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Quickly growing genetic variation data of unknown clinical
significance demand computational methods that can reli-
ably predict clinical phenotypes and deeply unravel molecu-
lar mechanisms. On the platform enabled by CAGI (Critical
Assessment of Genome Interpretation), we develop a novel
“weakly supervised" regression (WSR)model that not only
predicts precise clinical significance (probability of pathogenic-
ity) from inexact training annotations (class of pathogenic-
ity) but also infers underlying molecular mechanisms in a
variant-specific fashion. Compared to multi-class logistic
regression, a representative multi-class classifier, our ker-
nelized WSR improves the performance for the ENIGMA
Challenge set from 0.72 to 0.97 in binary AUC (Area Under
the receiver operating characteristic Curve) and from 0.64
to 0.80 in ordinal multi-class AUC.WSRmodel interpreta-
tion and protein structural interpretation reach consensus
in corroborating themost probable molecular mechanisms
by which some pathogenic BRCA1 variants confer clinical
significance, namely metal-binding disruption for C44F and
C47Y, protein-binding disruption forM18T, and structure
destabilization for S1715N.

Abbreviations: CAGI, Critical Assessment of Genome Interpretation; ENIGMA, Evidence-based Network for the Interpretation of
Germline Mutant Alleles; PoP, Probability of Pathogenicity; WSR, Weekly Supervised Regression; MLR, Multi-class Logistic Regres-
sion; CLM, Cumulative LogitModel; AUC, Area Under the Curve.
Availability: Source codes and data are provided at https://github.com/Shen-Lab/WSR-PredictPofPathogenicity/
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1 | INTRODUCTION
Quickly growing genomic data, largely attributed to next-generation sequencing and high-throughput genotyping, hold
great promise for precisionmedicine. However, a major challenge remainsmaking the stride from genomic variation
and other data to diagnostic and therapeutic decision-making. Therefore, there has been a critical need to develop
computational methods to predict and understand phenotypic impacts of genetic variants at various biological scales
(Cline and Karchin, 2011; Karchin andNussinov, 2016).

The method development has seen excellent opportunities created by the growing public databases (such as
TCGA (Weinstein et al., 2013), dbSNP (Sherry et al., 2001), ClinVar (Landrum et al., 2016) and dbNSFP (Liu et al.,
2016)), benchmark studies (Martelotto et al., 2014; Guidugli et al., 2018), and community experiments (in particular,
CAGI (Hoskins et al., 2017)). Indeed, some algorithms are widely and successfully applied for functional prediction of
genetic variants, such as SIFT (Ng andHenikoff, 2003), PolyPhen2 (Adzhubei et al., 2013), MutationTaster2 (Adzhubei
et al., 2013), SNAP (Bromberg and Rost, 2007; Hecht et al., 2015), MutPred (Pejaver et al., 2017a,b), and Evolutionary
Action (Katsonis and Lichtarge, 2014, 2017). In addition, the data-driven approach for unraveling genotype-phenotype
relationships will continue absorbing the artificial intelligence (AI) andmachine learning technologies that have been
quickly reshaping other fields (Krizhevsky et al., 2012; Silver et al., 2017).

In this paper, building on our participation in the ENIGMAChallenge in the 5th CAGI experiment, we introduce and
assess our novelmethods developed for predicting clinical significance and inferringmolecularmechanisms formissense
variants (single nucleotide variants or SNVs that change resulting amino acids). Specifically, our weakly-supervised
machine learningmodels achieve probability prediction, multiclass classification, confidence (uncertainty) estimation,
andmechanistic interpretation of cancer pathogenicity by addressing central questions andmaking novel contributions
in the following two aspects.

First, in the aspect of precisionmedicine, our central question is how to construct clinical significance predictors
that are generally interpretable for diagnosis and potentially actionable for therapeutics. In this study, we combine
interpretable and actionable features that describemolecular impacts of SNVs (specifically, impacts on protein structure,
dynamics, and function here) and expert-curated labels that accurately summarize clinical significance of SNVs (specifi-
cally, the posterior probability of pathogenicity, PoP, and corresponding 5-tier classification by the ENIGMA consortium
(Cline et al., to appear)) in supervisedmachine learning. We examine towhat extent molecular-level impacts of SNVs
can predict organism- and population-level clinical significance to facilitate the often-expensive clinical phenotyping.
We also examine to what extent molecular mechanisms underlying clinically significant SNVs can be uncovered from
important features of molecular impacts to help identify potentially actionable therapeutics, which is further probed by
structural modeling for some variants.

Compared to some other features commonly used in the field (Martelotto et al., 2014), molecular impacts carry di-
rect causal effects on clinical phenotypes (Pejaver et al., 2017b; Reeb et al., 2016), thus enablingmodel interpretability;
they are available for many genes thanks to relatively inexpensive yet accurate bioinformatics tools (such as Mut-
Pred2 (Pejaver et al., 2017b) used in this study), thus enabling broad applicability; and they apply to non-synonymous
variants beyond SNVs studied here (such as in-frame or frame-shift indels), thus enablingmodel generalizability.
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Second, in the aspect of machine learning, our central question is how to solve a new type of “weakly supervised”
machine learning problems (Zhou, 2018) where the desired label (PoP here) has to be regressed from training data
without the exact labels. Such inexact supervision can be observed inmany real-world applications where only coarse-
grained labels are available because exact labels are too hard or/and too expensive to generate (for instance, in computer
vision, annotating bird breeds in images by crowd-sourcing or experts). Particularly in our case,whereas the desired label
(PoP) is continuous, the only available labels in the publicly-accessible data are five ordered classeswhich are categorized
based on pre-determined PoP ranges (see more details in Sec. 2.1). We develop weakly supervised regressors with
tailored loss functions to directly predict PoP. Our first model, a linear one developed during CAGI, used parabola-
shaped polynomials for loss functions to penalize predicted PoP values based on their supposed classes (equivalently,
PoP ranges here). As the parabola-shaped polynomials as loss functions are too structured and rigid, we continue after
CAGI to develop linear and nonlinear (kernelized) models with flexible flat-bottomed loss functions directly learned
from data.

Other methods participating in the challenge treat the problem as classification (Cline et al., to appear) and assign
PoP afterwards (a non-trivial challenge), amongwhichmulti-class logistic regression is compared as a representative
in this study. From the perspective of machine learning, they do not consider the order among classes whenmaking
classifications (for which a representative of ordinal regression is compared in this study as well) and have to make
strong assumptions about the distribution of PoP, albeit implicitly, when converting class category or probability into
PoP.

The rest of the paper is organized as following. We first introduce inMaterials andMethods the ENIGMA challenge,
our training data and feature engineering. We then introduce three types of machine learning models, the first two
formulti-class pathogenicity classification whereas the last – weakly supervised regression – newly developed by us
for direct prediction of the probability of pathogenicity (PoP). In Results, we start with examining the value of gene
type-specific rather than gene-specific data as well as variants data with less confident clinical annotations. We proceed
to compare prediction performances among the machine learning models and integrate model interpretation and
(protein) structural interpretation to infer molecular mechanisms bywhich some BRCA1missense variants could confer
pathogenicity.

2 | MATERIALS AND METHODS
2.1 | The ENIGMAChallenge
One of the 14 challenges in the 5th CAGI experiment, the ENIGMA Challenge presented 430 BRCA1 and BRCA2
variants (326 exonic and 104 intronic ones) whose clinical significance was newly annotated or recently updated by the
ENIGMAConsortium (Cline et al., to appear) and not available in the public domain during the challenge. Specifically, a
posterior probability of pathogenicity (PoP) was produced for each variant bymultifactorial likelihood analysis (Goldgar
et al., 2008) that integrates clinically-calibrated bioinformatics information and clinical information in a Bayesian
network. Based on calibrated ranges of PoP shown in Table 1, variants have been classified according to the IARC
(International Agency for Research on Cancer) 5-tier classification scheme: Benign, Likely Benign, Uncertain, Likely
Pathogenic, and Pathogenic (Classes 1–5). As shown in the Supporting Information (Table S4), this set is skewed to
Classes 2 and 1 (Likely Benign and Benign), consistent with the BRCA variants observed in clinical practice.

Participants were asked to predict for each variant PoP according to the ENIGMA classifications as well as confi-
dence level (measured by standard deviation, SD). They were also told that the assessment would be against predicted
classes based onPoP ranges (Table 1) instead of PoP and predictions for classes 1 and 5would beweightedmorewithout
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Class 1. Benign 2. Likely Benign 3. Uncertain 4. Likely Pathogenic 5. Pathogenic
PoP range < 0.001 0.001~0.049 0.05~0.949 0.95~0.99 > 0.99

TABLE 1 The 5-tier ENIGMA classification of variants based on the ranges in the probability of pathogenicity (PoP).

the exact formula given. We only submitted predictions for all the 318missense variants.

2.2 | Data
To approach the task with supervised learning, we collectedmissense variants data similarly classified using the five-tier
clinical significance system and publicly available in theClinVar database (Landrumet al., 2016). In otherwords, no exact
values but ranges of PoP (equivalently, classes) are publicly available, creating a weakly supervised learning scenario.
The five terms of clinical significance used in ClinVar, following the guidelines fromACMG/AMP (the American College
ofMedical Genetics and Genomics and the Association forMolecular Pathology) (Richards et al., 2015), are consistent
with those used by ENIGMA, following the IARC guidelines. SomeClinVar entries are even submitted by ENIGMA. A
slight inconsistency was disregarded, namely that the uncertain range in the ACMG/AMP guideline is 0.10~0.899 rather
than 0.05~0.949.

