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Abstract

Motivation: Third generation sequencing technologies such as Pacific Biosciences and Oxford Nanopore
allow the sequencing of long reads of tens of kbs, that are expected to solve various problems, such
as contig and haplotype assembly, scaffolding, and structural variant calling. However, they also reach
high error rates of 10 to 30%, and thus require efficient error correction. As first long reads sequencing
experiments produced reads displaying error rates higher than 15% on average, most methods relied
on the complementary use of short reads data to perform correction, in a hybrid approach. However,
these sequencing technologies evolve fast, and the error rate of the long reads is now capped at around
10-12%. As a result, self-correction is now frequently used as a first step of third generation sequencing
data analysis projects. As of today, efficient tools allowing to perform self-correction of the long reads are
available, and recent observations suggest that avoiding the use of second generation sequencing reads
could bypass their inherent bias.

Results: We introduce CONSENT, a new method for the self-correction of long reads that combines
different strategies from the state-of-the-art. A multiple sequence alignment strategy is thus combined to
the use of local de Bruijn graphs. Moreover, the multiple sequence alignment benefits from an efficient
segmentation strategy based on k-mers chaining, allowing to greatly reduce its time footprint. Our
experiments show that CONSENT compares well to the latest state-of-the-art self-correction methods,
and even outperforms them on real Oxford Nanopore datasets. In particular, they show that CONSENT is
the only method able to scale to a human dataset containing Oxford Nanopore ultra-long reads, reaching
lengths up to 340 kbp.

Availability and implementation: CONSENT is implemented is C++, supported on Linux platforms and
freely available at https://github.com/morispi/f CONSENT.

Contact: pierre.morisse2@univ-rouen.fr

1 Introduction

Third generation sequencing technologies Pacific Biosciences and Oxford
Nanopore has become widely used since their inception in 2011. In contrast
to second generation technologies, producing reads reaching lengths of
a few hundred base pairs, they allow the sequencing of much longer
reads (10 kbp on average (Sedlazeck et al., 2018b), and up to >1 million

bp (Jain et al., 2018)). These long reads are expected to solve various
problems, such as contig and haplotype assembly (Patterson et al., 2015;
Kamath et al., 2017), scaffolding (Cao et al., 2017), and structural variant
calling (Sedlazeck et al., 2018a). They are however very noisy, and
reach error rates of 10 to 30%, whereas second generation short reads
usually display error rates of 1%. The error profiles of these long reads
are also much more complex than those of the short reads, as they are
mainly composed of insertions and deletions, while short reads’ are mostly
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composed of substitutions. As a result, error correction is often necessary,
as a first step of projects dealing with long reads. As the error profiles
and error rates of the long reads are much different than those of the short
reads, correcting long reads requires specific algorithmic developments.

The error correction of long reads has been tackled by two main
approaches. The first approach, hybrid correction, makes use of additional
short reads data to perform correction. The second approach, self-
correction, aims at correcting the long reads solely based on the
information contained in their sequences. Hybrid correction methods rely
on different techniques such as:

e Alignment of short reads to the long reads (CoLoRMAP (Haghshenas
et al., 2016), HECiL (Choudhury et al., 2018))

e de Bruijn graph exploration (LoORDEC (Salmela and Rivals, 2014),
Jabba (Miclotte et al., 2016), FMLRC (Wang et al., 2018))

e Alignment of the long reads to contigs built from the short reads
(MiRCA (Kchouk and Elloumi, 2018), HALC (Bao and Lan, 2017))

e Hidden Markov Models (Hercules (Firtina et al., 2018))

e Combination of different strategies (NaS (Madoui et al., 2015), HG-
CoLoR (Morisse et al., 2018))

Self-correction methods usually build around the alignment of the long

reads against each other (PBDAGCon (Chin et al., 2013), PBcR (Koren
etal., 2013)).
As first long reads sequencing experiments resulted in highly erroneous
long reads (15-30% error rates on average), most methods relied on the
additional use of short reads data. As a result, hybrid correction used to be
much more studied and much more developed. Indeed, in 2014, 5 hybrid
correction tools and only 2 self-correction tools were available. However,
third generation sequencing technologies evolve fast, and now manage
to produce long reads reaching error rates of 10-12%. Moreover, long
read sequencing technologies’ evolution also allows to produce higher
throughputs of data, at a reduced cost, and consequently such data became
more widely available. Thus, self-correction is now frequently used as a
first step of data analysis projects dealing with long reads.

1.1 Related works

Due to the fast evolution of third generation sequencing technologies, and
to the lower error rates they now reach, various efficient self-correction
methods were recently developed. Most of them share the common first
step of computing overlaps between the long reads. This can be done via a
mapping approach, which only provides the positions of the similar regions
of the long reads (Canu (Koren et al., 2017), MECAT (Xiao et al., 2017),
FLAS (Bao et al., 2018)), or via alignment, which provides the positions
of the similar regions, and their actual base to base correspondence in
terms of matches, mismatches, insertions, and deletions (PBDAGCon,
PBcR, Daccord (Tischler and Myers, 2017)). A directed acyclic graph
(DAG) is then usually built, in order to summarize the 1V1 alignments
and compute consensus, after recomputing actual alignments of mapped
regions, if necessary. Other methods rely on de Bruijn graphs, either built
from small windows of the alignments (Daccord), or directly from the long
reads sequences with no alignment or mapping step at all (LoORMA).

However, methods relying on direct alignment of the long reads are
prohibitively time and memory consuming, and current implementations
thus do not scale to large genomes. Methods solely relying on de Bruijn
graphs and avoiding the alignment step altogether usually require deep
long reads coverage, as the graphs are built for large values of k. As a
result, methods relying on a mapping strategy constitute the core of the
current state-of-the-art for long read self-correction.

