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Abstract Dynamic communication and routing play important roles in the human brain to11

facilitate flexibility in task solving and thought processes. Here, we present a network perturbation12

methodology that allows to investigate dynamic switching between different network pathways13

based on phase offsets between two external oscillatory drivers. We apply this method in a14

computational model of the human connectome with delay-coupled neural masses. To analyze15

dynamic switching of pathways, we define four new metrics that measure dynamic network16

response properties for pairs of stimulated nodes. Evaluating these metrics for all network17

pathways, we found a broad spectrum of pathways with distinct dynamic properties and switching18

behaviors. Specifically, we found that 60.1% of node pairs can switch their communication from19

one pathway to another depending on their phase offsets. This indicates that phase offsets and20

coupling delays play an important computational role for the dynamic switching between21

communication pathways in the brain.22

23

Introduction24

Over the past decades it has been shown that the brain, facing a specific task or not, reveals a25

well-structured functional organization (Damoiseaux et al., 2006; Van Den Heuvel and Pol, 2010;26

Cabral et al., 2017). This has been specifically investigated for resting-state networks (Mantini et al.,27

2007; Brookes et al., 2011; Calhoun et al., 2008; Deco et al., 2017), but also for other networks when28

the brain is performing different tasks (Greicius et al., 2003; Calhoun et al., 2008). These findings29

lead to the idea that resting-state networks describe an inherent functional organization of the30

brain which is optimized to perform a wide range of tasks it encounters frequently (Fox et al.,31

2005; Engel et al., 2013). If faced with a task that requires synchronization between brain areas not32

typically coupled at rest, this organization has to be altered temporarily in order to perform that33

task efficiently (Gross et al., 2004; Raichle, 2015).34

Within a complex network like the human brain, multiple structural pathways exist between45

most pairs of nodes given a sufficiently high spatial resolution. Since synchronization along such46

pathways seems to play an important role in the formation of functional clusters, we set out to47

identify general principles of how these pathways interact with each other during synchronization48

processes. Several studies have emphasized the importance of information transmission delay49

for synchronization processes as well as its role in the formation of functional clusters in the50
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Box 1. Significance3536

A big challenge in elucidating information processing in the brain is to understand the neural

mechanisms that dynamically organize the communication between different brain regions

in a flexible and task-dependent manner. In this theoretical study, we present an approach

to investigate the routing and gating of information flow along different pathways from one

region to another. We show that stimulation of the brain at two sites with different frequencies

and oscillatory phases can reveal the underlying effective connectivity. This yields new insights

into the underlying processes that govern dynamic switches in the communication pathways

between remote sites of the brain.

37

38

39

40

41

42

43

44

brain (Engel et al., 1992; Deco and Corbetta, 2011; Deco et al., 2011; Cabral et al., 2011; Siegel51

et al., 2012; Fries, 2015; Finger et al., 2016; Cabral et al., 2017). Thus, we hypothesize the time lag52

inherent to a communication path to be a key factor in the interaction between multiple pathways.53

These time windows are determined by axonal signal transmission delays as well as rise and decay54

properties of the post-synaptic response. Here, we focus on the former, expecting region-specific55

differences in the latter to be negligible for the long-range connections considered in this study.56

In particular, we predict that two brain regions trying to communicate at a certain frequency with57

a given phase offset will use only a fraction of their available communication paths. Further, we58

predict that the selection of communication paths will be influenced by their interaction time59

windows.60

To test these hypotheses, we approximate cortico-cortical communication processes via a61

computational network model of delay-coupled, oscillating nodes. We introduce an extrinsic62

stimulation set-up for this model that allows to detect network interactions between pairs of nodes.63

This stimulation approach relies on the entrainment of a given pair of nodes to oscillate at the same64

frequency, but with a certain phase lag relative to each other. Comparing the coherence along65

different pathways over different stimulation phase offsets then reveals the phase preferences for66

different routes. While Figure 1A illustrates the extrinsic stimulation setup, Figure 1B motivates67

the use of different stimulation phase lags. It is important to note that even in the absence of68

any interaction through the network, there might be some induced trivial coherence between69

two stimulated nodes due to the external signal (Figure 1B). Thus, the coherence is measured70

for many different stimulation phase offsets and the measurement with the lowest coherence is71

chosen as the baseline. Any deviation in the coherence from this baseline can be attributed to72

induced changes in the coupling between the two stimulated nodes through the network, which73

may happen due to a switching in the pathways (compare Figure 1C and 1D). We propose that these74

differences in phase preferences at different pathways act as a switching and gating mechanism75

used by the brain to establish communication between remote brain areas when needed. Our76

method allows to investigate these mechanisms by probing the network for these dynamic switches77

in communication pathways.78

2 of 15

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 11, 2019. ; https://doi.org/10.1101/523522doi: bioRxiv preprint 

https://doi.org/10.1101/523522


Manuscript

Path 1

Path 2

Path 1

Path 2

A B

C D

?