Consistent with the practice during the challenge, during our post-CAGI replication we retrievedmissense variants
fromClinVar with the last-interpreted date no later than June 29, 2017, around 6months before the challenge was
released. We also set two cutoffs on the review status which ranges from zero to four stars suggesting increasingly
reliable interpretation: at least three stars (reviewed by expert panel) or at least two stars (reviewed by multiple
qualified submitters without conflict), thus generating two data sets denotedG2 andG3 (a subset ofG2), respectively.
The exact query filters used for ClinVar can be found in Table S1 of the Supporting Information (SI).

Besides BRCA1/2 variants, we also collected missense variants of other tumor suppressor genes from ClinVar
following the sameprocedure as described above. Even though the challengewas exclusive to BRCAgenes, our rationale
is to develop predictors that are not just gene-specific but gene type-specific. One benefit from themachine learning
perspective is to access more training data and allow for more complex models for accuracy. We used the STRING
database(Szklarczyk et al., 2017) to identify other genes whose protein products interact with BRCA1 and BRCA2
proteins and theOncoKB(Chakravarty et al., 2017) database to filter the resulting genes for tumor suppressor genes
only. We ended upwith 21 other tumor suppressor genes, 17 of which have variant interpretation in ClinVar and are
referred to as non-BRCA in short. Details about data-collection procedures and resulting data statistics can be found in
the Supporting Information (SI) Sec. 1 and 2, respectively.

A stratified split considering the frequencies of the five classes was used to create a held-out ClinVar BRCA test set
(one sixth) and a training set (five sixths) fromG2. The same test set was used when testingG3-trainedmodels, whereas
theG3 training set is the subset of theG2 training set with three stars or more in review status. When other genes are
considered, their variants would be added to corresponding training sets.

2.3 | Feature Engineering
When calculating features for each variant collected for training or validation, we restricted the choices tomolecular
impacts for interpretable and actionable models. These impacts are often predicted from sequence-level features,
which is a great challenge itself. We usedMutPred2 (Pejaver et al., 2017b) that predicts the posterior probabilities of
loss or gain, whichever is greater, for a wide range of properties induced by amino-acid substitutions. These properties,
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capturingmutational impacts on protein structure, dynamics, and function, are grouped hierarchically into a custom
oncology basedon their inherent relationships (Pejaver et al., 2017b). To helpmodel interpretability, weonly chose those
numeric properties on the 3rd level of the ontology because their parent or child properties are strongly correlatedwith
themwhereas themselves are not directly related in calculation andmore or less “orthogonal" in molecular mechanism.
Therefore, we used as features the posterior probabilities of alteration in 9 properties summarized in Table 2.

Feature Index Property /Molecular Impact
1 Relative solvent accessibility
2 Allosteric site
3 Catalytic site
4 Secondary structure
5 Stability and conformational flexibility
6 Special structural signatures
7 Macromolecular binding
8 Metal binding
9 PTM site

TABLE 2 The list of properties whoseMutPred2-predicted alteration probabilities are used as features.

2.4 | Machine Learning
2.4.1 | Mathematical Description
We consider n examples xi (i = 1, . . . , n) each represented by q features, i.e., xi ∈ Òq ([i ). Although each xi has a
continuous label [PoP (probability of pathogenicity), or pi here], the exact label pi is not available. Rather, a categorized
class of pi is given according to a customized K -tier system: yi = k if bk−1 6 pi < bk (k = 1, . . . ,K ) where threshold
parameters bk are increasing in k . Without loss of generalizability, b0 = 0 and bK = 1, echoing the range of pi . In our
study, K = 5 and bk ’s are set according to Table 1. We use nk and ck to denote the number and the portion of examples
belonging to Class k , respectively.

All vectors are column vectors unless stated otherwise and are denoted in bold-faced lower-case italics. Matrices
are denoted in bold-faced upper-case italics.

2.4.2 | Models Overview
Wedescribe three typesofmachine learningmodels. Thefirst twodonot predict PoP (pi ) directly but classify pathogenic-
ity (yi ) instead: multi-class logistic regression (MLR), a representativemulti-class classificationmethod used by other
participants in the challenge (Cline et al., to appear), disregard the order among the five classes; and cumulative logit
model (CLM) (Agresti, 2003), a representative of ordinal regression, treat the classes as ordered albeit on an arbitrary
scale. In contrast, the last, including three “weakly supervised" regressors (WSR) developed by us, directly predict PoP
(pi ) for variant i by trainingmodels on inexact labels (not PoP but PoP ranges encoded by pathogenicity class yi ) while
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utilizing both the order and the scale among the classes.

Model Target Label Learning Type Ordered Classes Scaled Classes
Multi-class Logistic Regression Pathogenicity Class Classification 7 7

Cumulative LogitModel Pathogenicity Class Classification 3 7

Weakly Supervised Regression Pathogenicity Probability Regression 3 3

TABLE 3 Overview of two types of baselinemachine learningmodels compared in this study as well as our weakly
supervised regression.

2.4.3 | Multi-class Logistic Regression (MLR)
MLR (Böhning, 1992), a multi-class classification model, is an extension of binary logistic regression. We consider a
linearmodelwT

k
xwith parameterswk for each class k (k = 1, . . . ,K ). Letw denote the column vector stacking all K

wk ’s. The conditional probability that a sample xi belongs to class k is thus given by softmax: PMLR(yi = k |xi ,w) =
exp(−wT

k
xi )∑K

j=1
exp (−wT

j
xi )
. Themodel parametersw ∈ ÒqK are trained byminimizing the following objective function:

fMLR(w) = LMLR(w) + R (w)

= −
1

n

n∑
i=1

cyi log PMLR(y = yi |xi ,w) + λ | |w | |22 ,
(1)

where the loss function L(·) is negative weighted log-likelihood, the regularization term R (·) is L2 regularization for
controllingmodel complexity, and λ is a hyper-parameter for balancing the two terms.

2.4.4 | Cumulative LogitModel (CLM)
CLM (Agresti, 2003) is a multi-class classification model that, unlike MLR, considers the order among classes on an
arbitrary scale. It is a representative for the type of classification problems called ordinal regression(Gutierrez et al.,
2016). Specifically, CLM models the cumulative distribution function by a logistic function s(t ) = 1/(1 + exp(−t )):
PCLM(yi 6 k |xi ,w) = s(θk − w

T xi ). Therefore, the conditional probability PCLM(yi = k |xi ,w) is now simply the
difference between the cumulative distribution functions at two consecutive classes: PCLM(yi = k |xi ,w) = s(θk −
wT xi )− s(θk−1 −w

T xi ). Compared to qK parameters inMLR, a total of q +K parameters includingw ∈ Òq andθ ∈ ÒK
are trained here byminimizing a similar objective function (negative weighted log-likelihoodwith L2 regularization):

fCLM(w,θ) = LCLM(w,θ) + R (w)

= −
1

n

n∑
i=1

cyi log PCLM(y = yi |θ,w) + λ | |w | |22 .
(2)

Both baselinemodels above just calculate the conditional probability that a variantxi is classified as each of the
K = 5 classes: P·(yi = k |xi , ·). To calculate the probability of pathogenicity pi , we assume that its probability density
function is a constant over each class range [bk−1, bk ) as specified in Table 1. As such, we estimate pi by its expectation:
pi =

1
2

∑K
k=1(bk−1 + bk )P·(yi = k |xi , ·).
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2.4.5 | Weakly Supervised Regression (WSR)
In contrast to usingmulti-class classification followed by somewhat ad hoc assignment of the probability of pathogenicity
or PoP (pi for variant i ), we developedweakly supervised regression that predicts PoP directly while training data only
contains inexact version of PoP, i.e., the pathogenicity class y = 1, . . . ,K . Specifically, we designed various loss functions
`(pi , yi ) that measure the inconsistency between predicted PoP pi = p(xi ,w) and its supposed class yi and trained
models byminimizing the L2-regularized loss function:

fWSR(w) = LWSR(w) + R (w)

=
1

n

n∑
i=1

cyi `(p(xi ,w), yi ) + λ | |w | |
2
2 .

(3)

A high-level comparison of the 3 versions ofWSR is summarized as following before we describe each in details.

Model Loss function `(pi , yi ) Threshold Label Transformation Feature Embedding
WSR1 Fixed polynomial Constant b 7 Linear
WSR2 Parameterized ε-insensitive Parameter τ 3 Linear
WSR3 Parameterized ε-insensitive Parameter τ 3 Nonlinear (Kernelized)

TABLE 4 Comparing the three versions of weakly supervised regression (WSR)models on their loss functions,
thresholds, label transformation, and feature embedding.

WSR1: Fixed, parabola-shaped polynomial loss function
We introduced this model during the challenge and submitted its predictions. Here the PoP predictor is a logistic
function s(·): p(x,w) = s(z (x,w)) = s(wT x)whose decision score z (·) is linear inx. And the loss function `(pi , yi ) is a
pre-determined parabola-shaped polynomial centered around themidpoint of its supposed range [byi −1, byi ):

`(pi , yi ) =

((
pi −

byi −1 + byi
2

)
/

(
byi − byi −1

2

))6
. (4)

The shape and range in Eq. 3 are very particular, which can be both unnecessary and biased and prevents better accuracy.
We thus proceeded to developmuch improvedmodels after the challenge, as elaborated next.