1.2 Contribution

We present CONSENT, a new self-correction method that combines
different efficient approaches from the state-of-the-art. CONSENT indeed
starts by computing multiple sequence alignments between overlapping
regions of the long reads, in order to compute consensus sequences.
These consensus sequences are then further polished with the help of local
de Bruijn graphs, in order to correct remaining errors, and reduce the
final error rate. Moreover, unlike other current state-of-the-art methods,
CONSENT computes actual multiple sequence alignments, using a method
based on partial order graphs (Lee et al.,2002). In addition, we introduce an
efficient segmentation strategy based on k-mers chaining, which allows
to reduce the time footprint of the multiple sequence alignments. This
segmentation strategy thus allows to compute scalable multiple sequence
alignments. In particular, itallows CONSENT to efficiently scale to Oxford
Nanopore ultra-long reads.

Our experiments show that CONSENT compares well to the latest
state-of-the-art self-correction methods, and even outperforms them on
real Oxford Nanopore datasets. In particular, they show that CONSENT
is the only method able to scale to a human dataset containing Oxford
Nanopore ultra-long reads, reaching lengths up to 340 kbp.

2 Methods
2.1 Overview

textcolorblack CONSENT takes as input a FASTA file of long reads,
and returns a set of corrected long reads, reporting corrected bases
in uppercase, and uncorrected bases in lowercase. Like most efficient
methods, CONSENT starts by computing overlaps between the long
reads using a mapping approach. These overlaps are computed using an
external program, and not by CONSENT itself. This way, only matched
regions need to be further aligned in order to compute consensus. These
matched regions are further divided into smaller windows, that are aligned
independently. The alignment of these windows is performed via a multiple
sequence alignment strategy based on partial order graphs. This multiple
sequence alignment is realized by iteratively constructing and adding
sequences to a DAG. It also benefits from an efficient heuristic, based
of k-mers chaining, allowing to reduce the time footprint of computing
multiple sequence alignment between noisy sequences. The DAG is then
used to compute the consensus of a given window. Once a consensus has
been computed, a second step makes use of alocal de Bruijn graph, in order
to polish the consensus. This allows to further correct weakly supported
regions, that are, regions containing weak k-mers, and thus reduce the final
error rate of the consensus. Finally, the consensus is realigned to the read,
and correction is performed for each window. CONSENT’s workflow is
summarized in Figure 1.

2.2 Definitions

Before presenting the CONSENT pipeline, we recall the notions of
alignment piles and windows on such piles, as proposed in Daccord, as
they will be used throughout the rest of the paper.

2.2.1 Alignment piles

An alignment pile represents a set of reads that overlap with a given
read A. More formally, it can be defined as follows. For any given
read A, we define an alignment pile for A as a set of alignment tuples
(A, R, Ab, Ae, Rb, Re, S) where Risalongreadid, Aband Ae represent
respectively the start and the end positions of the alignment on A, Rb and
Rerepresent respectively the start and the end positions of the alignment on
R, and S indicates whether R aligns forward (0) or reverse complement (1)
to A. One can remark that, compared to Daccord, this definition is slightly
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Fig. 1: Overview of CONSENT’s worfklow for long read error correction.

altered. In particular, Daccord adds an edit script to the pile, representing
the sequence of edit operations needed to transform A[Ab..Ae] into
R[Rb..Re] if S = 0, or into R[Rb..Re] if S = 1 (where R represents
the reverse-complement of read R). This edit script can easily be retrieved
by Daccord, as it relies on DALIGNER (Myers, 2014) to compute actual
alignments between the long reads. However, as CONSENT relies on a
mapping strategy, it does not have access to such an information, and we
thus chose to exclude the edit script from the definition of a pile. In its
alignment pile, we call the read A the template read. The alignment pile
of a given template read A thus contains all the necessary information
needed for its correction. An example of an alignment pile is given in
Figure 2.

Fig. 2: An alignment pile for a template read A. The pile is delimited
by vertical lines at the extremities of A. Prefixes and suffixes of reads
overlapping A outside of the pile are not considered during the next steps,
as the data they contain will not be useful for correcting A.

2.2.2 Windows on alignment piles

In addition to the alignment piles principle, Daccord also underlined the
interest of processing windows from these piles instead of processing them
all at once. A window from an alignment pile is defined as follows. Given
an alignment pile for a template read A, a window of this pile is a couple
(Wp, We), where W}, and W represent respectively the start and the end
positions of the window on A, and suchas 0 < Wy, < W, < |A], ie.
the start and end positions of the window define a factor of the template
read A. We refer to this factor as the window’s template. Additionally, in
CONSENT, we will only consider for correction windows that have the
two following properties:

e W.— Wy + 1= L (i.e. windows have a fixed size)
o Vi, W, < i < We, A[i] is supported by at least C reads of the pile,
including A (i.e. windows have a minimum coverage threshold)

This second property allows to ensure that CONSENT has sufficient
evidence to compute reliable consensus for a window. Examples of
windows CONSENT does and does not consider are given in Figure 3.

In the case of Daccord, this window strategy allows to build local
de Bruijn graphs with small values of &, thus overcoming the high error
rates of the long reads, which causes issues when using large values of
k. More generally, processing windows instead of whole alignment piles

allows to divide the correction problem into smaller subproblems that can
be solved faster. Specifically, in our case, as we seek to correct long reads
by computing multiple alignment of sequences, working with windows
allows to save both time and memory, since the sequences that need to be
aligned are significantly shorter.
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Fig. 3: When fixing the length to L and the minimum coverage threshold
to 4, the window (Wp, We) will be processed by CONSENT. With
these same parameters, the window (Fp, Fe) will not be processed by
CONSENT, as A[s] is not supported by at least 4 reads V F, < ¢ < Fe.

2.3 Overlapping

To avoid prohibitive computation time and memory consuming full
alignments, CONSENT starts by overlapping the long reads using a
mapping approach. By default, this step is performed with the help of
Minimap2 (Li, 2018). However, error correction by CONSENT is not
dependent on Minimap2, and the user can easily use any method for
computing the overlaps between the long reads, as long as the overlaps
file is provided to CONSENT in PAF format. We only included Minimap2
as the default overlapper for CONSENT as it offers good performances,
both in terms of runtime and memory consumption, and is thus able to
scale to large organisms on reasonable setups.