phase offsetno offset

Figure 1. Illustration of the stimulation methodology and different possible outcomes. (A) The stimulation at
the two nodes could potentially activate different paths (blue or red) in the network. (B) As an alternative

explanation it could also be possible that a coherence between the two nodes is induced even in the absence of

any direct interaction in the network. (C) In this example a stimulation phase offset of 0� induces a network
interaction between the two stimulated nodes through path 1 (blue). (D) In contrast, when stimulating with a

phase offset of � another path is activated (red).

Results106

We first present results of simulations in simple networks of only 2 or 3 nodes. Specifically, we show107

how the coherence between a pair of stimulated nodes depends on the transmission delay of their108

connections and on the relative phase offsets between the two stimulation signals. Subsequently,109

we move on to a model of the cortico-cortical synchronization processes within a single hemisphere110

of the human brain. Cortico-cortical coupling strengths and delays were informed by an approxi-111

mation of the human connectome obtained from diffusion tensor imaging (DTI) data. Additionally,112

we fit the model to match functional connectivities calculated from electroencephalography (EEG)113

recordings. In this model, we show how the coherence between stimulated nodes changes over114

phase lags and how this effect relates to the connectedness and distance of the nodes. In a final115

step, we identify the pathways responsible for the interaction between the stimulated nodes, ana-116

lyze their phase lag preferences and identify cases of phase-related switching between pathways.117

For all simulations, we used the computational model defined in Box 2.118

Simple Models With 2 or 3 Nodes119

The idea behind the extrinsic stimulation approach can be well explained using a simple toy-model120

of 2 directly coupled Jansen-Rit nodes, where each node is stimulated with a f
ext
= 11 Hz sinusoidal121

signal with strength c
ext
= 0.25 mV. Figure 2 shows the coherence between the driven nodes for122

systematic changes in the phase offset between the stimuli and the distance between the coupled123

nodes. While uni-directionally coupled nodes can have preferences for any stimulation phase offset,124

as shown in Figure 2A, bi-directionally coupled nodes are more susceptible for stimulation at in- or125

anti-phase (see Figure 2B). This shows that the communication between coupled pairs of nodes can126

be modulated by stimulation and that communication channels can have characteristic stimulation127

phase offset preferences, depending on their length (König and Schillen, 1991).128

To quantify themodulation of communication, we define the pathway-synchronization-facilitation129

(PSF), measuring for a given pair of weakly stimulated network nodes ki and kj how their interaction130

is dependent on specific phase offsets:131

PSF(ki, kj) = max
0≤Δ'≤2�

(

coh(ki, kj ,Δ')
)

− min
0≤Δ'≤2�

(

coh(ki, kj ,Δ')
)

,

where coh(ki, kj ,Δ') is the coherence between network nodes ki and kj for stimulation phase offset132

Δ'. The PSF is high for node pairs if their coherence is high for one stimulation phase offset and133
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Box 2. Computational Model7980

Our computational model is based on the widely used Jansen-Rit neural mass model (Jansen
and Rit, 1995) which employs a mean-field approach to model the interaction between cell
populations in the infragranular (depicted in green), granular (depicted in blue), and supra-

granular (depicted in red) layer, as illustrated with the relevant equations in the Figure. The

function �(V ) that transforms average membrane potentials to firing rates is a parameterized
sigmoid (depicted in cyan). The standard parametrization originally proposed by Jansen and Rit

reflects cortical oscillatory activity in the alpha frequency band. These parameters were chosen

based on experimental findings in the neuroscience literature and are reported in Table 2 in

the Methods and Materials section. Since the purpose of this article is the investigation of the

effect of pathway time-scales on neural synchronization processes and not the effect of node

time-scales, we decided to use this standard parametrization for each node in our network

(Jansen and Rit, 1995).