WSR2: Parameterized ε-insensitive loss function
We note that the aforementionedWSR1 loss function in Eq. 4 is of a fixed, peculiar shape, which was not optimized
during the Challenge and limits predictive power. Therefore, we further developed two more weakly supervised
regressors (WSR2 andWSR3) afterwards. As illustrated in Fig. 1, we allow the class-specific loss function to be flat
bottomed (rather than parabola-shaped) in a corresponding parameterized scale (rather than the original, fixed scale)
and the label p to be transformed (rather than staying in the original space).

Specifically, we first transformed the original scale of fixed thresholds b over [0, 1] (Table 1) into a new scale of
parameterized thresholds exp(τ ) (including τ1 < τ2 < . . . < τK−1 6 0) to be learned from training data. Note that the
use of exp(τ ) rather than its logarithm formwas designed for the numerical optimization reason (Antal and Csendes
(2016)). Correspondingly we had the following transformation between the desired, original label pi for instance i and
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the transformed label p̃i to be predicted:

pi = byi −1 + (byi − byi −1) ·
p̃i − exp(τyi −1)

exp(τyi ) − exp(τyi −1) (5)

We then used in the transformed p̃-space flat-bottomed ε-insensitive loss functions (Vapnik, 2013) that can be
regarded as the sum of two hinge loss functions h(·). We used class-specific hyperparametersα to control the slope of a
hinge function hα (x ) = max(0,−αx ). The higher the α , the higher the penalty a prediction would receive if it is outside
its supposed range; and no penalty would a prediction receive otherwise. Therefore, for an examplexi of class yi with
predicted probability p̃i = p̃(x,wi ), we define its loss as:

`α(p̃i , yi ) = hαyi (p̃i − exp(τyi −1)) + hαyi (exp(τyi ) − p̃i ). (6)

The above expression applies to all classes including the two borders when yi = 1 or yi = K by introducing constants
τ0 = −∞ and τK = 0.

As we did forWSR1, we use logistic functions s(·) for the predictor of the transformed label p̃(·): p̃(w,x) =
s(z (w,x)) = s(wT x)with a linear decision score z (·). With the loss for each example redefined in Eq. 6, following the
general formula for our weakly supervised regression in Eq. 3, ourWSR2models can be learned by solving the following
optimization problem:

min
w,τ

fWSR2(w, τ ) =
1

n

n∑
i=1

cyi `α(p̃(xi ,w), τ , yi ) + λ | |w | |
2
2

s.t. τ1 < τ2 < . . . < τK−1 6 0

(7)

Note that class-specificα for penalizing out-of-the-range predictions are treated as hyperparameters to be optimized
on grid search (seemore details in Sec. 2.4.6).

0 exp(τ1) exp(τ2) exp(τ3) exp(τ4) 1
0.0

0.2

0.4

0.6

0.8

1.0
α=1.0
α=1.5
α=2.0

F IGURE 1 Illustration of the ε-insensitive function: max(0,−α(x − exp(τ3))) +max(0,−α(exp(τ4) − x ))with
α=1.0,1.5 and 2.0, respectively. The higher the α is, themore the penalty the function will give to a prediction outside its

supposed range.
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WSR3: KernelizedWSR2
The decision score function z (·), based onwhich we used a logistic function to predict transformed label p̃ , was linear
in x (features) for bothWSR1 andWSR2, i.e., z (w,x) = wT x. Therefore, we further introduce nonlinearity of the
decision score function toWSR2 following a “kernel trick" (Theodoridis and Koutroumbas, 2008) that maps the original
feature space to a high-dimensional implicit one and finds linear decision boundary there. Noticing that parametersw
enter theWSR2 formulation (Eq. 7) in the form of the inner-product with the feature vectorx, but parameters τ do
not, andwe have constraints on τ . We build on the Representer Theorem (Wahba, 1990) (Lemma 1 in SI) and prove a
theorem (Theorem 1 in SI) before we apply a kernel trick. A short proof can be found in SI.

Based on Theorem 1, we can kernerlize the objective function in theWSR2 formulation (Eq. 7) to reach the
following formulation forWSR3

min
β,τ

fWSR3(β, τ ) =
1

n

n∑
i=1

cyi `α(p̃(xi ,β), τ , yi ) + λβ
T Kβ

s. t. τ1 < τ2 < . . . < τK−1 6 0

(8)

where p̃(x,β) is now logistic in the kernel space, i.e., p̃(x,β) =
(
1 + exp(−∑n

j=1 βj κ(xj ,x))
)−1.

As such, the kernel trickmaps the original feature spacex into an infinite-dimensional space without the need of
calculating the exact mapping between them. This trick will enable our model to deal with the non-linear situation,
which could significantly increase our model accuracy. In this paper, we use radius basis function (RBF) kernels with
bandwidth γ. The hyperparameter γ is optimized by cross-validation withmore details given next.

2.4.6 | Model Training and Uncertainty Estimation
In order to obtain the uncertainty measure we randomly split the training set into 5 folds and trained 5 models on
5 combinations of 4 folds. This random split was fixed across all types of machine learning models in the study. The
predictions of the five models on the test set are used to calculate the mean and the standard deviation of both the
label and the assessment metrics. We then trained on all the 5 folds of the training set to obtain the final model for
interpretation.

The hyperparameters are optimized using grid search through 4-fold or 5-fold cross validation depending on the
number of folds included in the training set. Specifically, the grid for regularization coefficient λ consists of 25 points, for
which the log2 of them are uniformly distributed on [−3, 4]. We use this grid for the regularization constant in all models
mentioned before. ForWSR2 andWSR3, class-specific slope of the ε-insensitive loss function, αi , is sampled on the grid
of 4 points: [2−0.5, 20, 20.5, 21]. ForWSR3, the bandwidth of the RBF kernel, γ, is sampled on the grid of 25 points, for
which the log2 values are evenly distributed between -3 and 2.

For each combination of hyperparameter values, we findmodel parameters by solving the corresponding optimiza-
tion problem. Except thatMLR (multiclass logistic regression) is already implemented in Python-sklearn(Pedregosa
et al. (2011)), we implemented all othermodels in Python 2.7 with optimizers provided in SciPy (Jones et al., 2001–).
CLM (cumulative logit model) involves a convex optimization problem andwas solved by the optimizer ‘BFGS’.

WSR1 (weakly supervised regressor 1) involves a nonconvex, unconstrained optimization problem andwas solved
by BFGS with multi-start. Similarly,WSR2 andWSR3 involve nonconvex, constrained optimization problems and
were solved by the optimizer ‘L-BFGS-B’ withmulti-start. Specifically, we sampled 100 initial coordinates forw and τ ,
wherewi s are uniformly sampled from [−5, 5], and τ1, τ2, τ3, τ4 are uniformly sampled from [−10, 0]with the constraint
of τ1 < τ2 < τ3 < τ4. The rationales for these ranges are the following. First, the standard logistic function s(wT x)
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saturates quicklywhen |wT x | becomes large and, since our featuresx are allMutPred2 property probabilities between
0 and 1, largewi would push transformed PoP values (p̃) close to 0 or 1. Second, since exp(τi ) is a threshold in the scale of
p̃ , the exponential function exp(τk )will quickly saturate when τk becomes far negative, which pushes all τk ’s to become
equal. We analyze the detailed optimization results in SI Sec. 4.

2.4.7 | Model Interpretation
We further analyze feature importance for each pathogenic or likely pathogenic variants (Class 4&5) in the ENIGMA
Challenge (denoted the set of S1), based on the prediction ofmodelWSR2 for its balance of accuracy and interpretability.
In other words, for each variant i ∈ S1, we would like to examine the statistical significance by which each feature
actually separates the variant from the set of benign and likely benign examples (Class 1&2) in the ENIGMAChallenge
(denoted the set of S0). From Eq. 5 and logistic function, we know that the PoP is monotonically increasing with respect
to the decision score z = wT x: the higher the decision score the variant has, the more pathogenic it is. Therefore, given
all benign or likely benign variants’ decision scores z j = wT xj (1 6 j 6 |S0 |), for each variant i ∈ S1 with decision score
zi = w

T xi ([i = 1, . . . , |S1 |), we calculate the following differences for the r -th feature:wr x ri −wr x rj (where i is given
and j ∈ S1 . With the differences defined above, we perform the one-tailed one-sample t -test for each variant i ’s feature
r and calculate corresponding P-values, where the null hypothesis is that the expected value of the differences, treated
as a random variable, is bigger than 0. Finally, for each variant i ∈ S1, We rank all its features based on their P-values in
an increasing order, where the smallest P-value corresponds to themost important feature.