2.4 Alignment piles and windows computation

The alignment piles are computed by parsing the PAF file provided by the
overlapper during the previous step. Each line of the file indeed contains
all the necessary information to a define a tuple from an alignment pile:
the ids of the two mapped long reads, the start and the end positions on the
two reads, as well as the strand of the second read relatively to the first.
Given an alignment pile for a read A, we can then compute its set of
windows. To this aim, we use an array of the length of A, allowing to count
how many times each nucleotide of A is supported. The array is initialized
with 1s at each position, and for each tuple (A, R, Ab, Ae, Rb, Re, S),
values at positions ¢ such as Ab < ¢ < Ae are incremented. After all
the tuples have been processed, the positions of the piles are retrieved by
finding, in the array, sketches of length L of values > C, as we only
consider windows of fixed length and with a minimum coverage threshold
for correction. In practice, extracting overlapping windows instead of
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partitioning the pile into a set of non-overlapping windows has proven
to be efficient. This can be explained by the fact that, due to the multiple
sequence alignment performed with the windows’ sequences, consensus
sequence might be missing at the extremities of certain windows, as it
is usually harder to exploit alignments located on sequences extremities.
Such events would thus cause a lack of correction on the read, when using
non-overlapping windows. Each window is then processed independently
during the next steps. Moreover, the reads are loaded into memory to
support random access and thus accelerate the correction process. Each
base is encoded using 2 bits in order to reduce memory usage. The memory
consumption is thus roughly 1/4 of the total size of the reads.

2.5 Window consensus

The processing of a window is performed in two distinct steps. First,
the sequences from the window are aligned using a multiple sequence
alignment strategy based on partial order graphs, in order to compute
consensus. This multiple sequence alignment strategy also benefits from
an efficient heuristic, based on k-mers chaining, allowing to decompose
the global problem into smaller instances, thus reducing both time and
memory consumption. Second, once the consensus of the window has
been computed, it is further polished with the help of a local de Bruijn
graph, at the scale of the window, in order to get rid of the few errors that
might remain despite consensus computation.

2.5.1 Consensus computation

In order to compute the consensus of a window, CONSENT uses POAv2
(Lee et al., 2002), an implementation of a multiple sequence alignment
strategy based on partial order graphs. These graphs are directed acyclic
graphs, and are used as data structures containing all the information of the
multiple sequence alignment. This way, at each step (i.e. at each alignment
of a new sequence), the graph contains the current multiple sequence
alignment result. To add a new sequence to the multiple alignment, the
sequence is aligned to the DAG, using a generalization of the Smith-
Waterman algorithm.

Unlike other methods that compute 1V1 alignments between the read
to be corrected and other reads mapping to it, and then build a result
DAG to represent the multiple sequences alignment, this strategy allows
CONSENT to directly build the result DAG, during the multiple alignment.
Indeed, the DAG is first initialized with the sequence of the window’s
template, and is then iteratively enriched by aligning the other sequences
from the window, until it becomes the final, result graph. A matrix,
representing the multiple sequence alignment, is then extracted from the
graph, and consensus is computed by performing a majority voting. In the
case of a tie at a given position, the nucleotide from the window’s template
is chosen as the consensus base.

However, computing multiple sequence alignments on hundred of
bases from dozens of sequences is computationally expensive, especially
when the divergence among sequences is high. To avoid the burden of
building a consensus by computing full multiple sequence alignments of
long sequences, we will search for collinear regions on these sequences,
in order to split the global task into several smaller instances. Several
consensus will thus be built on regions delimited by anchors shared among
the sequences, and the global consensus will be reconstructed from the
different, smaller corrected sequences obtained. The rationale is to benefit
from the knowledge that all the sequences come from the same genomic
area. This way we are able to, on the one hand, compute multiple sequence
alignments on shorter sequences, which greatly reduces the computational
cost. On the other hand, we only use related sequences to build the
consensus, and therefore exclude spurious sequences. This behavior allows
a massive speedup along with a gain in the global consensus quality.

To find such collinear regions, we first select k-mers that are non
repeated in their respective sequences, and shared by multiple sequences.
We therefore rely on dynamic programming to compute the longest anchors

chain a1, ..., ay such that:

1. Vi,j such that 1 < 4 < j < n, a; appears before a; in every
sequence that contains a; and a;

2. Vi,1 <4 < n,thereis at least T  reads containing a; and a;1 (with
T a solidity threshold equal to 8 by default).

We therefore compute local consensuses using substrings between
successive anchors among sequences that contain them, and output the
global consensus: consensus(prefix) + a; + consensus(Jai, az2[) +
az + - -+ + consensus(Jan—1, anl) + an + consensus(suffiz).

2.5.2 Consensus polishing

After processing a given window, a few erroneous bases might remain on
the computed consensus. This might especially happen in cases where the
coverage depth of the window is relatively low, and thus cannot yield
a high quality consensus. We propose an additional polishing feature
to CONSENT as a proof of concept. This allows CONSENT to further
enhance the quality of the consensus, by correcting the k-mers that
are weakly supported. It is related to Daccord’s local de Bruijn graph
correction strategy.

A local de Bruijn graph is thus built from the window’s sequences,
only using small, solid, k-mers. The rationale is that small k-mers allows
CONSENT to overcome the classical issues encountered due to the high
error rate of the long reads, when using large k values. CONSENT searches
for regions only composed of weak k-mers, flanked by sketches of n
(usually, n = 3) solid k-mers. CONSENT then attempts to find a path
allowing to link a solid k-mer from the left flanking region to a solid k-mer
from the right flanking region. We call these k-mers anchors. The graph
is thus traversed, in order to find a path between the two anchors, using
backtracking if necessary. If a path between two anchors is found, the
region containing the weak k-mers, is replaced by the sequence dictated
by the path. If none of the anchors pairs could be linked, the region is
left unpolished. To polish sketches of weak k-mers located at the left
(respectively right) extremity of the consensus, highest weighted edges of
the graph are followed, until the length of the followed path reached the
length of the region to polish, or no edge can be followed out of the current
node.

