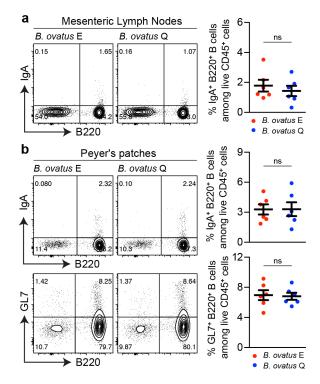
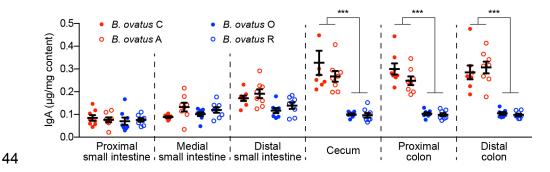

1 Additional information

2 Supplementary figures

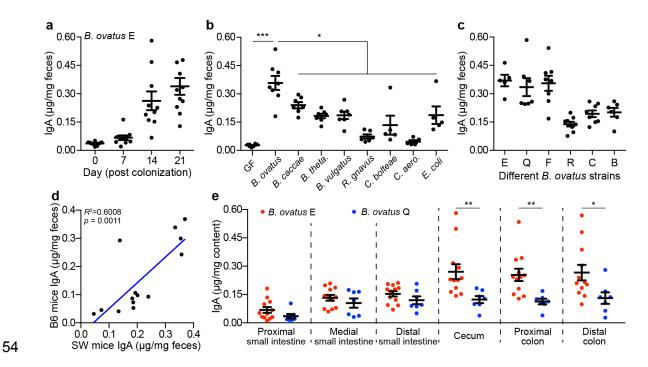


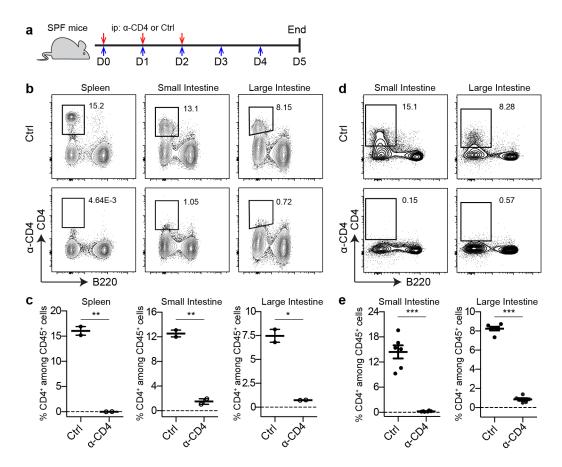
Supplementary Fig. 1. More information related to Fig. 1. (a) Fecal IgA dynamics in gnotobiotic mice after colonization with *B. ovatus* strain *E.* (b) Total serum IgA concentration in gnotobiotic mice that were colonized with individual or a cocktail of eight bacterial species for three weeks. (c) Correlation of IgA concentration in stool and serum in mice inoculated with different bacterial species. The average concentrations of stool IgA in Fig. 1A and serum IgA in Supplementary Fig. 1b were used for plotting. (d) Fecal IgA concentration in mice treated with either heat-killed (H.K.) *B. ovatus* or *B. ovatus* metabolites. The right part of this plot shows fecal

IgA concentration in E. coli-precolonized gnotobiotic mice, which were then treated with H.K.-B. 11 12 ovatus. Either metabolites of B. ovatus in culture medium or H.K.-B. ovatus was used to feed 13 mice, accordingly, for the duration of the experiments. Dot line indicates the average level of 14 stool IgA induced by live B. ovatus strain E. (e) Total serum IgA level in gnotobiotic mice harboring different strains of B. ovatus. (f) B. ovatus density in the stool of gnotobiotic mice 15 16 colonized with different B. ovatus strains. (g) Binomial distribution of B. ovatus strains IgA 17 induction. (h) Fecal IgA concentration in mice colonized with different strains of B. caccae, B. 18 theta., B. vulgatus and other Bacteroidales, such as P. johnsonii, B. intestinalis and B. fragilis. 19 Data with open circle were replotted from Fig. 1a to facilitate comparison. Data shown are mean 20 ± standard error of the mean. Each dot represents a biological replicate. Detailed strain 21 information is listed in Supplementary Tables 1, 2 and 7. p-values with statistical significance 22 (assessed by two-tailed Student's t test) are indicated: ***p < 0.001; ns, not significant.