2.5 | AssessmentMetrics
Due to the unavailability of ground-truth PoP values, we use two metrics to assess multi-class classification perfor-
mances. The first is themulti-class area under the curve (AUC) of receiver operating characteristic (ROC) curve (Hand
and Till, 2001), which is simply the unweighted average of binary AUC between all pairs among K classes:

mAUC = 2

K (K − 1)

K∑
i=1

K∑
j=i+1

AUC (i , j ), (9)

whereAUC (i , j ) denotes the binary AUC between class i and j .
As themetric disregards orders among classes, we adopted a secondmetric, ordinalmAUC , which estimates the

joint probability that randomly picked instances, one from each class, are scored in the supposed order (Waegeman
et al., 2008).

ordinal mAUC = 1

K − 1

K−1∑
k=1

AUC (i6k , j>k ), (10)

whereAUC (i6k , j>k ) denotes the binary AUC between two partitions of all classes: the first k and the rest.
As the official assessment did (Cline et al., to appear), we also assess performances on binary classificationwhen

classes 1 and 2 aremerged to a negative class and classes 4 and 5 aremerged to a positive. We use binary AUC as well
as RMSD (root mean squared deviation) in PoP. Since ground-truth PoP values are not available, they are approximated
to be 0.025 and 0.975 in the assessment.
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2.6 | ProteinModeling for Structural Interpretation

We investigate the impact of pathogenic misssnese mutations on BRCA1/2 proteins through structural modeling.
There are only ten pathogenic BRCA variants (class 5) in the ENIGMAChallenge (also referred to as the CAGI test set)
including seven for BRCA1 and three for BRCA2. Furthermore, among these pathogenic variants, only five BRCA1
variations occur in available 3D structures (Bateman et al., 2017), including four in the RING (Really Interesting New
Gene) domain (M18T, C44F, C47Y, R71G) and one (S1715N) in the BRCT (The BRCA1C-terminal) domains.

Following various mechanistic hypotheses (such as mutational impacts on folding stability and binding affinity),
these five variants are structurally modeled by re-designing wild-type structures using multi-state protein design
method iCFN (Karimi and Shen, 2018). Residues within 5 Å from the mutation site were allowed to be flexible (as
discrete rotamers) in all designs except that they were extended to those within 8 Å whenmodeling the mutational
effect of S1715N on BRCT-protein binding as themutation site is at the second layer of the binding interface.

Formodeling the effect of four RING-domainmutations (M18T, C44F, C47Y, R71G) on folding stability, we used
the single state design (positive only) with substate ensembles where substates were defined as the BRCA1 RING
domain in 14NMR structures in complex with BARD1 (PDB ID: 1JM7). Substate energies were folding energies of the
RING domain only that include Coulomb electrostatics, van derWaals, internal energies (Geo term), and a nonpolar
contribution to the hydration free energy based on solvent accessible surface area (SASA) (Shen et al., 2015, 2013;
Shen, 2013). A positive-substate stability cutoff and positive-versus-negative substate specificity were essentially not
mandatedwith a cutoff of 1,000 kcal/mol.

Formodeling the effect of the four RING-domainmutations on interactions with BARD1 (RING domain as well),
we usedmulti-state design (positive and negative) with protein-complex substate ensembles defined in the same PDB
entry 1JM7. Positive substate energies were the total folding energies of the RING domain and BARD1 separately and
negative substate energies were folding energies of the complex of RING domains of BRCA1 and BARD1. A positive-
substate stability cutoff was set at 10 kcal/mol and positive-versus-negative substate specificity was essentially not
mandatedwith a cutoff of 1,000 kcal/mol.

Similarly, for modeling the effect of one BRCT-domainmutation (S1715N) on the stability and protein interaction of
BRCT, we did the same as described above except that there was only a single substate available in the crystal structure.
For modeling protein interaction, we used BRCT interacting with Bach1Helicase (PDB ID: 1T29) and for modeling the
stability, we used the unbound structure of BRCT domain (PDB ID: 1JNX).

For either folding stability or binding affinity, top conformations of each designed sequence in each substate (back-
bone conformation here) generated from iCFN for either state were geometrically grouped into representatives. Later,
folding stabilities (G ) and binding affinities (∆G ) of the top sequence-conformation ensembles were re-evaluated and
re-orderedwith a higher-resolution energymodel where continuum electrostatics replaced Coulombic electrostatics
(Karimi and Shen, 2018). Lastly, the representative conformation at either state was chosen based on the best binding
affinity or folding stability (lowest∆G orG ) for modeling the binding or folding respectively. Each calculated relative
binding energy to wild type (WT),∆∆G , and relative folding energy toWT,∆G , was further decomposed into contribu-
tions of van derWaals (vdW), continuum electrostatics (elec), SASA-dependent nonpolar solvation interactions (SASA),
and internal energy (Geo).
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3 | RESULTS
3.1 | The Value of GeneNonspecific Data and Less Confident Clinical Annotations
Wefirst assess the value of more abundant albeit less confident variant annotations. When restricted to those at least
reviewed by panel (‘review status’ being at least 3 stars, orG3), the number of BRCA variants accessible fromClinVar
was 201 (Table S2 in the Supporting Information), which increased to 699 (Table S3) when the review status was relaxed
to at least 2 stars, orG2 (at least reviewed bymultiple qualified submitters without conflict). The largerG2 training set,
even though their annotations are less confident, actually led to noworsemulti-class logistic regressor (MLR). As shown
in Table 5, mAUC (ordinal mAUC) was improved by 6% (4%) for the ClinVar test set and evenmore – 8% (9%) – for the
CAGI test set in the posterior analysis, respectively.

We also examine to what extent a gene non-specific predictor can rival a gene specific one for pathogenicity predic-
tion. We focus on a gene-type specific predictor here by restricting to 17 other tumor suppressor genes interacting with
BRCA1/2. There were 895G2 non-BRCA variants muchmore heavily skewed toward Class 3 (uncertain significance)
compared to BRCA variants in the ClinVar set (Table S3). The BRCA variants in the CAGI set turned out to be heavily
skewed toward Class 2 (likely benign) instead. Compared to that trained on the BRCA-only data, theMLRmodel trained
on the non-BRCA data had slightly worse performance (8%∼11%), whereas that trained on both data (nearly 60% are
non-BRCA variants) performed equally.

Dataset for Training Clinvar Test Set CAGI Test Set
mAUC Ordinal mAUC mAUC Ordinal mAUC

G3withBRCA only 0.572 ± 0.025 0.588 ± 0.017 0.532 ± 0.034 0.512 ± 0.015

G2withBRCA only 0.639 ± 0.009 0.623 ± 0.005 0.610 ± 0.004 0.603 ± 0.011

G2with non-BRCA genes 0.542 ± 0.010 0.535 ± 0.008 0.503 ± 0.014 0.521 ± 0.008

G2with all genes 0.640 ± 0.012 0.632 ± 0.008 0.611 ± 0.010 0.636 ± 0.006

TABLE 5 The classification performance of multi-class logistic regression trained on various datasets.

These results indicate the value of less confident albeit more abundant variant data for pathogenicity prediction.
They also show the promise of gene type-specific pathogenicity predictors that can access more variant data of more
genes and allow for more complexmachine learningmodels with more parameters. We thus use theG2 dataset with all
the 19 genes thereinafter.

3.2 | ComparingMachine LearningModels
Wenext compare three typesofmachine learningmodels, as previously summarized inTable3, for the taskof pathogenic-
ity prediction: multi-class logistic regression (MLR), a representative of multi-class classification used by other partici-
pants in theChallenge (Cline et al., to appear); cumulative logitmodel (CLM), a representative ofmulti-class classification
that considers the order among classes (ordinal regression); and our three weakly supervised regression (WSR) models
that directly predict the probability of pathogenicity from training pathogenicity classes using designed loss functions,
summarized and comapred in Table 4. Due to the lack of ground-truth PoP values, we were only able to assess classifica-
tion performances. The comparison using multi-classification metrics (mAUC and ordinal mAUC) is given in Table 6
whereas that using binary classificationmetrics (binary AUC and RMSD) can be found in Table 7.
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ClinVar Test Set CAGI Test Set
Model mAUC Ordinal mAUC mAUC Ordinal mAUC
MLR 0.640 ± 0.012 0.632 ± 0.008 0.611 ± 0.010 0.636 ± 0.006

CLM 0.673 ± 0.016 0.691 ± 0.005 0.635 ± 0.009 0.684 ± 0.026

WSR1 0.646 ± 0.016 0.682 ± 0.012 0.623 ± 0.011 0.666 ± 0.008

WSR2 0.754 ± 0.015 0.782 ± 0.011 0.763 ± 0.010 0.778 ± 0.023

WSR3 (KernelizedWSR2) 0.791 ± 0.008 0.826 ± 0.014 0.781 ± 0.010 0.802 ± 0.017

TABLE 6 Pathogenicity-prediction performance comparison (5-class evaluations) amongMLR (multi-class logistic
regression),CLM (cumulative logit model), and ourWSR (weakly supervised regression) variants.

ClinVar Test Set CAGI Test Set
Model Binary AUC RMSD Binary AUC RMSD
MLR 0.751 ± 0.004 0.251 ± 0.005 0.720 ± 0.011 0.277 ± 0.003

CLM 0.853 ± 0.006 0.220 ± 0.004 0.854 ± 0.008 0.213 ± 0.005

WSR1 0.801 ± 0.010 0.212 ± 0.012 0.780 ± 0.005 0.234 ± 0.010

WSR2 0.971 ± 0.001 0.201 ± 0.004 0.961 ± 0.003 0.198 ± 0.004

WSR3 (KernelizedWSR2) 0.982 ± 0.003 0.131 ± 0.004 0.968 ± 0.002 0.161 ± 0.003

TABLE 7 Pathogenicity-prediction performance comparison (2-class evaluations) amongMLR (multi-class logistic
regression),CLM (cumulative logit model), and ourWSR (weakly supervised regression) variants.