2.6 Anchor window consensus to the read

Once the consensus of a window has been computed and polished, it needs
to be reanchored on the template long read. To this aim, itis realigned to the
template, using an optimized library of the Smith-Waterman algorithm. To
avoid time-costly alignment, the consensus is however only locally aligned
around the positions of the window it has been computed from. This way,
for a window (W}, We) of the alignment pile of the read A, its consensus
will be aligned to A[W}, — O..W, + O], where O represents the length
of the overlap between consecutive windows processed by CONSENT
(usually, O = 50, although it can be user defined). Aligning the consensus
outside of the original window’s extremities as such allows to take into
account the error profile of the long reads. Indeed, as they mainly contain
insertion(s) and deletion(s) errors, it is likely that the consensus computed
from a window could be longer than the window it originates from, thus
spanning outside of the window’s extremities. In the case that alignment
positions of the consensus from the ith window overlap with alignment
positions of the consensus from the (¢ + 1)th window, the overlapping
sequences of the two consensus are computed. The one containing the
largest number of solid k-mers (where the k-mer frequencies of each
sequence are computed from the window their consensus originate from)
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is chosen and kept as the correction. In the case of a tie, we arbitrarily
chose the sequence from consensus ¢ + 1 as the correction. The aligned
factor of the long read is then corrected by replacing it with the aligned
factor of the consensus.

3 Experimental results
3.1 Impact of the segmentation strategy

Before comparing CONSENT to any state-of-the-art self-correction tool,
we first validate our segmentation strategy. To this aim, we simulated
a 50x coverage of long reads from E.coli, with a 12% error rate, using
SimLoRD (Stocker et al., 2016). The following parameters were used
for the simulation: —-probability-threshold 0.3 -prob-ins
0.145 -prob-del 0.06, and -prob-sub 0.02. We then ran the
CONSENT pipeline, with, and without the segmentation strategy. Results
of this experiment are given in Table 1. These results were obtained
with LRCstats (La et al., 2017), a tool specifically designed to measure
correction accuracy on simulated long reads. These results show that, in
addition to being 47x faster than the regular strategy, our segmentation
strategy also allows to reach slightly lower memory consumption, and
slightly higher throughput and quality.

Without segmentation With segmentation

Throughput 214,667,382 215,693,736
Error rate (%) 0.0757 0.0722
Runtime 5h31min 7min
Memory (MB) 750 675

Table 1. Comparison of the results obtained by CONSENT, with and without
our segmentation stategy, as reported by LRCstats. Using the segmentation
strategy allows a 47x speed-up, while producing slightly better results.

3.2 Comparison to the state-of-the-art

We now compare CONSENT against state-of-the-art error correction
methods. We include the following tools in the benchmark: Canu,
Daccord, FLAS, and MECAT. We voluntarly excluded LoRMA from
the comparison, as it tends to split the reads a lot, and thus to produce
reads that are usually shorter than 500 bp. We also exclude hybrid error
correction tools from the benchmark, as we believe it makes more sense
to only compare self-correction tools against each other. Comparison on
simulated data is presented in Section 3.2.2, and comparison on real data
in Section 3.2.3. Datasets used for these comparisons are presented in
Section 3.2.1. All tools were ran with default or recommended parameters.
For CONSENT, we used a minimum support of 4 to define a window, a
window size of 500, an overlap size of 50 between the windows, a k-mer
size of 9 for the chaining and the polishing, a threshold of 4 to consider
k-mers as solid. Additionally, consensus were only computed for windows
having a minimum number of 2 anchors.

3.2.1 Datasets

For our experiments, we used both simulated Pacific Biosciences
and real Oxford Nanopore long reads. Pacific Biosciences reads
were simulated with SimLoRD, using the following parameters:

—probability-threshold 0.3 -prob-ins 0.145-prob-del

0.06, and —prob-sub 0.02. Two datasets with a 12% error rate
were thus generated for E. coli, S. cerevisiae and C. elegans: one with
a 30x coverage, and one with a 60x coverage, corresponding to typical
sequencing depth in current long reads experiments. As for the real Oxford

5
Dataset Number of reads Average length Error rate Coverage  Accession
d Pacific Biosci data
E. coli 30x 16,959 8,235 12.29 30x N/A
E. coli 60x 33918 8,211 12.28 60x N/A
S. cerevisiae 30x 45,198 8,216 12.28 30x N/A
S. cerevisiae 60x 90,397 8,204 12.29 60x N/A
C. elegans 30x 366,416 8,204 12.28 30x N/A
C. elegans 60x 732,832 8,220 12.28 60x N/A
Real Oxford Nanopore data
D. melanogaster 1,327,569 6,828 14.55 63x SRX3676783
H. sapiens® 1,075,867 6,744 17.60 29x PRJEB23027
Table 2. Description of the long reads datasets used in our experiments.
! Only reads from chromosome 1 were used.
Reference organism Strain Reference sequence Size
E. coli K-12 substr. MG1655 NC_000913 4.6 Mbp
S. cerevisiae W303 scf7180000000{084-13} 12.2 Mbp
C. elegans Bristol N2 GCA_000002985.3 100 Mbp
D. melanogaster BDGP Release 6 I1SO1 MT/dm6 144 Mbp
H. sapiens’ GRCh38 NC_000001.11 249 Mbp

Table 3. Description of the reference sequences used in our experiments.
! Only chromosome 1 was used.

Nanopore data, we used a 74x coverage dataset from S. cerevisiae, a 63x
coverage dataset from D. melanogaster, and finally, a 29x coverage from
H. sapiens, containing ultra-long reads, reaching lengths up to 340 kbp.
Further details and accession numbers for all the datasets are given in
Table 2. Details on the used reference sequences are given in Table 3.