81
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83

84

85

86
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90

91

92

For the purpose of investigating networks of extrinsically perturbed Jansen-Rit models, the

following two extensions were added: First, we coupled multiple Jansen-Rit nodes via delayed,

weighted connections between their infragranular pyramidal cell populations (depicted in

yellow). Secondly, weak external drivers were applied at two stimulation sites influencing the

average membrane potential of the infragranular layer with phase offset Δ' between the two
drivers (depicted in purple).

93
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Inhibitory cells in supragranular layers

Excitatory spiny cells in granular layers

Excitatory pyramidal cells in infragranular layers
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Activation Function:

99

Box 2 Figure 1. Neural mass model with external stimulation. A schematic of the neural mass model
showing the interactions between the three neuronal populations in the infragranular, granular, and

supragranular layer. Each post-synaptic potential is modeled using two differential equations (average

membrane potentials V and average synaptic currents I . Several of these neural mass models are
interacting through a connectivity matrix (yellow). The external perturbation (purple) modulates the

average membrane potential of pyramidal cells at 2 nodes in the network.
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Figure 2. Simulations with 2 or 3 nodes, where the red edges correspond to the distance that was varied. Color
indicates the coherence between the two driven nodes. The PSF values are shown at the bottom of each panel.

(A) Nodes with direct uni-directional coupling. (B) Nodes with direct bi-directional coupling. (C) Nodes with

indirect (via a third node) bi-directional couplings. The intermediate node was placed at 25 % of the total

connection distance, while the overall distance between the outer nodes was varied. (D) Nodes with indirect

bi-directional couplings where the overall distance was kept at 100 mm, while the intermediate node was

positioned at varying positions along the connection. Parameters used in all panels: v = 3m/s, Cmj ⋅ cnet = 0.1 if
there is a connection from node m to j or 0 otherwise.

low for another, i.e., the relative phase of the stimulation at the two sites matters strongly. The PSF134

curves in Figure 2A and 2B show that in both cases there is a PSF effect (PSF > 0) and in the case135

of bi-directionally coupled nodes the strength of this effect depends on the distance between the136

nodes.137

To extend this idea to communication via indirect pathways, we investigated synchronization138

between 2 nodes connected only indirectly via a third intermediate node. We used bi-directional139

couplings for both connections and both end nodes were stimulated as described previously. As140

can be seen in Figure 2C and 2D, the interaction between the two weakly stimulated nodes not only141

depended on the length of the connection, but potentially also on the relative position of the third142

node on the indirect path.143

Connectome Model Without Stimulation144

As shown in the previous section, the coherence in a network of only three nodes can already exhibit145

very complex dependencies on the stimulation phase offset. Next, we wanted to analyze network146

communication patterns in the case of a complex network with multiple competing pathways.147
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Figure 3. Pairwise measures of connectivity and distance between all 33x33 region pairs. (A) Structural
connectivity matrix with all connections smaller 0.1 set to 0. (B) Inter-regional distances in mm. (C) Functional

connectivity matrix derived from coherence of EEG data bandpass-filtered around 10 Hz. (D) Functional

connectivity derived from coherence of neural mass model simulations bandpass-filtered around 10 Hz.

To this end, we used a model of 33 delay-connected nodes, representing one hemisphere of the148

human connectome (Finger et al., 2016). The structural connectivity matrix was obtained from149

DTI-based tractography data as described in more detail in the Methods and Materials section.150

Figure 3A shows the sparse connectivity matrix Cmj used to connect the 33 regions and Figure 3B151

the corresponding distances Lmj between region pairs. These two matrices are used for connecting152

the different populations of excitatory pyramidal cells (green in Box 2) in a delay-coupled network153

of a single-hemisphere.154

For the same 33 regions, EEG resting-state recordings from the same subjects were used to155

calculate pairwise coherences in the 10 Hz range as shown in Figure 3C. Similarly, we simulated the156

33 connected neural-mass-models and processed the time-series of the pyramidal cells in the same157

way as the EEG data. This yielded a 33 x 33 functional connectivity matrix which we compared to158

the empirical functional connectivity by calculating the Pearson correlation coefficient.159

The selection of parameters was based on the rationale to match the functional connectivity160

observed in the network model as good as possible to empirical EEG-based functional connectivity161

from human subjects. We performed a grid search over global structural connectivity scaling c
net