By comparingMLR,CLM, andWSR1, we found that they had very similar performances for both the ClinVar and
the CAGI sets in mAUC that disregards orders among classes; and CLM andWSR1, both respecting class order in
their models, improved for both sets ordinal mAUC that addresses class order.WSR1 did not improve against CLM,
a representative ordinal regressionmodel, becauseWSR1 suffers from its very peculiar loss function that is fixed to
penalize predicted PoP on the fixed, original scale (thresholds b).

Building uponWSR1, we used inWSR2 flat-bottomed ε-insensitive loss functions and b-transformed thresholds τ
that are flexibly parameterzied and jointly learned along with other parameters from data. Furthermore, inWSR3we
replaced the linear decision score function z (·)with an RBF-kernelized one. AccordinglyWSR2 andWSR3 drastically
improved the performance compared toWSR1 for bothmAUCandordinal AUCaswell as for both test sets. In particular,
compared toWSR1,WSR3 improved for the ClinVar test set by 14% (14%) and did so for the CAGI set by 16% (14%) in
mAUC (ordinal mAUC). Compared to the baselineMLRwidely used in the Challenge,WSR3 improved for the ClinVar
test set by 15% (19%) and did so for the CAGI set by 17% (17%) in mAUC (ordinal mAUC).

We found similar trends in the case of merged two-class evaluations (Class 1&2 v.s. Class 4&5). Compared toMLR
for the CAGI set,WSR3 increased binary AUC from 72% to 97% and reduced RMSD from 0.28 to 0.16. Speaking of
binary AUC,WSR3, using only 9 features, did on par with the best performer for the Challenge, LEAP (Lai et al.) even
though LEAP usedmanymore features and patient information (Cline et al., to appear).
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3.3 | Mutation-Specific Interpretation ofMachine LearningModels
Wewent on to interpret our weakly supervised regressors, in particularWSR2whose decision score function z (·) is
linear inx andmodel is easily interpretable. As variants can impact disease severity through different molecular and
cellular mechanisms, we ranked for each pathogenic or likely pathogenic variant their individual important features
(P-value below 0.01) by P-values found by ourmodel-interpretation procedure in Sec. 2.4.7.

As shown in Table 8, themore interpretableWSR2 correctly predicted 9 of 16 pathogenic or likely pathogenic to be
so compared toWSR3 that correctly did so for 14 of those 16, which shows the trade-off between interpretability and
accuracy. We focused on the 6 correctly predicted pathogenic variants and found that themost important features (and
likely most probable molecular mechanisms) are related to 2 - allosteric site (BRCA1M18T), 8 - metal binding (BRCA1
C44F and C47Y), 5 - stability and conformational flexibility (BRCA1 S1715N), and 3 - catalytic site (BRCA2 R2659G and
N3124). More detailed results onmutation-specific mechanistic interpretation can be found in Sec. 5 in the Supporting
Information.

Aswill be shown next, four of these six variantswith predictedmechanisms reside in available 3Dprotein structures
and can be structurally modeled. The predicted molecular mechanisms by which mutations might confer clinical
significancewere thus verified to bemetal binding for C44F andC47Y, stability for S1715N, and protein binding (feature
7, a top but not the first-ranked feature) forM18T.

3.4 | Structural Interpretation of Some BRCA1 Pathogenic Variants
BRCA1 is known to be required in several cellular processes including transcription, cell- cycle check point control,
DNA damage repair and control of centrosome number (Kais et al., 2012). Five pathogenic variants of BRCA1 occur
at sites with available protein structure data (M18T, C44F, C47Y, and R71G in the RING domain and S1715N in the
BRCT domain). In addition biological experiments have shown that M18T, C44F and C47Y are deleterious for both
homologous recombination process and centrosome number, but R71G, being similar to the wild type, is deleterious for
neither (Kais et al., 2012).

We performed structural modeling and energetic analysis for these variants to assess their impacts on protein
folding stability and binding affinity, features found in theWSR2model to be themost important features for correctly
predicting pathogenicity of these variants.

3.4.1 | Structural modeling reproduces destabilization effects ofM1775R
To validate our structural modeling protocol first, we first tried to replicate the known structure (PDB ID: 1N5O) of
a pathogenic BRCA1mutant, M1775R, by re-designing a wild-type (WT) structure (PDB ID: 1JNX). The results in SI
Figure S1 displayed an accurate replication of mutant’s ground-truth structure. Moreover, our structural modeling
provided the agreement that M1775R leads to conformational instability, a causal mechanism for its pathogenicity
(Williams and Glover, 2003).

3.4.2 | Disruptedmetal binding: C44F and C47Y
Highly conserved C44 and C47 interact with zinc ions that coordinate the stability of the RING domain (Ransburgh
et al., 2010). Mutating the cystine residues would disrupt the strongly favorable sulfur-zinc interaction, which has been
shown in our structural modeling as well. For both of thesemutation zinc-coordinated stability has been disrupted and
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WSR2 WSR3Variants Predicted PoP Indices of important features Predicted PoP
BRCA1

M18T 0.988± 0.003 2 5 6 9 8 7 0.953± 0.004

C44F 0.981± 0.002 8 7 2 6 5 9 0.957± 0.010

C47Y 0.953± 0.015 8 2 7 6 5 0.956± 0.004

R71G 0.803 ± 0.002 7 4 2 5 9 0.050 ± 0.002

R1495T 0.501 ± 0.020 1 5 2 0.990± 0.008

E1559K 0.501 ± 0.016 5 7 1 0.990± 0.009

S1715N 0.959± 0.003 5 2 6 9 7 4 0.953± 0.007

BRCA2
R2659G 0.981± 0.004 3 2 4 5 8 9 0.960± 0.005

Q2829R 0.697 ± 0.009 6 5 2 7 9 0.953± 0.009

Class 5

N3124I 0.964± 0.005 3 2 6 9 4 5 7 0.953± 0.004

BRCA1
V1736G 0.565 ± 0.002 2 8 3 7 6 0.953± 0.009

G1738E 0.991± 0.001 2 8 3 7 6 5 0.952± 0.007

D1739V 0.996± 0.001 3 2 8 6 4 0.963± 0.008

G1748D 0.996± 0.004 3 2 8 7 6 4 0.952± 0.001

BRCA2
T2607P 0.681 ± 0.006 6 5 9 2 4 0.820 ± 0.010

Class 4

S2670L 0.501 ± 0.004 2 7 0.954± 0.009

TABLE 8 Summarized results ofWSR2model interpretation for 16 pathogenic and likely pathogenic BRCA variants.
Important features are retained with a P-value cutoff of 1E-02 and ranked from left to right in increasing P-values. PoP

predictions ofWSR3, more accurate yet less interpretable, are also reported.

electrostatics is a main, disruptedmolecular force based on energy decomposition (SI Fig. S2). Consistently shown in
Table 8, feature 8 (Metal Binding) was deemed significant and ranked the first for both C44F and C47Y, which echos our
structural interpretation.

3.4.3 | Disrupted protein binding: M18T
Heterodimerization of the RING domains of BRCA1 and BARD1 comprise an E3 ubiquitin ligase. The stability of the
heterodimer is crucial for the stability of the full-length BRCA1. Mutants that do not dimerize result in defects in
HDR and loss-of-tumor suppression (Starita et al., 2015). ResidueM18 is at BRCA1’s interfacewith BARD1 and the
mutationM18T is very likely to disrupt the binding with BARD1 (Morris et al., 2002). Based on structural modeling,
we found that M18 of BRCA1 WT and M104 of BARD1 form a intermolecular sulfur-oxygen interaction which is
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M18T: Protein-binding C44F: Metal-binding

C47Y: Metal-bindingR71G: Splicing?

S1715N: Stability and
conformational �exibility

a) BRCA1 RING domain-BARD1 b) BRCA1 BRCT domain

F IGURE 2 Structural interpretation of pathogenicity mechanisms for several BRCA1 variations at
structurally-available RING and BRCT domains. Pathogenic (Class 5) and benign (Class 1) variation sites are shown in
red and pale cyan spheres. Zoomed-in illustrations of molecular mechanisms have been shown for individual variants in
smaller side boxes, where crystal wild-type residues are in gray sticks andmodeledmutant residues are in cyan sticks. a)
RING domain complex of BRCA1-BARD1 in PDB structure 1JM7where RING domain of BRCA1 is shown in gray
cartoon, BARD1wheat caroon, and Zn2+ ions small blue sphere. b) BRCT domain of BRCA1 interacting with Bach1
helicase in PDB structure 1T29 PDBwhere BRCT is shown in grey cartoon and Bach1 helicase in pink sticks.

known to be important for protein-protein binding (Zhang et al., 2015). We also found from structural modeling that
this interaction is disrupted upon mutation M18T, which is shown in Figure 2. From binding energy decomposition
(SI Fig. S2), electrostatics is the main reason for the binding disruption. Consistently shown in Table 8, feature 7
(Macromelecular Binding) was deemed significant (although not ranked the first) for M18T, which agrees with our
structural interpretation.

3.4.4 | Aberrant splicing: R71G
The mutation R71G was found to affect the splicing process rather than homologous recombination process and
the centrosome number (Vega et al., 2001; Kais et al., 2012). The aberrant splicing of BRCA1 mRNA would result
in premature translation and truncated proteins, which is beyond the capability of structural modeling. Indeed, the
mutation was not found to destabilize BRCA1 (SI Fig. S2). Interestingly, the top-performing LEAP team found that
splicing information, such as the distance to the nearest splice site, was also important for correctly annotating the
clinical significance of some variants (Cline et al., to appear).