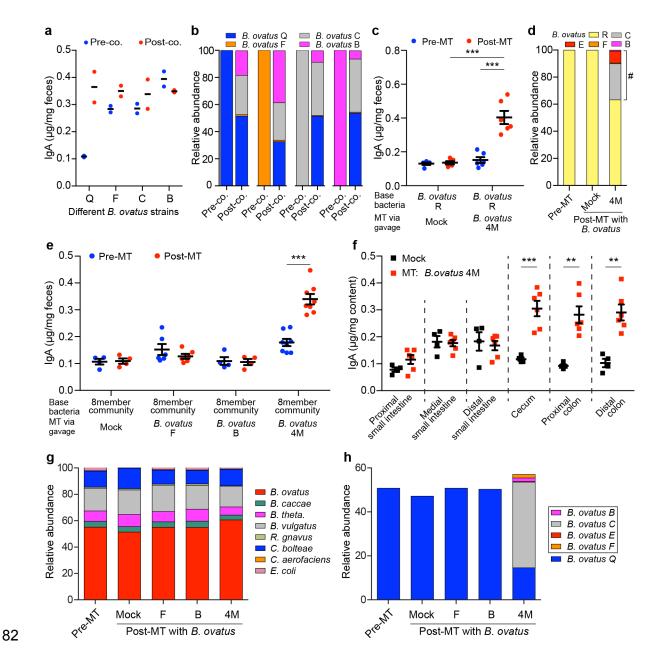


25 Supplementary Fig. 2. B. ovatus strains E and Q induced comparable levels of serum immunoglobulin isotypes and plgR expression in both small intestine and the colon. (a) 26 27 Total serum IgG1, IgG2a, IgG2b, IgG3, IgM and IgE in gnotobiotic mice colonized with either B. 28 ovatus strain E or Q. (b) Colonic and ileal sections from B. ovatus strain E or Q colonized mice 29 were stained with anti-plgR (Red) and DAPI (4',6-diamidino-2-phenylindole) (Blue). 30 Representative images are shown (n = 4-6 mice per group). Scale Bars = 50 μ m. Data shown 31 are mean ± standard error of the mean. Each dot represents a biological replicate. *p*-values with 32 statistical significance (assessed by unpaired two-tailed Student's t test) are indicated: *p < t33 0.05; ns, not significant.

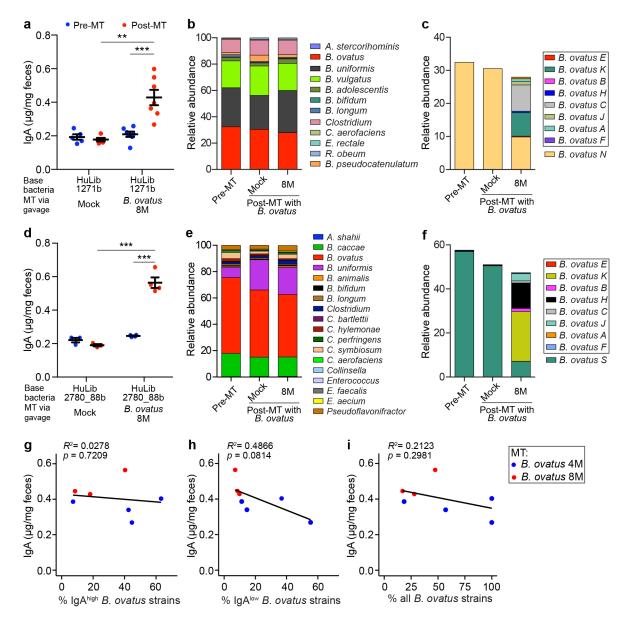



Supplementary Fig. 3. Quantification of $IgA^{+}B220^{+}$ B cells in MLNs, PPs in *B. ovatus* strain *E* or *Q* harboring gnotobiotic mice. (a) Representative flow cytometry plot and quantification of IgA^{+} B cells in mesenteric lymph nodes. (b) Representative flow cytometry plot and quantification of IgA^{+} B cell and germinal center B cells ($GL7^{+}B220^{+}$) in PPS. Number adjacent to gate represents percentage. Data shown are mean ± standard error of the mean. Each dot represents an individual mouse. *p*-values with statistical significance (assessed by unpaired two-tailed Student's *t* test) are indicated: **p* < 0.05; ns, not significant.