162

and transmission velocity v to obtain the best match betweenmodeled and empirical data. By fitting163

the velocity, we ensured that our pathway delays reflect realistic, empirically observed timescales of164

cortico-cortical interactions. We found the highest correlation (r = 0.57) for c
net
= 20 and v = 3m/s,165

so that we used these parameters for subsequent analyses (Figure 3D). Notice that this correlation166

is comparable with values of other bottom-up models reported in the literature (Messé et al., 2015;167

Finger et al., 2016), which is remarkable considering that we set a substantial amount of structural168

connections to 0. Interestingly, both simulated and empirical functional connectivity correlate169

stronger with the inter-regional fiber distances (rsim = −0.65, remp = −0.70) than with the structural170

connectivity (rsim = 0.65, remp = 0.51), highlighting the importance of signal transmission delays for171

cortical coupling processes.172
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Figure 4. Stimulation parameter evaluation. (A) Coherence between the stimulus and the stimulated region for
varying stimulus strength and frequency. The color corresponds to a mean value over 5 simulations at

randomly chosen network nodes. (B) Coherence between the stimulus and the full network averaged over all 33

nodes for varying stimulus strength and frequency. The coherence was calculated between the stimulus and

each region and then averaged. (C and D) Coherence between two stimulated nodes for varying stimulation

strength and phase offset. C and D correspond to two different node pairs that were stimulated demonstrating

the variability in phase lag preferences expressed by different pairs.

Connectome Model With Stimulation173

Based on this model of cortical activity we used the stimulation approach to investigate how174

pathways facilitate synchronization between network nodes at certain phase lags between the175

nodes. Specifically, we weakly stimulated different pairs of cortical regions with varying phase176

offsets between the two stimulation signals while measuring the coherence between the stimulated177

nodes at each phase offset. As argued above, finding differences in the coherence over stimulation178

phase offsets would indicate phase-specific communication modulation between the stimulated179

nodes. Before analyzing PSF effects in the connectome model, it was necessary to determine180

the optimal stimulation frequency and strength for this model. This was performed in two steps.181

First, we stimulated a single region in our network with a stimulus of varying frequency (4-22182

Hz) and strength (0.01-2 mV) while evaluating the coherence between region and stimulus. The183

mean coherence (mean over 5 different stimulated nodes) for each parameter combination can be184

observed in Figure 4A. They reflect the well-studied relationship between a driver and an oscillator185

described by the so-called Arnold tongue (Boyland, 1986). Since our main analysis will focus on186

coupling effects through different network paths between two stimulated nodes, we also calculated187

the coherence between stimulus and all network nodes (Figure 4B). This average coherence to the188

full network was strongest at 9-11 Hz, which is also the intrinsic frequency of unperturbed network189

nodes (Schmidt et al., 2014). Interestingly, at this frequency the coherence to the directly stimulated190

node was weakest (compare Figure 4A). Based on this, we set the frequency of our stimulus to191

11 Hz, at which the network (and not only the directly stimulated node) was most susceptible for192

entrainment by an external stimulation.193

In a second step, we stimulated pairs of nodes with 11 Hz stimuli. We varied the stimulus194

strength (0.25 - 1 mV) and the relative phase offset between the stimuli (0 − 2�), while evaluating195

the coherence between the stimulated nodes. All other parameters were chosen to be the same196

as for the previous simulation. As can be seen in Figure 4C and Figure 4D, the variance of the197
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Table 1. Model Parameters
Param. Value Interpretation

c
net

20 global connection strength scaling

v 3 m/s global velocity scaling

f
ext

11 Hz extrinsic stimulation frequency

c
ext

500 �V amplitude of extrinsic stimuli

0 100 200
average fiber length [mm]

1 2 3 4 5 6
shortest path length

0.02

0.1

1

PS
F

1 2 3 4 5 >6
number of paths

BA C

Figure 5. Pathway Synchronization Facilitation (PSF). All panels show the PSF on a logarithmic vertical axis and
red areas indicate 95 % confidence intervals. Blue boxes indicate 1 standard deviation. (A) Dependence of PSF

effect on shortest path length between the node pairs. (B) Correlation between PSF effect and average fiber

length along the shortest pathway between the stimulated nodes. (C) Dependence of the PSF effect on the

number of paths connecting the stimulated nodes.