3.4.5 | Decreased stability: S1715N
The BRCT domain of BRCA1 displays an intrinsic transactivation activity. S1715 is an evolutionarily conserved residue
and pathogenic mutations in the BRCA domain including S1715N have shown the loss of such activity in yeast and
mammalian cells (Vallon-Christersson et al., 2001). S1715N has been shown unable to complement BRCA1 deficiency
for homologous recombination and leading to high instability (Petitalot et al., 2019). Our structural modeling confirms
that S1715N is structurally destabilizing (SI Fig. S2). Specifically, van derWaals clashes was found themain reason for
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the destabilization effect, as shown in SI Fig. S2. Of course, the extent of such clashes could be allieviated by improving
themodeling of structure flexibility. Consistently show in Table 8, feature 5 (Stability and Conformational Flexibility)
was ranked themost important for S1715N, echoing our structural interpretation.

To summarize, we have found for these pathogenic BRCA1 variants the consensus of ourmachine learning-based
and structuremodeling-basedmechanistic interpretations. Althoughwe do not have structure data to start with for
somemutation sites, our machine learning-based interpretations could generate actionable hypotheses of the causal
mechanisms that can be tested experimentally, potentially suggesting therapeutic candidates accordingly.

4 | CONCLUSION

Starting with interpretable and actionable features that capture molecular impacts of genetic variants and expert-
curated albeit inexact labels that only annotate variants using their ranges in the probability of pathogenicity (PoP), we
have developed novel weakly-supervised regressionmodels that can directly predict the probability of pathogenicity. By
considering the order among pathogenicity classes, penalizing PoP prediction with novel loss functions, and embedding
the original feature space into a kernel space, our weakly supervised regressor 3 –WSR3 – has significantly improved
the predictive performance for a CAGI challenge set compared to a representative multi-class classification model:
binary AUC increased from 0.72 to 0.97 and ordinal multi-class AUC increased from 0.64 to 0.80.WSR3 even improved
the predictive performances compared to a representative ordinal regressionmodelCLM(again, a multi-class classifier)
that respects class order. Note that our pathogenicity predictors are not gene-specific but gene type-specific, which
could access more variants data andmore advancedmachine learningmodels.

We further developedmethods to interpret ourweakly-supervised regressor by assessing the statistical significance
of feature importance in supporting individual model predictions. We identified and ranked important features (each
corresponding to amechanism ofmolecular impacts upon amino-acid substitution) for newly annotated or updated,
pathogenic or likely pathogenic BRCA variants. Our structural modeling of mutational effects on protein folding
stability and binding affinity has corroborated themachine learning-predictedmolecular mechanisms by which genetic
variants lead to diseases. Namely, validated in structural modeling, metal binding for BRCA1 C44F and C47Y was
predicted by our machine learningmodel interpretation as themost important feature for the pathogenic calling of the
variants. So was stability for S1715N. And protein binding was predicted to be a statistically significant but not the first-
ranked feature forM18T. These promising results indicate that thesemodels could generate experimentally-testable
mechanistic hypotheses and lead to therapeutic candidates accordingly.

We only used nine features out of over 50 property probabilities fromMutPred2 and could have achieved even
better performances withmore features although highly dependent or not directly causal features could hurt model
interpretability. One limitation about the current feature set though is the entire focus on molecular impacts of
genetic variation without the consideration of cellular contexts or systems-level impacts. On one hand, some variants
significantly impacting protein functionsmay not lead to clinical significance. On the other hand, splicing information
for somemissense variants is found important for their pathogenicity prediction(Cline et al., to appear). Therefore, it
would be of great value to include endophenotypes (Masica and Karchin, 2016) encoding causal mechanisms across
hierarchical subsystems (Yu et al., 2016) at various biological scales. Although endophenotype predictors are not
adequate for the purpose yet, increasingly available big data and empowering artificial intelligencemethods (Ma et al.,
2018) are stimulating their development andmaking the goal of precisionmedicinemore attainable than ever.



18 CAO ET AL.

ACKNOWLEDGEMENTS
We thank the CAGI organizers, data providers, challenge assessors, and fellow participants for the insightful challenges,
data, analysis, and tools (in particular, MutPred2) whichmade this study possible. We also thank Dr. Vikas Rao Pejaver
for the help on generatingMutpred2 features. Part of the computing supportwas provided by the Texas A&MUniversity
High Performance Research Computing.

CONFL ICT OF INTEREST
The authors declare no conflict of interest.

REFERENCES
Adzhubei, I., Jordan, D.M. and Sunyaev, S. R. (2013) Predicting functional effect of humanmissensemutations using polyphen-
2. Current protocols in human genetics, 76, 7–20.

Agresti, A. (2003) Categorical data analysis, vol. 482. JohnWiley & Sons.

Antal, E. and Csendes, T. (2016) Nonlinear symbolic transformations for simplifying optimization problems. Acta Cybernetica,
22, 5–23.

Bateman, A., Martin, M. J., O’Donovan, C., Magrane, M., Alpi, E., Antunes, R., Bely, B., Bingley, M., Bonilla, C., Britto, R.,
Bursteinas, B., Bye-A-Jee, H., Cowley, A., Silva, A. D., Giorgi, M. D., Dogan, T., Fazzini, F., Castro, L. G., Figueira, L., Garmiri,
P., Georghiou, G., Gonzalez, D., Hatton-Ellis, E., Li, W., Liu, W., Lopez, R., Luo, J., Lussi, Y., MacDougall, A., Nightingale, A.,
Palka, B., Pichler, K., Poggioli, D., Pundir, S., Pureza, L., Qi, G., Renaux, A., Rosanoff, S., Saidi, R., Sawford, T., Shypitsyna, A.,
Speretta, E., Turner, E., Tyagi, N., Volynkin, V., Wardell, T., Warner, K., Watkins, X., Zaru, R., Zellner, H., Xenarios, I., Bouguel-
eret, L., Bridge, A., Poux, S., Redaschi, N., Aimo, L., Argoud-Puy, G., Auchincloss, A., Axelsen, K., Bansal, P., Baratin, D., Blatter,
M.-C., Boeckmann, B., Bolleman, J., Boutet, E., Breuza, L., Casal-Casas, C., Castro, E. d., Coudert, E., Cuche, B., Doche, M.,
Dornevil, D., Duvaud, S., Estreicher, A., Famiglietti, L., Feuermann,M., Gasteiger, E., Gehant, S., Gerritsen, V., Gos, A., Gruaz-
Gumowski, N., Hinz, U., Hulo, C., Jungo, F., Keller, G., Lara, V., Lemercier, P., Lieberherr, D., Lombardot, T.,Martin, X.,Masson,
P., Morgat, A., Neto, T., Nouspikel, N., Paesano, S., Pedruzzi, I., Pilbout, S., Pozzato, M., Pruess, M., Rivoire, C., Roechert, B.,
Schneider, M., Sigrist, C., Sonesson, K., Staehli, S., Stutz, A., Sundaram, S., Tognolli, M., Verbregue, L., Veuthey, A.-L., Wu,
C. H., Arighi, C. N., Arminski, L., Chen, C., Chen, Y., Garavelli, J. S., Huang, H., Laiho, K., McGarvey, P., Natale, D. A., Ross, K.,
Vinayaka, C. R., Wang, Q., Wang, Y., Yeh, L.-S. and Zhang, J. (2017) UniProt: the universal protein knowledgebase. Nucleic
Acids Research, 45, D158–D169. URL: https://academic.oup.com/nar/article/45/D1/D158/2605721.

Böhning, D. (1992)Multinomial logistic regression algorithm. Annals of the institute of Statistical Mathematics, 44, 197–200.

Bromberg, Y. and Rost, B. (2007) SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res., 35,
3823–3835.

Chakravarty, D., Gao, J., Phillips, S., Kundra, R., Zhang, H., Wang, J., Rudolph, J. E., Yaeger, R., Soumerai, T., Nissan, M. H., Chang,
M. T., Chandarlapaty, S., Traina, T. A., Paik, P. K., Ho, A. L., Hantash, F. M., Grupe, A., Baxi, S. S., Callahan, M. K., Snyder, A.,
Chi, P., Danila, D. C., Gounder, M., Harding, J. J., Hellmann, M. D., Iyer, G., Janjigian, Y. Y., Kaley, T., Levine, D. A., Lowery, M.,
Omuro, A., Postow, M. A., Rathkopf, D., Shoushtari, A. N., Shukla, N., Voss, M. H., Paraiso, E., Zehir, A., Berger, M. F., Taylor,
B. S., Saltz, L. B., Riely, G. J., Ladanyi,M., Hyman, D.M., Baselga, J., Sabbatini, P., Solit, D. B. and Schultz, N. (2017)OncoKB: A
Precision Oncology Knowledge Base. JCO Precision Oncology, 1, 1–16. URL: http://ascopubs.org/doi/full/10.1200/PO.
17.00011.

Cline, M. S. and Karchin, R. (2011) Using bioinformatics to predict the functional impact of SNVs. Bioinformatics, 27, 441–448.



CAO ET AL. 19

Cline, S. M., Parsons, T. M., Tudini, E., Li, H., Spurdle, B. A., Goldgar, E. D., ENIGMAConsortium, Panagiotis, K., Pagel, K., Padilla,
N., Casadio, R., Shen, Y. and Lai, C. (to appear) Assessment of blind predictions of the clinical significance of brca variants.
Humanmutation.

