be

improved. Nonetheless, the potential of our approach lies in supporting the successful progression

of compounds that have a poor selectivity to the rapid delayed rectifier potassium current alone

and would, under current paradigms, be falsely discontinued through the drug discovery and

development process. Our study suggest that our approach correctly identifies those drugs. Our

risk assessment diagram in Figure 4 allows us to quickly and reliably screen the pro-arrhythmic

potential of any drug, either in isolation or in combination with other drugs.

Limitations

Although our proposed method seems well suited to rapidly access the risk of a new drug, it

is only at its early stage and has a few limitations: First, our major focus was on combining

computational modeling and machine learning to create risk assessment diagrams; long term,

more experiments will be needed to better validate the method and broaden its scope and use.

Second, our model is only as good as its input, the concentration-block curves; we have addressed

this limitation in a separate study [23], similar to other groups [35, 45], and found that there is

a mismatch between the drugs that have been well characterized experimentally [3]–the input of

the classifier–and the drugs that we agree in their risk classification–the output of the classifier;

to mitigate this limitation, we used a deterministic approach to classify the set of compounds.

Third, our current work has mainly followed recommendations of the CiPA initiative [6]; it will
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be important to validate our model against other cell and heart models, and, probably most

importanly, against other compounds. Fourth, we have based our initial studies on reported

experiments and clinical observations, supplemented with our own cell level and isolated heart

studies with rodent hearts; a critical and logical next step would be to validate our method

using our own independent experiments with human adult cardiomyocytes, in larger animals,

and, ideally, in human Langendorff perfused hearts.

Conclusion

We propose a novel strategy towards drug screening. This was only possible by combining cut-

ting edge technologies of multiscale exposure-response simulation, machine learning, and high-

performance computing. Using systematic sensitivity analyses, we identified the L-type calcium

channel as a critical antagonist to the rapid delayed rectifier potassium current in modulating ar-

rhythmogenic risk. Our simulations highlight the mechanisms by which drug-induced arrhythmias

propagate across scales, from modifications at the ion channel level, via early after depolariza-

tions at the cellular level, to rapid oscillations in the electrocardiogram at the whole heart level.

Using machine learning, we integrate information from different scales and sources, experimental

and computational, into a single, easy-to-use risk assessment diagram. Our results suggest that

this pro-arrhythmic risk assessment diagram can rapidly and reliably stratify any drug based on

block-concentration characteristics from single cell recordings. Our study provides a more holistic

insight into the generation of drug-induced arrhythmias than current single cell studies alone. We

envision that our findings will help accelerate drug development and reduce the cost to deliver

safe and effective drugs to patients.
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Methods

All studies were approved by the Stanford Administrative Panel on Laboratory Animal Care and

conform to the Guide for the Care and Use of Laboratory Animals published by the National

Institutes of Health.

Simulating action potentials in ventricular cardiomyocytes

We modeled the temporal evolution of the transmembrane potential φ using an ordinary differ-

ential equation,

φ̇ = −Iion/Cm , (1)

where Cm is the membrane capacitance and Iion(φ, q) is the ionic current, which we represented

as a function of the transmembrane potential φ and a set of state variables q [36]. The state

variables obey ordinary differential equations, q̇ = g(φ, q), as functions of the transmembrane

potential φ and their current values q [37]. For our single cell simulations, we used ventricular

cardiomyocytes with 15 ionic currents and 39 state variables [42],

Iion = IKr + IKs + IK1 + ICaL + INa

+ ICaNa + ICaK + ICab + INab + IKb

+ Ito + INaK + IpCa + INaCa,i + INaCa,ss ,

(2)

with a minor modification [47] of the fast sodium current INaP [48]. We parameterized the

model for human midwall cells [42], and modeled the effect of drugs by selectively blocking

the relevant ionic currents Iion [44]. For a desired concentration C, for each current i, we

calculate the fractional block βi using a Hill-type model parameterized with data from patch

clamp electrophysiology [19, 45], and scale the ionic current Ii by this fractional block [21],

Idrugi = [ 1− βi ] Ii with βi = [ 1 + [C/IC50 ] ]−1 . (3)
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We studied the relative importance of seven ion channels, ICaL, IK1, IKr, IKs, INaL, INaP, and Ito

on inducing early afterdepolarizations. To achieve a steady state, we paced the cells for 600 cycles

at a frequency of 1Hz. We defined the presence of early afterdepolarizations as the occurrence of a

change in potential greater than 0.1mV/ms between the 50 and 1000ms of the last two recorded

cycles [20]. We used a latin hypercube design to perform 500 simulations and systematically

varied the block of the seven ion channels between 0 and 95%. Then, we labeled the results

depending on the presence or absence of early afterdepolarizations. We fit a logistic regression

and computed the marginal effects, which correspond to the derivative of the output of the

regression with respect to the ion channel block. We normalized the results by the maximum

value.