coherence over phase offsets depended on the stimulation strength. Based on visual inspection of198

the coherence patterns of 20 different region pairs, we chose our stimulus scaling to be c
ext
= 0.5mV,199

leaving the variance of the post-synaptic potential of the neural masses in a biologically plausible200

range and such that the external driver is relatively weak in comparison to the internal network201

dynamics. This gave us the final set of global model parameters which were used throughout all202

subsequent simulations and are reported in Table 1.203

The variability in the coherence between stimulated region pairs that we observed not only over204

stimulation phase offsets but also over different pairs (as depicted for 2 exemplary region pairs in205

Figure 4C and 4D) shows that the stimulated region pairs interacted with each other and that the206

interactions showed a characteristic profile of phase offset preferences. To statistically confirm the207

variance in the coherence between stimulated region pairs over phase offsets, we ran simulations208

with stimulations of each possible node pair. Again, we varied the phase offset between the two209

stimuli (16 equally spaced phase offsets between 0 and 2�) and evaluated the coherence between210

the stimulated nodes for each phase offset. Subsequently, those coherences were used to calculate211

the PSF for each region pair as defined in equation ??. Using a one-sample t-test, we found the212

PSF effect to be significantly larger than zero (mean = 0.1567, CI = [0.1445,0.1689], t = 25.2595, p213

< 0.0001). Hence, we were able to show with our extrinsic stimulation approach that pathways214

facilitated synchronization between cortical nodes and that the facilitatory strength depended on215

the phase lag between the region’s average PSPs.216

With the PSF effect established, we continued by investigating its dependence on certain features217

of the underlying structural connectivity graph. For this purpose, we searched for all possible218

pathways between each pair of stimulated nodes based on the structural connectivity matrix219

reported in Figure 3A. Since every stimulated pair of nodes was connected by at least one path220

via at most 6 edges, we restricted the search to pathways including 6 edges at maximum. With221

these pathways at hand, we started out by evaluating how the PSF effect changed with increasing222

network distance. An analysis of variance showed that the effect of shortest path length (minimum223

number of edges seperating a pair) on log(PSF) was significant, F(5,521) = 97.6141, p < .0001. As224
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can be seen in Figure 5A, we observed the trend that the PSF effect decreases with the number225

of nodes separating the stimulated nodes. Furthermore, as depicted in Figure 5B, this trend was226

supported by a significant correlation between the PSF effect and the length of the shortest pathway227

between the stimulated nodes (r = -0.56, p < .0001), a measurement that is strongly related to both228

interregional distance and minimal number of separating edges. Thus, we conclude that there229

is a tendency for a decrease in the interaction of stimulated node pairs with increasing network230

distance between the nodes, where network distance can be measured either as the number of231

edges or as the summed up length of the edges of the shortest pathway connecting the nodes.232

Next, we investigated the dependence of the PSF effect on the connectedness between the233

stimulated nodes. An analysis of variance showed that the effect of the number of connecting paths234

(only counting paths with 5 edges or less, all nodes with more than 5 connecting paths were pooled235

into one level) on log(PSF) was significant, F(5,501) = 10.0827, p < .0001. The latter result can be236

observed in detail in Figure 5C.237

Evaluation of Pathway Activation238

Having described the influence of the external driver on the coherence between stimulated nodes,239

we next identified which particular pathways were involved in this interaction. For this analysis, we240

define the pathway activation (PA) for a pathway through n nodes ki with i = 1..n at a phase offset241

Δ' as the minimum of the pairwise coherences between neighboring pathway nodes:242

PA(k1..kn,Δ') = min
i=1,..,n−1

(

coh(ki, ki+1,Δ')
)

.