Goldgar, D. E., Easton, D. F., Byrnes, G. B., Spurdle, A. B., Iversen, E. S., Greenblatt, M. S., Boffetta, P., Couch, F., de Wind, N.,
Easton, D., Eccles, D., Foulkes, W., Genuardi, M., Goldgar, D., Greenblatt, M., Hofstra, R., Hogervorst, F., Hoogerbrugge, N.,
Plon, S., Radice, P., Rasmussen, L., Sinilnikova, O., Spurdle, A. and Tavtigian, S. (2008) Genetic evidence and integration of
various data sources for classifying uncertain variants into a single model. Hum.Mutat., 29, 1265–1272.

Guidugli, L., Shimelis, H., Masica, D. L., Pankratz, V. S., Lipton, G. B., Singh, N., Hu, C., Monteiro, A. N. A., Lindor, N. M., Goldgar,
D. E., Karchin, R., Iversen, E. S. and Couch, F. J. (2018) Assessment of the Clinical Relevance of BRCA2 Missense Variants
by Functional and Computational Approaches. Am. J. Hum. Genet., 102, 233–248.

Gutierrez, P. A., Perez-Ortiz,M., Sanchez-Monedero, J., Fernandez-Navarro, F. andHervas-Martinez, C. (2016)Ordinal regres-
sionmethods: survey and experimental study. IEEE Transactions on Knowledge and Data Engineering, 28, 127–146.

Hand, D. J. and Till, R. J. (2001) A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification
Problems. Machine Learning, 45, 171–186. URL: https://doi.org/10.1023/A:1010920819831.

Hecht, M., Bromberg, Y. and Rost, B. (2015) Better prediction of functional effects for sequence variants. BMC Genomics, 16
Suppl 8, S1.

Hoskins, R. A., Repo, S., Barsky, D., Andreoletti, G., Moult, J. and Brenner, S. E. (2017) Reports from CAGI: The Critical Assess-
ment of Genome Interpretation. Hum.Mutat., 38, 1039–1041.

Jones, E., Oliphant, T., Peterson, P. et al. (2001–) SciPy: Open source scientific tools for Python. URL: http://www.scipy.org/.
[Online; accessed <today>].

Kais, Z., Chiba, N., Ishioka, C. and Parvin, J. (2012) Functional differences among brca1 missense mutations in the control of
centrosome duplication. Oncogene, 31, 799.

Karchin, R. and Nussinov, R. (2016) Genome Landscapes of Disease: Strategies to Predict the Phenotypic Consequences of
HumanGermline and Somatic Variation. PLoS Comput. Biol., 12, e1005043.

Karimi, M. and Shen, Y. (2018) iCFN: an efficient exact algorithm for multistate protein design. Bioinformatics, 34, i811–i820.
Katsonis, P. and Lichtarge, O. (2014) A formal perturbation equation between genotype and phenotype determines the Evolu-
tionary Action of protein-coding variations on fitness. Genome Res., 24, 2050–2058.

— (2017) Objective assessment of the evolutionary action equation for the fitness effect of missense mutations across CAGI-
blinded contests. Hum.Mutat., 38, 1072–1084.

Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012) ImageNet Classification with Deep Convolutional Neural Networks. In
Advances in Neural Information Processing Systems 25 (eds. F. Pereira, C. J. C. Burges, L. Bottou and K. Q. Weinberger),
1097–1105. Curran Associates, Inc. URL: http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-
convolutional-neural-networks.pdf.

Lai, C., O’Connor, R., Topper, S., Ji, J., Stedden,W., Homburger, J., Van den Akker, J., DeSloover, D., Zhou, A., A., Z. andMishne, G.
() UsingMachine Learning to Support Variant Interpretation in a Clinical Setting.

Landrum,M. J., Lee, J. M., Benson,M., Brown, G., Chao, C., Chitipiralla, S., Gu, B., Hart, J., Hoffman, D., Hoover, J., Jang,W., Katz,
K., Ovetsky,M., Riley, G., Sethi, A., Tully, R., Villamarin-Salomon, R., Rubinstein,W. andMaglott, D. R. (2016) ClinVar: public
archive of interpretations of clinically relevant variants. Nucleic Acids Research, 44, D862–868.

Liu, X.,Wu, C., Li, C. and Boerwinkle, E. (2016) dbNSFP v3.0: AOne-Stop Database of Functional Predictions and Annotations
for HumanNonsynonymous and Splice-Site SNVs. Hum.Mutat., 37, 235–241.



20 CAO ET AL.

Ma, J., Yu, M. K., Fong, S., Ono, K., Sage, E., Demchak, B., Sharan, R. and Ideker, T. (2018) Using deep learning to model the
hierarchical structure and function of a cell. Nat. Methods, 15, 290–298.

Martelotto, L. G., Ng, C. K., De Filippo,M. R., Zhang, Y., Piscuoglio, S., Lim, R. S., Shen, R., Norton, L., Reis-Filho, J. S. andWeigelt,
B. (2014) Benchmarkingmutation effect prediction algorithms using functionally validated cancer-relatedmissensemuta-
tions. Genome Biology, 15. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4232638/.

Masica, D. L. and Karchin, R. (2016) Towards Increasing the Clinical Relevance of In Silico Methods to Predict Pathogenic
Missense Variants. PLoS Comput. Biol., 12, e1004725.

Morris, J. R., Keep, N. H. and Solomon, E. (2002) Identification of residues required for the interaction of bard1 with brca1.
Journal of Biological Chemistry, 277, 9382–9386.

Ng, P. C. and Henikoff, S. (2003) Sift: Predicting amino acid changes that affect protein function. Nucleic acids research, 31,
3812–3814.

Pedregosa, F., Varoquaux, G., Gramfort, A.,Michel, V., Thirion, B., Grisel, O., Blondel,M., Prettenhofer, P.,Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011) Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12, 2825–2830.

Pejaver, V., Mooney, S. D. and Radivojac, P. (2017a)Missense variant pathogenicity predictors generalizewell across a range of
function-specific prediction challenges. Hum.Mutat., 38, 1092–1108.

Pejaver, V., Urresti, J., Lugo-Martinez, J., Pagel, K. A., Lin, G. N., Nam, H.-J., Mort, M., Cooper, D. N., Sebat, J., Iakoucheva, L. M.,
Mooney, S. D. and Radivojac, P. (2017b) MutPred2: inferring the molecular and phenotypic impact of amino acid variants.
bioRxiv, 134981. URL: https://www.biorxiv.org/content/early/2017/05/09/134981.

Petitalot, A., Dardillac, E., Jacquet, E., Nhiri, N., Guirouilh-Barbat, J., Julien, P., Bouazzaoui, I., Bonte, D., Feunteun, J., Schnell,
J. A. et al. (2019) Combining homologous recombination and phosphopeptide-binding data to predict the impact of brca1
brct variants on cancer risk. Molecular Cancer Research, 17, 54–69.

Ransburgh,D. J., Chiba,N., Ishioka, C., Toland, A. E. andParvin, J.D. (2010) Theeffect of brca1missensemutations onhomology
directed recombination. Cancer research, 70, 988.

Reeb, J., Hecht, M., Mahlich, Y., Bromberg, Y. and Rost, B. (2016) Predicted Molecular Effects of Sequence Variants Link to
System Level of Disease. PLoS Comput. Biol., 12, e1005047.

Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W. W., Hegde, M., Lyon, E., Spector, E., Voelkerd-
ing, K. and Rehm, H. L. (2015) Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consen-
sus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular
Pathology. Genetics in medicine : official journal of the American College of Medical Genetics, 17, 405–424. URL: https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC4544753/.

Shen, Y. (2013) Improved flexible refinement of protein docking in capri rounds 22–27. Proteins: Structure, Function, and Bioin-
formatics, 81, 2129–2136.

Shen, Y., Altman, M. D., Ali, A., Nalam, M. N., Cao, H., Rana, T. M., Schiffer, C. A. and Tidor, B. (2013) Testing the substrate-
envelope hypothesis with designed pairs of compounds. ACS chemical biology, 8, 2433–2441.

Shen, Y., Radhakrishnan, M. L. and Tidor, B. (2015) Molecular mechanisms and design principles for promiscuous inhibitors to
avoid drug resistance: Lessons learned from hiv-1 protease inhibition. Proteins: Structure, Function, and Bioinformatics, 83,
351–372.

Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M. and Sirotkin, K. (2001) dbSNP: the NCBI database
of genetic variation. Nucleic Acids Res., 29, 308–311.



CAO ET AL. 21

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y.,
Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T. and Hassabis, D. (2017) Mastering the game of Go without
human knowledge. Nature, 550, 354. URL: https://doi.org/10.1038/nature24270.

Starita, L. M., Young, D. L., Islam, M., Kitzman, J. O., Gullingsrud, J., Hause, R. J., Fowler, D. M., Parvin, J. D., Shendure, J. and
Fields, S. (2015)Massively parallel functional analysis of brca1 ring domain variants. Genetics, genetics–115.

Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N. T., Roth, A., Bork, P., Jensen,
L. J. and von Mering, C. (2017) The STRING database in 2017: quality-controlled protein-protein association networks,
made broadly accessible. Nucleic Acids Research, 45, D362–D368.