3.2.2 Comparison on simulated data

To precisely assess the accuracy of the different correction methods, we
first tested them on the simulated Pacific Biosciences datasets. LRCstats
was used to evaluate the correction accuracy of each method. However,
LRCstats did not scale to the C. elegans 60x dataset, requiring more than
4 days and 100 GB of RAM to compute the results. For this dataset, we
thus only report throughput and error rate statistics, obtained by aligning
the corrected reads to the reference with Minimap2. Correction statistics
of all the aforementioned tools on the different datasets, along with their
runtime and memory consumption, are given in Table 4. For methods
having distinct, easily identifiable, steps for overlapping and correction
(i.e. Daccord, MECAT and CONSENT), we additionally report runtime
and memory consumption of these two processes apart. All the correction
experiments were run on a computer equipped with 16 2.39 GHz cores
and 32 GB of RAM.

Daccord clearly performed the best in terms of throughput and quality,
outperforming all the other methods on the E. coli and the S. cerevisiae
datasets. However, the overlapping step, relying on full alignment of the
long reads against each other, consumed high amounts of memory, 3x to
11x more than CONSENT or MECAT mapping strategies. As a result,
Daccord could not scale to the C. elegans datasets, DALIGNER reporting
an error upon start. On the contrary, Canu displayed the highest error rates
on all the datasets, but consumed relatively stable, low amounts of memory.
In particular, on the two C. elegans datasets, it displayed the lower memory
consumption among all the other methods.

MECAT performed the best in terms of runtime, outperforming all
the other tools by several order of magnitudes on all the datasets. Its
overlapping strategy was also highly efficient, and displayed the lowest
memory consumption among the other strategies, on all the datasets.
However, compared to Minimap2, the overlapping strategy adopted in
CONSENT, MECAT’s overlapping strategy displayed higher runtimes,
raising according to both the size of the dataset and the genome complexity,

“output” — 2019/2/12 — page 5 — #5


https://doi.org/10.1101/546630
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/546630; this version posted February 12, 2019. The copyright holder for this preprint (which was not certified by peer review)
is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.

6 P. Morisse et al.
Overlapping Correction Total
Dataset Corrector ~ Throughput (Mbp) Error rate (%) Deletions (%) Insertions (%) Substitutions (%) Runtime Memory (MB) Runtime Memory (MB) Runtime Memory (MB)
Original 140 12.2862 2.6447 8.7973 0.8442 N/A N/A N/A N/A N/A N/A
= Canu 130 0.2508 0.0636 0.2001 0.0102 _ _ _ _ 19min 4,613
g Daccord 131 0.0219 0.0034 0.0090 0.0115 1 min 6,813 13 min 639 14 min 6,813
E FLAS 130 0.2077 0.1490 0.0741 0.0043 _ _ _ _ 12min 1,639
e MECAT 107 0.1649 0.1328 0.0459 0.0018 25 sec 1,600 1 min 14 sec 1,083 1 min 39 sec 1,600
CONSENT 130 0.2013 0.0944 0.1095 0.0163 22 sec 2,390 16 min 48 sec 132 17 min 10 sec 2,390
Original 279 12.2788 2.6437 8.7919 0.8432 N/A N/A N/A N/A N/A N/A
= Canu 219 0.5211 0.1390 0.4045 0.0243 _ _ _ _ 24min 3,674
° Daccord 261 0.0175 0.0026 0.0062 0.0103 3 min 18,450 51 min 1,191 54 min 18,450
3 FLAS 260 0.1039 0.0907 0.0220 0.0010 _ _ _ _ 38min 2,428
o MECAT 233 0.1011 0.0896 0.0203 0.0008 1 min 2,387 4 min 1,553 5 min 2,387
CONSENT 259 0.0590 0,0368 0.0241 0.0037 1 min 4,849 35 min 248 36 min 4,849
w Original 371 12.283 2.646 8.7937 0.8434 N/A N/A N/A N/A N/A N/A
% Canu 227 0.8472 0.2335 0.6393 0.0479 _ _ _ _ 29min 3,681
g Daccord 348 0.1186 0.0222 0.0368 0.0707 7 min 31,798 1h 12 min 3,487 1 h 19 min 31,798
§ FLAS 345 0.2537 0.1863 0.0828 0.0088 _ _ _ _ 29min 2,935
3 MECAT 285 0.2111 0.1691 0.0574 0.0048 1 min 2,907 4 min 1,612 5 min 2,907
6 CONSENT 345 0.2890 0.1428 0.1386 0.0348 1 min 5,523 45 min 284 46 min 5,523
o Original 742 12.2886 2.6484 8.7963 0.8439 N/A N/A N/A N/A N/A N/A
% Canu 600 0.5615 0.1518 0.4309 0.0292 _ _ _ _ 1h11min 3,710
32 Daccord 696 0.0305 0.0055 0.0180 0.0100 10 min 32,190 2h 16 min 1,160 2 h 26 min 32,190
§ FLAS 690 0.1430 0.1215 0.0319 0.0031 _ _ _ _ 1h30min 4,984
3 MECAT 617 0.1365 0.1189 0.0286 0.0020 4 min 4,954 12 min 2,412 16 min 4,954
v CONSENT 690 0.1418 0.0735 0.0650 0,0166 2 min 11,325 1 h 44 min 535 1 h 46 min 11,325
Original 3,006 12.2806 2.6449 8.7926 0.8431 N/A N/A N/A N/A N/A N/A
§ Canu 2,776 0.2895 0.0682 0.2354 0.0126 _ _ _ _ 9h09min 6,921
§ Daccord _ _ _ _ _ _ _ _ _ _ _
¥ FLAS 2,718 0.3862 0.2656 0.1469 0.0106 _ _ _ _ 3h07min 10,565
S MECAT 2,085 0.2682 0.2135 0.0764 0.0037 27 min 10,535 21 min 2,603 48 min 10,535
CONSENT 2,791 0.6300 0.3064 0.2958 0.0878 15 min 21,819 9 h 21 min 1,885 9 h 36 min 21,819
Original 6,024 12.2825 2.6457 8.7937 0.8432 N/A N/A N/A N/A N/A N/A
§ Canu 5,119 0.6623 _ _ _ _ _ _ _ 9 h 30 min 7,050
§ Daccord _ _ _ _ _ _ _ _ _ _ _
L FLAS 5,614 0.2160 _ _ _ _ _ _ _ 10 h 45 min 13,682
S MECAT 4,941 0.1882 _ _ _ 1 h 28 min 10,563 1h 15 min 3,775 2 h 43 min 10,563
CONSENT 5,607 0.4604 57 min 32,284 26 h 07 min 3,390 27 h 04 min 32,284