In other words, if communication fails at any point along a pathway, leading to a reduced coherence243

between the involved nodes, this is considered to be a bottleneck for the information flowing244

through that pathway. We evaluated the pathway activation (PA) ?? for all pathways of up to n = 5245

nodes connecting a given pair of stimulated nodes for all stimulation phase offsets. Doing this for246

each stimulated node pair, we found different classes of pathway interactions: Some pairs show247

only a very small selectivity for the stimulation phase offset (Figure 6A), while other node pairs248

were connected by paths with PA values with a strong dependence on the phase offset (Figure 6B,249

6C). Moreover, some of these node pairs switched their interaction between different pathways250

depending on the stimulation phase offset, as shown in Figure 6C and the two switching pathways251

in Figure 6D and 6E.252

To further analyze how the communication via specific pathways depends on the stimulation253

phase offset, we define the pathway phase selectivity (PPS) of a pathway P1 similar to the PSF as254

PPS(P1) = maxΔ'

(

PA(P1,Δ')
)

− min
Δ'

(

PA(P1,Δ')
)

,

Pathways with relatively constant PA values for all stimulation phase offsets have a low PPS (example255

in Figure 6A), while pathways with a high variation in the PA values have a high PPS (example in256

Figure 6B and 6C). The evaluation of PPS values for all node pairs results in a bimodal distribution257

(Figure 6F). The activation of pathways in the first mode at PPS = 0.1 is very hard to influence with258

phase offsets. But we also found many node pairs with pathways in the second mode at PPS = 0.35.259

The communication of these later node pairs can be modulated using different phase offsets.260

In a next step, we analyzed the relationship of pathway-specific phase preferences (as shown261

in Figure 6A-C) to the phase preferences of the stimulated nodes (as shown in Figure 4C-D). We262

chose the most active pathway per node pair (averaged over all stimulation phase offsets) and263

calculated the phase difference between the stimulation phase offset with the highest coherence264

and the stimulation phase offset with the highest PA. The histogram of these phase differences is265

significantly different from uniform, �2(15, N = 514) = 273.05, p < .001, and has a peak at 0 (Figure266

6G). In contrast, a similar analysis for the second strongest pathway (excluding all pathways with267

overlapping sections with the strongest path), results in a histogram that does not differ from a268

uniform distribution, �2(15, N = 514) = 14.06, p = 0.52 (Figure 6H). Therefore, we conclude that the269
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Figure 6. Dependence of path activation (PA) on stimulation phase offset. Panels (A-C) show the PA values (radius) for different stimulation phase
offsets (angle) for exemplary node pairs. Blue corresponds to the pathway with the strongest overall PA. Red corresponds to the second strongest

pathway that has no overlapping segments with the strongest. Green curves show the strongest of the remaining pathways (with possible

overlapping path segments with the former two). The two arrows in (C) indicate the phase offsets which are used in panels (D-E). (D) Connectome

pathways for stimulation of the node pair shown in (C) at phase offset 1.5�. The two stimulated nodes are shown as two black dots. The most active
pathway at this stimulation phase offset is highlighted with a stronger line width. All colors correspond to the coherence of nearest neighbours in

the connection graph. (E) Similar to (D) but for stimulation phase offset 0.5� with a different most active pathway. (F) Histogram of pathway phase
selectivity. The values of the strongest paths of examples shown in (A-C) are marked with arrows. (G) Histogram of phase differences between the

stimulation phase offset where the most active pathway has the highest pathway activation and the stimulation phase offset where the coherence

between the stimulated nodes was highest. (H) Similar to (G) but for the second most active pathway (excluding path overlaps with the most active

pathway). (I) Histogram of normalized pathway switching index between the strongest and second strongest pathways. The values of the node

pairs of examples shown in (A-C) are marked with arrows. The square-root normalization of the PSI transforms back from the space of multiplied

coherence values to the original non-squared coherence space (analogous to a transformation from variance to standard-deviation).
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pathway with the strongest PA shows a similar phase preference as the coherence between the two270

stimulated nodes.271

Finally, we quantified the switching between the strongest and second strongest pathway per272

node pair. To this end, we define the pathway switching index (PSI) between pathways P1 and P2 as273

PSI(P1, P2) =maxΔ'

(

PA(P1,Δ') − PA(P2,Δ')
)

⋅max
Δ'

(

PA(P2,Δ') − PA(P1,Δ')
)

,

The PSI is positive if the two pathways switch their activation depending on the stimulation phase274

offset, meaning that at one phase offset the first path is more active and at another phase offset275

the second path is more active. We found that 60.1% (309 of 514) of node pairs have a positive276