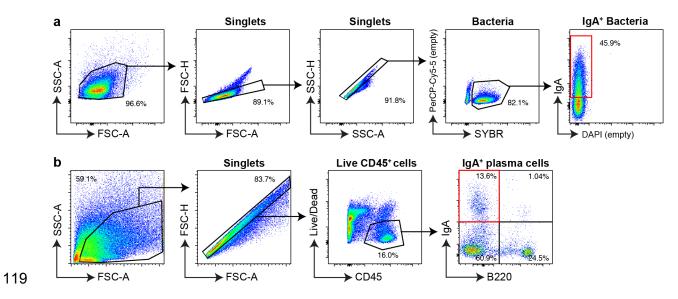
Supplementary Fig. 4. IgA^{high} B. ovatus strains specifically induced more fecal IgA 45 production in the large intestinal regions than IgA^{low} B. ovatus strains. Free IgA 46 47 concentration in different regions along the whole intestinal tract of mice that were colonized with individual *B. ovatus* strains (IgA^{high} *B. ovatus* strains *A* and *C*; IgA^{low} *B. ovatus* strains *O* and 48 49 *R*) for three weeks. Data shown are mean ± standard error of the mean. Each dot represents a biological replicate. Detailed strain information is listed in Supplementary Table 2. p-values with 50 51 statistical significance (assessed by unpaired two-tailed Student's t test) are indicated: ***p < t52 0.001; ns, not significant.



55 Supplementary Fig. 5. Host genetic background has little influence on human gut 56 bacteria induced fecal IgA production in mice. (a) Dynamics of fecal IgA concentration in 57 anotobiotic Swiss Webster mice colonized with B. ovatus strain E. (b and c) Fecal IqA 58 concentration in gnotobiotic Swiss Webster mice colonized with different bacterial species (b) or 59 various strains of *B. ovatus* (c). (d) Correlation of fecal IgA produced by B6 mice and Swiss 60 Webster mice after the same bacteria colonization. The average fecal IgA level of Swiss 61 Webster mice in (b) and (c) were plotted against the average fecal IgA level in C57BL6/J mice 62 that were colonized with the same bacterial species or strain from Figure 1A and Figure 1F. (e) 63 Luminal IgA concentration along the whole intestine in Swiss Webster mice colonized with either 64 B. ovatus strains E or Q. Data shown are mean ± standard error of the mean. Each dot 65 represents a biological replicate in **a**, **b**, **c** and **e**. Detailed strain information is listed in 66 Supplementary Tables 1 and 2. p-values with statistical significance (assessed by two-tailed 67 Student's *t* test) are indicated: *p < 0.05, **p < 0.01, ***p < 0.001; ns, not significant.


69

70 Supplementary Fig. 6. Anti-CD4 antibody promptly and robustly depleted CD4⁺ T cells in 71 multiple organs of mice. (a) Schematic representation of anti-CD4 antibody injection. Mice 72 were injected Intraperitoneally with anti-CD4 antibody or isotype control for three consecutive 73 days (0.5 mg/mouse/day). Two days after the last injection, tissues were collected and 74 processed. Red arrows indicate antibody injection and blue arrows represent time. (b and c) 75 Representative flow cytometry plot (**b**) and quantification (**c**) of CD4⁺ T cells in the spleen, LP of 76 small and large intestines in SPF mice. (d and e) Representative flow cytometry plot (d) and 77 quantification (e) of CD4⁺ T cells in spleen, LP of small and large intestines of gnotobiotic mice 78 colonized with *B. ovatus* strain *E* with or without anti-CD4 antibody treatment. Number adjacent 79 to gate represents percentage. Data shown are mean ± standard error of the mean. Each dot 80 represents a biological replicate. p-values with statistical significance (assessed by unpaired two-tailed Student's *t* test) are indicated: p < 0.05, p < 0.01, p < 0.001; ns, not significant. 81


Supplementary Fig. 7. Multiplex cocktail of microbial strains overcome phenotype transfer resistance in gnotobiotic mice that were pre-colonized with simple bacterial community. (a and b) Fecal IgA concentration (a) and relative abundance of each *B. ovatus* strain (c) in pre- and post-cohoused gnotobiotic mice. Before cohousing, four groups of mice were pre-colonized with four individual *B. ovatus* strains, respectively, for three weeks. Then, all mice were cohoused together at a ratio of 1:1:1:1 for another three weeks. (c and d) Fecal IgA concentration (c) and relative abundance of each *B. ovatus* strain (d) in mice pre- and post-MT.