Simulating electrocardiograms in human hearts

To pass information across the scales, we created an ultra high resolution finite element model of

the human heart [21] that represents individual ion channel dynamics through local ordinary dif-

ferential equations at the integration point level and action potential propagation through global

partial differential equations at the node point level [41]. The basis of this model is the classi-

cal monodomain model that characterizes the spatio-temporal evolution of the transmembrane

potential φ through the following partial differential equation,

φ̇ = div(D · ∇φ)− Iion/Cm . (4)

In addition to the local source term Iion/Cm from equation (1), the transmembrane potential

depends on the global flux term div(D · ∇φ), where D is the conductivity tensor that accounts

for a fast signal propagation of D‖ parallel to the fiber direction f and a slow signal propagation

of D⊥ perpendicular to it [36],

D = D‖ f ⊗ f +D⊥ [ I − f ⊗ f ] . (5)

19

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 10, 2019. ; https://doi.org/10.1101/545863doi: bioRxiv preprint 

https://doi.org/10.1101/545863
http://creativecommons.org/licenses/by/4.0/


We used the O’Hara Rudy model [42] from equation (2) for all ventricular cells and the Stewart

model [43] for all Purkinje cells. We discretized the monodomain equation (4) in time using finite

differences and in space using finite elements [36] and introduced the transmembrane potential

as a degree of freedom at the node point level and all state variables as local degrees of freedom

at the integration point level [37]. We solved the resulting system of equations using the finite

element software package Abaqus [38] with an explicit time integration scheme. We discretized

our simulation window of five healthy heart beats in time using 1.0M equidistant time steps of

∆t = 0.005ms. We discretized our human heart model [39] in space using 6.9M regular trilinear

hexagonal elements with a constant edge length of h = 0.3mm. This results in 7.5M global

degrees of freedom and 0.3G local internal variables [41].

Using machine learning tools to sample the parameter space

To quickly and efficiently sample the parameter space for a wide range of conditions and a wide

variety of drugs we combine our computational models with machine learning techniques [17,23].

Briefly, to characterize ventricular fibrillation, we performed n = 40 human heart simulations and

employed a particle learning method to systematically sample the classification boundary within

the parameter space. To identify the boundary that divides the arrhythmic and non-arrhythmic

domains, we used a Gaussian process classifier and adaptively sampled the point of maximum

entropy [46]. We generated the first n = 10 samples from a latin hypercube design, and sampled

the remaining n = 30 samples adaptively. Our results suggest that n = 40 simulations are

sufficient to reliably identify the classification boundary.

Classifying drugs into risk categories

We classified 23 drugs into high and low risk, based on our pro-arrhythmic risk assessment diagram

in Figure 4 and validated our approach against the known risk classification of these drugs. To

select the compounds, we began with a list 31 drugs [19] for which the concentration block
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is thoroughly characterized. From these 31 drugs, we only considered those for which 70% or

more of the published studies agreed on their risk classification [49,50], and did not consider the

remaining eight controversial drugs. Table 1 summarizes the IC50 values used to compute the

degree of blockage of the L-type calcium current ICaL and the rapid delayed rectifier potassium

current IKr [19].

Measuring calcium transients in isolated cardiomyocytes

To characterize calcium transients, we isolated ventricular cardiomyocytes from the hearts of male

Sprague Dawley rats with a weight of 250-300g (Charles River, Massachusetts). We anesthetized

the rats with inhaled isoflurane and quickly removed the hearts from the chest after euthanasia.

We retrograde-perfused the hearts with Ca2+-free Tyrode buffer (140mM NaCl, 5.4mM KCl,

0.33mM NaH2PO4, 0.5mM MgCl2, 11mM glucose, and 5mM HEPES at pH7.4) at 1.0ml/min for

three minutes, followed by an enzyme solution containing collagenase (1.0mg/ml collagenase type

II, Worthington), protease (0.05mg/ml, type XIV, Sigma), and 0.1mM Ca2+ for seven minutes.