PSI between their non-overlapping strongest and second strongest pathways (Figure 6I). These277

results suggest that in this network of 33 nodes of the human connectome many node pairs have278

the capacity to switch their communication between at least two different pathways with a PA279

characteristic similar to the example shown in Figure 6C.280

Discussion281

We have carried out a computational study of cortico-cortical synchronization processes that282

strongly emphasizes the role of phase relationships for dynamic switches in communication path-283

ways. In this process, we introduced a novel method to detect network interactions between pairs284

of cortical regions via an extrinsic stimulation scheme. Using our method, we were able to quantify285

the influence of different pathways on cortico-cortical synchronization processes between all pairs286

of 33 brain regions and could further identify the pathways those region pairs use to interact with287

each other. These pathways represent communication channels with distinct interaction time288

windows.289

One of the main findings of our work is that we found the ability of regions to communicate via290

these channels to depend on the phase lag at which they try to synchronize. This finding is in line291

with the communication-through-coherence theory that predicts neural communication to critically292

depend on oscillatory phase differences and has received support from various experimental293

results (Fries, 2015). In a transcraniel magnetic stimulation study, Elswijk et al. demonstrated294

the effect of the stimulation on primary motor cortex to depend on the oscillatory phase of the295

latter (Elswijk et al., 2010). Similarly, Helfrich et al. found the performance in a visual detection296

task to be modulated by the phase of a 10 Hz transcranial alternating current stimulation applied297

to the parieto-occipital cortex. Together, these experimental results support the idea of the298

communication-through-coherence theory that the effectiveness of neural communication between299

a source and a target population is modulated by the oscillatory phase of the latter. In a study300

using multilelectrode recordings in frontal eye field and area V4 of monkeys, Gregoriou et al. were301

able to show that neural populations at both recording sites synchronized at characteristic time302

lags when processing a stimulus in their joint receptive field (Gregoriou et al., 2009). Based on303

the communication-through-coherence theory this may be explained by the axonal and synaptic304

delays of the communication channel between these two areas, which render synchronization at305

this time lag most effective. The work presented in this article contributes to this line of arguing306

via its systematic investigation of the dependence between communication channel delays and307

neural synchronization. By finding that the synchronization of two brain regions via simultaneous308

extrinsic stimulation has a preference for the phase relationship between the two stimulation309

signals, we demonstrated the mechanistic role of phase lags for neural communication within a310

computational model. We were able to extend this finding to single communication channels, i.e. we311

showed that these channels can express more or less strong preferences for the phase lag between312

the brain regions they connect. On the one hand, this emphasizes the potential importance of313

communication channel delays for shaping the synchronization phase lag patterns of the brain. On314
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the other hand, it suggests the effectiveness of information exchange via a certain communication315

channel in the brain to depend on the phase relationship between the communicating sites.316

The functional significance of these phase lag preferences is underlined by our finding that317

different communication channels may be employed at different stimulation phase offsets between318

the communicating regions. We believe that the switching between different synchronization319

phase lags could be an effective mechanism through which brain regions can dynamically change320

their communication channels. Both external stimuli and network intrinsic signals could act as321

phase-resetting mechanisms at the communicating sites and thus switch from one communication322

channel to another within a few oscillatory cycles (Canavier, 2015). As suggested in (Engel and323

Singer, 2001; Engel et al., 2013), such a mechanism would provide the necessary flexibility to allow324

for the dynamic binding of remote neural representations into different combined representations.325

Taken together, our results suggest a potential mechanism the human brain might have de-326

veloped to use the physiological constraints imposed by coupling delays to its computational327

advantage. They motivate future brain stimulation studies to investigate phase-lagged neural328

synchronization, e.g., through multi-site transcranial stimulation, or optogenetics in combination329

with multielectrode recordings (Yazdan-Shahmorad et al., 2018). Thereby, the stimulation method330

we applied to our computational model could guide the development of brain stimulation protocols331

to probe dynamic switching between communication pathways in the brain. Additionally, our332

stimulation method and graph metrics are applicable in future theoretical studies characterizing333

the dynamic properties of network graphs.334

Methods and Materials335

In the following, we present the detailed parameters of the neural mass model, the preprocessing336

of the structural connectivity, and the functional connectivity.337

Neural Mass Model338

All simulation results reported refer to 16 minutes of simulated network behavior, using an explicit339