Table 4. LRCStats results on the simulated Pacific Biosciences datasets. Results for the C. elegans 60x datasets were obtained by aligning the reads to the reference,
as LRCstats did not scale, and required more than 4 days and 100 GB of memory to compute the results. Only throughput and error rate are thus reported for this
dataset. Daccord results are missing for the two C. elegans datasets, as DALIGNER failed to perform alignment, reporting an error upon start, even when ran on a
cluster node with 28 2.4 GHz cores and 128 GB of RAM.

although it remained faster that Daccord’s DALIGNER. Minimap2’s
memory consumption, however, was higher than that of MECAT’s
overlapping strategy, especially on the C. elegans datasets.

Compared to both FLAS and CONSENT, MECAT displayed lower
throughputs on all the datasets. As for FLAS, this can be explained by
the fact that it was designed as a MECAT wrapper, allowing to retrieve
additional overlaps, and thus correct a greater number long reads. As a
result, since it relies on MECAT’s error correction strategy, it displayed
highly similar memory consumption. Runtime was however higher, due
to the additional steps allowing to retrieve new overlaps, and to the
resulting higher number of reads to correct. Throughputs and error rates
of FLAS and CONSENT were highly similar on all the datasets, also
it slightly differed on the C. elegans datasets, were both the throughput
and the error rate of CONSENT were higher, meaning that CONSENT
attempted to correct additional, highly erroneous, long reads. Runtimes
were also comparable on the E. coli and S. cerevisiae datasets. However,
on the C. elegans datasets, CONSENT displayed higher runtimes. As
for the memory consumption of the error correction step, CONSENT
outperformed all the other methods on all the datasets.

3.2.3 Comparison on real data

We then evaluated the different correction methods on larger, real, Oxford
Nanopore datasets. For these datasets, we not only evaluate how well the
corrected long reads realign to the reference genome, but also how they
assemble. For the alignment assessment, we report how many reads were
corrected, their throughput, their N50, the proportion of corrected reads
that could be aligned, the average identity of the alignments, as well as the

genome coverage, that is, the percentage of bases of the reference genome
to which at least a nucleotide aligned. For the assembly assessment, we
report the overall number of contigs, the number of contigs that could be
aligned, the NGA50 and NGA7S5, and, once again, the genome coverage.
We aligned the long reads to the reference with Minimap2, and obtained
statistics by parsing the output SAM file. We performed assemblies using
Minimap2 and Miniasm (Li, 2015), and obtained statistics with QUAST-
LG (Mikheenko et al.,2018). Results are given in Table 5 for the alignment
assessment, and in Table 6 for the assembly assessment. Runtimes and
memory consumption of the different methods are also given in Table 5. As
for the simulated data, we report runtime and memory consumption of the
overlapping and correction steps apart, when possible. All the correction
experiments were run on cluster node equipped with 28 2.39 GHz cores
and 128 GB of RAM.

On these two datasets, Daccord failed to run, as DALIGNER could not
perform alignment, for the same reason as for the simulated C. elegans 60x
dataset. CONSENT corrected the largest number of reads, and reached the
highest alignment identity on the two datasets. Its N50 was also higher
than that of all the other methods, except for Canu on the D. melanogaster
dataset. CONSENT also reached the highest throughput, and the largest
genome coverage, for the two datasets. When it comes to runtime and
memory consumption, MECAT once again outperformed all the other
methods, as in the experiments on simulated data. Moreover, it reached
the highest proportion of aligned reads, on the two datasets. CONSENT
was however really close, as only 0.36-0.61% less reads could be aligned.
Moreover, on the H. sapiens dataset, CONSENT was the only tool able
to deal with ultra-long reads. Indeed, other methods reported errors when
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CONSENT 7
Number Aligned  Alignment Genome Overlapping Correction Total
Dataset. Corrector of reads Throughput (Mbp) N30 (bp) reads (%) identity (%) coverage (%) Runtime Memory (MB) Runtime Memory (MB) Runtime Memory (MB)

N Original 1,327,569 9,064 11,853 85.52 8543 98.47 N/A N/A N/A N/A N/A N/A

% Canu 829,965 6,993 12,694 98.05 95.20 97.89 _ _ _ _ 14 h 04 min 10,295

é" Daccord _ _ _ _ _ _ _ _ _ _ _ _

S FLAS 855,275 7.866 11,742 95.65 94.99 98.09 _ _ _ _ 10 h 18 min 18,820

5 MECAT 827,490 7,288 11,676 99.87 96.52 97.34 28 min 13,443 1 h 26 min 7,724 1h 54 min 13,443

_ CONSENT 1,065,621 8,178 12,297 99.26 96.72 98.20 43 min 51,361 37 h 17 min 7,570 38h 51,361
Original 1,075,867 7,256 10,568 88.24 82.40 92.46 N/A N/A N/A N/A N/A N/A

@ Canu _ _ _ _ _ _ _ _ _ _ _ _

-g Daccord _ _ _ _ _ _ _ _ _ _ _ _

5: FLAS! 670,708 5,695 10,198 99.06 91.00 92.37 _ _ _ _ 4h 57 min 14,957

T MECAT! 655,314 5,479 10,343 99.95 91.69 91.44 26 min 11,075 1 h 27 min 4,591 1h 53 min 11,075
CONSENT 869,462 6,349 10,839 99.59 93.00 92.40 17 min 45,869 8 h 13 min 5,759 8 h 30 min 45,869

Table 5. Statistics of the real long reads, before and after correction with the different methods.
! Reads longer than 50kbp were filtered out, as ultra-long reads caused the programs to stop with an error. There were 1,824 such reads in the original datasets,

accounting for a total number of 135,364,312 bp.