To harvest the cardiomyocytes, we cut the ventricular tissue into small pieces and filtered it with

a 250µm nylon mesh. We gradually increased the calcium concentration of the Tyrode solution

to 1.0mM for the physiologic analysis and incubated the cardiomyocytes for 15 minutes with 1µM

Fura-2-AM (Invitrogen, California) in Tyrode (1.0mM, Ca2+). We mounted the cardiomyocytes

into a recording chamber on the stage of an Olympus IX-71 inverted microscope (Olympus, New

York) where we stimulated them electrically at a frequency of 0.5Hz. Using a galvanometer-driven

mirror (HyperSwitch, IonOptix, Massachusetts), we excited Fura-2 at a wavelength of 340/380nm

and recorded the emission at 510nm using a photomultiplier (IonOptix, Massachusetts). After

five minutes of incubation with the drug dofetilide at concentrations of 4nM, 8nM, 16nM, 38nM,

130nM, we recorded cardiomyocyte calcium fluorescence at 250Hz for eight minutes for n=6 cells

each and analyzed the recordings in real time using IonOptix.
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Recordings electrocardiograms in perfused Langendorff hearts

To record electrocardiograms, we harvested the hearts of male Sprague Dawley rats with a weight

of 250-300g (Charles River, Massachusetts). We excised the hearts from anesthetized rats (2.5%

isoflurane in 95% oxygen and 5% carbon dioxide), immediately cannulated the aorta, connected

it to a constant pressure perfusion Langendorff system (Harvard Apparatus, Massachusetts) with

Krebs solution (118mM NaCl, 4.75mM KCl, 25mM NaHCO3, 1.2mM KH2PO4, 1.2mM MgSO4,

1.5mM CaCl2, 11mM glucose, and 2mM Pyruvate), warmed to 37o C, and bubbled with 95%

oxygen and 5% carbon dioxide. We instrumented the spontaneously beating hearts with ECG

electrodes located at the apex and base. After ten minutes of equilibration, we switched the

perfusion system to a reservoir to expose the hearts to selected concentrations of dofetilide and

nifedipine for a period of five minutes. For n≥6 hearts in each group, we recorded the ECG

by Animal Bio Amp (AD Instruments, Colorado) and monitored it continuously throughout the

experiment and the a washout period using a Power Lab system (AD Instruments, Colorado).

Experimentally characterizing the effect of drugs

We characterize the occurrence of arrhythmias in both the isolated cardiomyocytes and the

perfused hearts. For the isolated cardiomyocytes, we counted the prevalence of arrhythmia as

one if at least one early afterdepolarization occurred within the recording period of eight minutes,

and as zero otherwise. We then quantified the relation between the prevalence of arrhythmia and

the concentration of dofetilide using a non-linear regression curve with a two-parameter equation.

For the perfused hearts, we calculated the percentage of premature ventricular contractions of

all heart beats during the last minute of drug administration. We defined ventricular tachycardia

as three or more consecutive premature ventricular contractions. We analyzed the data using

student’s t-tests for normally distributed data with equal variance between groups and Mann-

Whitney U tests for all other data. For all analyses, we used the Prism 7 software.
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Table 1: Effect of drugs on ion channels. IC50 values and effective free therapeutic concen-
tration Cmax for the 23 drugs used in this study [19].

drug ICaL IC50 [nM] IKr IC50 [nM] Cmax [nM]

ajmaline 71000 1040 900
amiodarone 270 30 0.3
bepridil 211 33 21.5
chlorpromazine - 1470 20.5
cibenzoline 30000 22600 739
cisapride - 6.5 3.8
diltiazem 450 17300 87.5
dofetilide 60000 5 1.2
fluvoxamine 4900 3100 196
haloperidol 1700 27 2.4
mexiletine 100000 50000 2787
nifedipine 60 275000 5.4
nitrendipine 0.3 10000 1.6
phenytoin 103000 100000 4250
pimozide 162 20 0.6
prenylamine 1240 65 13
propranolol 18000 2828 19
quinidine 15600 300 2080.5
sertindole 8900 14 0.8
tedisamil - 2500 80
terfenadine 375 8.9 4.5
thioridazine 1300 33 593.5
verapamil 100 143 53
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