Euler method with an integration step-size of 0.5 ms. The parameters of the neural mass model are340

shown in Table 2.341

Table 2. Model Parameters
Param. Value Interpretation

He 3.25 mV avg. gain of excitatory synapses

Hi 22 mV avg. gain of inhibitory synapses

�e 10 ms lumped time constant of excitatory synapses

�i 20 ms lumped time constant of inhibitory synapses

c1 135 avg. number of contacts from pyramidal cells to exc. interneurons

c2 0.8 ⋅ c1 avg. number of contacts from exc. interneurons to pyramidal cells

c3 0.25 ⋅ c1 avg. number of contacts from pyramidal cells to inh. interneurons

c4 0.25 ⋅ c1 avg. number of contacts from inh. interneurons to pyramidal cells

e0 2.5 Hz maximum scaling of the synaptic gain

r 0.56 mV −1 steepness of the sigmoid function

V0 6 mV value with 50% of max. firing rate
uj 120 - 320 Hz sub-cortical noise distributed uniformly

In the Jansen-Rit model, signal transmission between cell populations is realized via a convolution342

of average pre-synaptic firing rates with a post-synaptic response kernel. These convolution343

operations are mathematically described by the coupled ordinary differential equations in Box 2344

(each line describes a synaptic convolution operation) and turn pre-synaptic firing rates into post-345

synaptic potentials. The simple exponential form of the response kernel is in line with empirically346
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measured post-synaptic responses Gerstner et al. (2014) and provides a sufficient approximation347

of synaptic response time scales for our purposes. To translate post-synaptic responses back into348

firing rates, an instantaneous sigmoidal transform is used as shown in Box 2.349

Structural Connectivity and Distance Estimates350

In a first step to building a bottom-up model of cortical activity we needed to approximate the351

structural connections between different brain regions. As mentioned in the introduction, this can352

be done via DTI recordings. However, there are several technical limitations as to what extend353

human SC can be approximated based on DTI, one of them being the systematic underestimation354

of inter-hemispheric connections (Li et al., 2012;Wedeen et al., 2008). Thus we decided to restrict355

our analysis to the cerebral cortex of a single hemisphere. To this end, we used the same structural356

imaging data, pre-processing and probabilistic tracking pipeline as reported by Finger et al. (Finger357

et al., 2016), but restricted subsequent processing to the 33 regions of interest (ROIs) of the358

left hemisphere. This data set included diffusion- and T1-weighted images acquired from 17359

healthy subjects (7 female, age mean = 65.6y ± 10.9y) with a 3 Tesla Siemens Skyra MRI scanner360

(Siemens, Erlangen, Germany) and a 32-channel head coil. The 33 ROIs were registered individually361

for each subject based on the ’Desikan-Killiany’ cortical atlas available in the Freesurfer toolbox362

(surfer.nmr.mgh.harvard.edu) (Desikan et al., 2006). This gave us the euclidean distances between363

each pair of ROIs. The incoming connections to each region were normalized such that they summed364

up to 1. Since we were only interested in synchronization along indirect pathways, we needed365

some connections in our model to be strictly 0. Otherwise, it would be difficult to exclude potential366

synchronization along very weak direct connections. Hence, we chose to set all connections below367

a strength of 0.1 to zero. Afterwards, we re-normalized the input to each region such that they368

summed up to 1. The resulting SC matrix as well as the pair-wise distances are visualized in Figure369

3A and 3B in the main paper.370

Empirical Resting-State Functional Connectivity371

Based on those SC and distance information we aimed to build a model of cortical activity able to372

reflect empirically observed synchronization behavior. Thus we needed empirical observations of373

cortical activity to evaluate our model. For this purpose, we acquired EEG data from the same 17374

subjects as described above. This was done with 63 cephalic active surface electrodes arranged375

according to the 10/10 system (actiCAP R Brain Products GmbH, Gilching, Germany) for eightminutes376

of eyes-open resting-state. Again, data acquisition and pre-processing followed the same procedure377

as reported by Finger et al. (Finger et al., 2016). EEG time-series from the surface electrodes were378

projected onto the centers of the ROIs via a linear constraint minimum variance spatial beam379

former (Van Veen et al., 1997). The resulting source-space signals were band-pass filtered at 10 Hz380

and turned into analytic signals using the Hilbert transform. Subsequently, functional connectivity381

was evaluated as the coherence between all pairs of ROIs (Andrew and Pfurtscheller, 1996). This382

resulted in the 33 x 33 functional connectivity matrix that can be observed in Figure 3C in the main383

paper and served as optimization target for our model.384
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