Daccord could not be run on these two datasets, due to errors reported by DALIGNER.

Canu stopped with an error on the H. sapiens dataset, both with and without the long reads > 50kbp.

attempting to correct the original dataset. As a result, in order for those
methods to work, we had to remove the reads that were longer than 50kpb.
There were 1,824 such reads, accounting for a total number of 135,364,312
bp. However, even after removing these ultra-long reads, Canu still failed
to perform correction, and reported an error.

The assembly yielded from Canu corrected reads outperformed all
other assemblies in terms of NGA50, NGA75, and genome coverage, on
the D. melanogaster dataset. However, it produced a higher number of
contigs than the assemblies yielded from FLAS and MECAT reads. The
assembly obtained from CONSENT corrected reads contained the largest
number of contigs, but outperformed the assemblies obtained from FLAS
and MECAT reads in terms of genome coverage and NGAS50. NGA75 of
the CONSENT assembly was also larger than that of FLAS, but slightly
shorter than that of MECAT. The error rate per 100 kbp of the CONSENT
assembly was also lower than that of FLAS, and slightly higher than
that of MECAT. On the H. sapiens dataset, the assembly obtained from
CONSENT corrected reads outperformed the assemblies produced by both
FLAS and MECAT corrected reads, in terms of number of contigs, NGAS50,
and NGAU7S5. In particular, the NGAS0 of the CONSENT assembly was
more that 1 Mbp larger than that of other assemblies. However, 5 of the
contigs of the CONSENT assembly could not be aligned to the reference,
likely due to misassemblies by Miniasm. As a result, the assembly yielded
from the CONSENT corrected reads covered 5% less of the reference
sequence, and displayed a higher error rate per 100 kbp, compared to the
assemblies obtained from FLAS and MECAT corrected reads. The fact
that we cover a smallest proportion of the reference sequence gives us
further room to improve CONSENT. Looking to the unaligned contigs
more into details could indeed help us to further improve the mechanisms
and principles of CONSENT.

3.3 Contig polishing

As an additional feature of CONSENT, we also allow to perform contig
polishing. The process is pretty straightforward. Indeed, instead of
computing overlaps between the long reads, as presented in the previous
sections, the long reads used for the assembly are simply mapped to the
assembled contigs. The rest of the pipeline remains the same. We present
contig polishing results on the simulated E. coli, S. cerevisiae, and C.
elegans 60x datasets, as well as on the real D. melanogaster and H. sapiens
datasets, and compare to RACON (Vaser et al., 2017), a state-of-the-art
contig polishing method, on Table 7.

These results show that CONSENT outperformed RACON in terms
of quality of the results, especially dealing better with errors, and greatly
reducing the error rate per 100 kbp, on the the E. coli, S. cerevisiae, and C.

elegans datasets. Moreover, the NGA50 and NGA75 of CONSENT were
highly similar to those of RACON on these datasets. RACON however
covered a slightly larger proportion (0.11%) of the reference genome
on the C. elegans dataset. For the larger, eukaryotic D. melanogaster
dataset, RACON outperformed CONSENT in terms of error rate and
genome coverage, but the NGAS50, NGA75 of the two methods remained
comparable, the NGAS50 of CONSENT even outperforming that of
RACON. Moreover, after polishing with CONSENT, one more contig
could be aligned to the reference, compared to RACON. Additionally, on
all the datasets, CONSENT was 2x to 16x faster than RACON.

This contig polishing feature, being straightforward, raises the question
as to how other correction methods should propose such an option.
Moreover, it would be interesting to evaluate already published correction
methods on their ability to polish contigs, at the expense of minimal
modifications to their workflows.

4 Discussion and future works

Experimental results on the human dataset are particularly promising.
Indeed, CONSENT is the only method able to scale to the ultra-long reads
contained in this dataset. As such reads are expected to become more
frequent in the future, being able to deal with them will soon become a
necessity. In addition, judging from the memory consumption of the error
correction step, it seems like CONSENT could easily scale to the error
correction of a complete human dataset, and further experiments should
therefore head in that direction.

However, the overlapping step, performed by Minimap2, tends to
display higher memory consumption than the overlapping steps of other
methods. In addition, the runtime of the correction step also tends to be
higher. We discuss how to further reduce these computational costs below.

The memory consumption, for the overlapping step, can be explained
by the fact that, in our experiments, we voluntarily set Minimap?2 index size
to 100 GB, so the index would not be split when processing large datasets.
This can be explained by the fact that, in order to create the alignment
piles, CONSENT needs all the alignments of a given read to directly
follow each other in the Minimap2 output PAF file. Allowing to split
the index would invalidate this property, as each part of the index would
be processed separately by Minimap2, resulting in multiple, independent
alignment files, that would then be concatenated into the final result file.
As a result, if overlaps for a given read A are found in different parts of
the index, the final result file would contain multiple, independent sets
of lines concerning read A. Since these sets of lines would not directly
follow each other, CONSENT would thus not be able to properly define
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8 P. Morisse et al.
Dataset Corrector Contigs Aligned contigs NGAS50 NGA75 Genome coverage Errors/ 100 kbp
o Original 423 408 864,011 159,590 83.19 10,690
% Canu 410 381 2,757,690 822,577 92.91 1,897
§° Daccord _ _ _ _ _ _
g FLAS 374 361 1,123,351 364,884 92.05 2,689
§ MECAT 308 307 1,425,566 478,877 92.03 1,728
_ CONSENT 455 448 1,666,202 470,720 92.82 1,951
Original 201 188 1,025,355 _ 71.57 11,319
©“ Canu _ _ _ _ _ _
.S Daccord _ _ _ _ _ _
g FLAS 237 237 1,698,601 289,968 94.97 4,404
T MECAT 249 247 1,672,967 424,788 95.66 3,781
CONSENT 182 177 2,663,412 439,178 90.49 4,543

Table 6. Statistics of the assemblies obtained with the corrected long reads.
As previously mentioned, Daccord results on the two datasets, and Canu results on the H. sapiens dataset are absent, as the tools could not be run.
For the assembly of the original reads on the H. sapiens dataset, QUAST-LG did not provide a metric for the NGA7S5.