Theodoridis, S. and Koutroumbas, K. (2008) Pattern Recognition, Fourth Edition. Orlando, FL, USA: Academic Press, Inc., 4th
edn.

Vallon-Christersson, J., Cayanan, C., Haraldsson, K., Loman, N., Bergthorsson, J. T., Brøndum-Nielsen, K., Gerdes, A.-M., Møller,
P., Kristoffersson,U.,Olsson,H. et al. (2001) Functional analysis of brca1 c-terminalmissensemutations identified in breast
and ovarian cancer families. Humanmolecular genetics, 10, 353–360.

Vapnik, V. (2013) The nature of statistical learning theory. Springer science & business media.
Vega, A., Campos, B., Bressac-dePaillerets, B., Bond, P.M., Janin, N., Douglas, F. S., Domènech,M., Baena,M., Pericay, C., Alonso,
C. et al. (2001) The r71g brca1 is a founder spanish mutation and leads to aberrant splicing of the transcript. Humanmuta-
tion, 17, 520–521.

Waegeman,W., De Baets, B. and Boullart, L. (2008) ROC analysis in ordinal regression learning. Pattern Recognition Letters, 29,
1–9. URL: http://www.sciencedirect.com/science/article/pii/S0167865507002383.

Wahba,G. (1990) SplineModels forObservationalData. CBMS-NSFRegionalConferenceSeries inAppliedMathematics. Society
for Industrial and AppliedMathematics. URL: https://epubs.siam.org/doi/abs/10.1137/1.9781611970128.

Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K. R., Ozenberger, B. A., Ellrott, K., Shmulevich, I., Sander, C., Stuart, J. M.,
Chang, K., Creighton, C. J., Davis, C., Donehower, L., Drummond, J., Wheeler, D., Ally, A., Balasundaram,M., Birol, I., Butter-
field, S. N., Chu, A., Chuah, E., Chun, H. J., Dhalla, N., Guin, R., Hirst,M., Hirst, C., Holt, R. A., Jones, S. J., Lee, D., Li, H. I., Marra,
M. A.,Mayo,M.,Moore, R. A.,Mungall, A. J., Robertson, A. G., Schein, J. E., Sipahimalani, P., Tam, A., Thiessen, N., Varhol, R. J.,
Beroukhim, R., Bhatt, A. S., Brooks, A. N., Cherniack, A. D., Freeman, S. S., Gabriel, S. B., Helman, E., Jung, J., Meyerson, M.,
Ojesina, A. I., Pedamallu, C. S., Saksena, G., Schumacher, S. E., Tabak, B., Zack, T., Lander, E. S., Bristow, C. A., Hadjipanayis,
A., Haseley, P., Kucherlapati, R., Lee, S., Lee, E., Luquette, L. J., Mahadeshwar, H. S., Pantazi, A., Parfenov, M., Park, P. J., Pro-
topopov, A., Ren, X., Santoso, N., Seidman, J., Seth, S., Song, X., Tang, J., Xi, R., Xu, A.W., Yang, L., Zeng, D., Auman, J. T., Balu,
S., Buda, E., Fan, C., Hoadley, K. A., Jones, C. D., Meng, S., Mieczkowski, P. A., Parker, J. S., Perou, C. M., Roach, J., Shi, Y.,
Silva, G. O., Tan, D., Veluvolu, U., Waring, S., Wilkerson, M. D., Wu, J., Zhao, W., Bodenheimer, T., Hayes, D. N., Hoyle, A. P.,
Jeffreys, S. R., Mose, L. E., Simons, J. V., Soloway, M. G., Baylin, S. B., Berman, B. P., Bootwalla, M. S., Danilova, L., Herman,
J. G., Hinoue, T., Laird, P. W., Rhie, S. K., Shen, H., Triche, T., Weisenberger, D. J., Carter, S. L., Cibulskis, K., Chin, L., Zhang,
J., Getz, G., Sougnez, C., Wang, M., Saksena, G., Carter, S. L., Cibulskis, K., Chin, L., Zhang, J., Getz, G., Dinh, H., Doddapa-
neni, H. V., Gibbs, R., Gunaratne, P., Han, Y., Kalra, D., Kovar, C., Lewis, L., Morgan, M., Morton, D., Muzny, D., Reid, J., Xi, L.,
Cho, J., DiCara, D., Frazer, S., Gehlenborg, N., Heiman, D. I., Kim, J., Lawrence, M. S., Lin, P., Liu, Y., Noble, M. S., Stojanov, P.,
Voet, D., Zhang, H., Zou, L., Stewart, C., Bernard, B., Bressler, R., Eakin, A., Iype, L., Knijnenburg, T., Kramer, R., Kreisberg, R.,
Leinonen, K., Lin, J., Liu, Y., Miller, M., Reynolds, S. M., Rovira, H., Shmulevich, I., Thorsson, V., Yang, D., Zhang, W., Amin, S.,
Wu, C. J., Wu, C. C., Akbani, R., Aldape, K., Baggerly, K. A., Broom, B., Casasent, T. D., Cleland, J., Creighton, C., Dodda, D.,
Edgerton, M., Han, L., Herbrich, S. M., Ju, Z., Kim, H., Lerner, S., Li, J., Liang, H., Liu, W., Lorenzi, P. L., Lu, Y., Melott, J., Mills,
G. B., Nguyen, L., Su, X., Verhaak, R., Wang, W., Weinstein, J. N., Wong, A., Yang, Y., Yao, J., Yao, R., Yoshihara, K., Yuan, Y.,
Yung, A. K., Zhang, N., Zheng, S., Ryan, M., Kane, D. W., Aksoy, B. A., Ciriello, G., Dresdner, G., Gao, J., Gross, B., Jacobsen,
A., Kahles, A., Ladanyi, M., Lee,W., Lehmann, K. V., Miller, M. L., Ramirez, R., Ratsch, G., Reva, B., Sander, C., Schultz, N., Sen-
babaoglu, Y., Shen, R., Sinha, R., Sumer, S. O., Sun, Y., Taylor, B. S.,Weinhold, N., Fei, S., Spellman, P., Benz, C., Carlin, D., Cline,
M., Craft, B., Ellrott, K., Goldman, M., Haussler, D., Ma, S., Ng, S., Paull, E., Radenbaugh, A., Salama, S., Sokolov, A., Stuart,
J. M., Swatloski, T., Uzunangelov, V., Waltman, P., Yau, C., Zhu, J., Hamilton, S. R., Getz, G., Sougnez, C., Abbott, S., Abbott,



22 CAO ET AL.

R., Dees, N. D., Delehaunty, K., Ding, L., Dooling, D. J., Eldred, J. M., Fronick, C. C., Fulton, R., Fulton, L. L., Kalicki-Veizer, J.,
Kanchi, K. L., Kandoth, C., Koboldt, D. C., Larson, D. E., Ley, T. J., Lin, L., Lu, C., Magrini, V. J., Mardis, E. R., McLellan, M. D.,
McMichael, J. F., Miller, C. A., O’Laughlin,M., Pohl, C., Schmidt, H., Smith, S.M.,Walker, J.,Wallis, J.W.,Wendl,M. C.,Wilson,
R. K., Wylie, T., Zhang, Q., Burton, R., Jensen, M. A., Kahn, A., Pihl, T., Pot, D., Wan, Y., Levine, D. A., Black, A. D., Bowen, J.,
Frick, J., Gastier-Foster, J.M., Harper, H. A., Helsel, C., Leraas, K.M., Lichtenberg, T.M.,McAllister, C., Ramirez, N. C., Sharpe,
S., Wise, L., Zmuda, E., Chanock, S. J., Davidsen, T., Demchok, J. A., Eley, G., Felau, I., Ozenberger, B. A., Sheth, M., Sofia, H.,
Staudt, L., Tarnuzzer, R., Wang, Z., Yang, L., Zhang, J., Omberg, L., Margolin, A., Raphael, B. J., Vandin, F., Wu, H. T., Leiser-
son, M. D., Benz, S. C., Vaske, C. J., Noushmehr, H., Knijnenburg, T., Wolf, D., Van ’t Veer, L., Collisson, E. A., Anastassiou,
D., Ou Yang, T. H., Lopez-Bigas, N., Gonzalez-Perez, A., Tamborero, D., Xia, Z., Li, W., Cho, D. Y., Przytycka, T., Hamilton, M.,
McGuire, S., Nelander, S., Johansson, P., Jornsten, R., Kling, T. and Sanchez, J. (2013) TheCancer GenomeAtlas Pan-Cancer
analysis project. Nat. Genet., 45, 1113–1120.

Williams, R. S. and Glover, J. M. (2003) Structural consequences of a cancer-causing brca1-brct missense mutation. Journal of
Biological Chemistry, 278, 2630–2635.

Yu, M. K., Kramer, M., Dutkowski, J., Srivas, R., Licon, K., Kreisberg, J., Ng, C. T., Krogan, N., Sharan, R. and Ideker, T. (2016)
Translation of Genotype to Phenotype by a Hierarchy of Cell Subsystems. Cell Syst, 2, 77–88.

Zhang, X., Gong, Z., Li, J. and Lu, T. (2015) Intermolecular sulfur··· oxygen interactions: Theoretical and statistical investiga-
tions. Journal of chemical information andmodeling, 55, 2138–2153.

Zhou, Z.-H. (2018) A brief introduction to weakly supervised learning. National Science Review, 5, 44–53. URL: http://dx.doi.
org/10.1093/nsr/nwx106.