Dataset Method  Contigs Aligned contigs NGAS50 NGA75 Genome coverage Errors/ 100 kbp Runtime (CPU seconds) Memory (MB)
Original 1 1 4,939,014 4,939,014 99.91 10,721 N/A N/A
E. coli 60x RACON 1 1 4,663,914 4,663,914 99.90 499 5,597 643
CONSENT 1 1 4,637,939 4,637,939 99.91 78 334 1,648
Original 29 29 579,247 456,470 96.14 10,694 N/A N/A
S. cerevisiae 60x  RACON 29 29 539,472 346,116 96.09 637 14,931 1,703
CONSENT 29 29 532,258 334,560 96.15 208 1,616 7,073
Original 47 47 5,495,235 2,656,350 99.71 10,611 N/A N/A
C. elegans 60x ~ RACON 47 47 5,073,456 2,349,027 99.72 819 136,325 14,288
CONSENT 47 47 5,019,450 2,286,190 99.61 330 30,907 85,486
Original 423 408 864,011 159,590 83.19 10,690 N/A N/A
D. melanogaster ~ RACON 422 416 693918 287,386 92.88 973 197,124 19,508
CONSENT 422 417 704,027 250,324 92.22 2,028 82,006 74,446

Table 7. Results of the contig polishing experiment.

The missing contig for the CONSENT and RACON polishings on the D. melanogaster dataset is 428 bp long, and could not be polished, due to the window size of

the two methods being larger (500).

the alignment pile of read A. This issue could easily be addressed by
using another, less memory consuming, tool for computing the overlaps.
However, we could also keep making use of Minimap2, allow it to split
its index, and then sort the final result file so that all alignments of a given
read directly follow each other. Since alignment files are large, especially
when processing large amounts of data, this would however impact the
runtime of CONSENT. Another track to address this issue would be to
rely on a strategy based on a PAF-index, that would allow us, for a given
read, to retrieve the offsets of all the lines concerning the alignments of this
read. This would thus allow us to easily navigate through the file, without
needing it to be in a precise order, and without sorting it. More generally,
CONSENT is designed as a modular tool which is not dependent on the
choice of the aligner. It will thus benefit from the progress that will be made
in alignment strategies, and will thus allow to propose better correction as
the alignment methods evolve.

As for the runtime of the error correction step, our experiments show
that it tends to rise according to the complexity of the genome. This can be
explained by the highest proportion of repeated regions in more complex
genomes. Such repeated regions indeed impact the alignment piles and
windows coverages, and could therefore lead to the processing of windows
having very deep coverages. These deep coverage windows would thus
contain large number of sequences to process and align, which would
greatly increase the runtime, even with our k-mer chaining strategy. For
such deep coverage windows, we could use a validation strategy similar
to that of HALC, that would allow us to only consider sequences from
the window that actually come from the same genomic region as the

long read we are attempting to correct. This would indeed allow us to
reduce the coverage of the piles and of the windows, thus meaning less
sequences to process during the multiple sequence alignments, and thus
reduced runtimes. Moreover, further optimization of the parameters shall
also be considered. In particular, the window size, and the minimum
number of anchors to allow the processing of a window greatly impact
the runtime. Running various experiments with different set of parameters
would therefore allow us to find a satisfying compromise between runtime
and quality of the results.

5 Conclusion

We presented CONSENT, a new self-correction method for long reads
that combines different efficient strategies from the state-of-the-art.
CONSENT starts by dividing overlapping regions of the long reads into
smaller windows, in order to compute multiple sequence alignments,
and consensus sequences of these windows. These multiple sequence
alignments are performed using a method based on partial order graphs,
allowing to perform actual multiple sequence alignment. This method is
combined to an efficient k-mer chaining strategy, which allows to further
divide the multiple sequence alignment into smaller instances, and thus
reach greater speed. Once the consensus of a window from a matched
region has been computed, it is further polished with the help of a local de
Bruijn graph, in order to further reduce the final error rate, and is realigned
to the read.
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Our experiments show that CONSENT compares well, or even
outperforms other state-of-the-art methods in terms of quality of the results.
In particular, CONSENT is the only method able to scale to a human dataset
containing Oxford Nanopore ultra-long reads, reaching lengths up to 340
kbp. Although very recent, such reads are expected to further develop, and
thus become more accessible in the near future. Being able to deal with
them will thus soon become a necessity. CONSENT could therefore be
the first self-correction method able to be applied to such ultra-long reads
on a greater scale.

The contig polishing feature that was added to CONSENT also seems
to offer promising results. As the processes of long reads correction and
contig polishing are not so different from one another, one can wonder why
more error correction tools do not offer this feature. It indeed seems to be
affordable at the expense of minimal additional work, while providing
satisfying results. We believe that CONSENT could open the doors to
more error correction tools offering such a feature in the future.

The segmentation strategy introduced in CONSENT also shows that
actual multiple sequence alignments techniques are applicable to long,
noisy sequences. In addition to being useful for error correction, this
could also be applied for in various other problems, such as during the
consensus steps of assembly tools, for haplotyping, and for quantification
problems. The literature about multiple sequence alignment is vast, but
lacks application on noisy sequences. We believe that CONSENT could
be a first work in that direction.
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