90 Mice were first colonized with *B. ovatus* strain *R* for three weeks. Then the microbial therapeutic 91 cocktail B. ovatus 4M was administered. (e) Fecal IgA concentration in mice pre- and post-MT, 92 which were pre-colonized with eight-member bacterial community for three weeks. The microbial therapeutic consisted of either an individual IgA^{high} B. ovatus strain or B. ovatus 4M. (f) 93 94 Luminal IgA concentration along the intestinal tract of mice after gavage with Mock or B. ovatus 95 4M. (g) Relative abundance of each bacterial species in mice pre- and post-MT. (h) Relative 96 abundance of different B. ovatus strains in mice pre- and post-MT. Data shown are mean ± standard error of the mean. Sequencing plots display the average abundance from five mice. 97 98 Each dot represents a biological replicate. Detailed bacteria information is listed in 99 Supplementary Tables 2, 4 and 5. p-values with statistical significance (assessed by two-tailed 100 Student's *t* test) are indicated: **p < 0.01, ***p < 0.001; ns, not significant.

103 Supplementary Fig. 8. Robust modification of fecal IgA level with *B. ovatus* therapeutic 104 cocktails in gnotobiotic mice that were pre-colonized with microbiota arrayed culture 105 collections. (a-f) Fecal IqA concentration (a and d), relative abundance of each bacterial 106 species (**b** and **e**) and relative abundance of different *B. ovatus* strains (**c** and **f**) in gnotobiotic 107 mice pre- and post-MT. Mice were pre-colonized with microbiota arrayed culture collections (a: 108 HuLib1271b; d: HuLib2780_88b) for three weeks. Mice were then gavaged with B. ovatus 8M. (g-i) Correlation between fecal IgA level and relative abundance of IgA^{high} (g), IgA^{low} (h) and 109 110 total B. ovatus strains (i). The averages of fecal IgA level and bacteria relative abundance were

111 used. All mice, being pre-colonized with either single bacterial strain or complex bacterial 112 community for three weeks, were gavaged either *B. ovatus* 4M or *B. ovatus* 8M. In **a** and **d** 113 plots, data shown are mean \pm standard error of the mean and each dot represents a biological 114 replicate. Sequencing plots display the average abundance from three to five mice. Detailed 115 strain information is listed in Supplementary Tables 4 and 6. *p*-values with statistical significance 116 (assessed by two-tailed Student's *t* test) are indicated: **p* < 0.05, ***p* < 0.01, ****p* < 0.001; ns, 117 not significant.

120 Supplementary Fig. 9. Representative flow cytometry gating strategies. (a) IgA-coated

121 bacteria in stool were defined as SYBR⁺IgA⁺. (b) IgA-secreting B cells in the LP of small and

122 large intestines were defined as Live $CD45^{+}IgA^{+}B220^{-}$.

124 Supplementary tables

Supplementary Table 1. Information for each bacterial strain.

Phylum	Species	Strain
Bacteroidetes	Bacteroides ovatus	ATCC®8483
Bacteroidetes	Bacteroides caccae	ATCC®43185
Bacteroidetes	Bacteroides thetaiotaomicron	ATCC®VPI5482
Bacteroidetes	Bacteroides vulgatus	ATCC®8482
Firmicutes	Ruminococcus gnavus	ATCC®29149
Firmicutes	Clostridium bolteae	ATCC®BAA-613
Actinobacteria	Collinsella aerofaciens	ATCC® 25986
Proteobacteria	Escherichia coli	ATCC®K-12 MG1655

128 Supplementary Table 2. Details for different *B. ovatus* strains.

Phylum	Species	Strain	Strain Abbreviation
Bacteroidetes	Bacteroides ovatus	BSD2780_12_0875_150380_E1	B. ovatus A
Bacteroidetes	Bacteroides ovatus	1001095IJ_161003_A6	B. ovatus B
Bacteroidetes	Bacteroides ovatus	1001283B150210_160208_F9	B. ovatus C
Bacteroidetes	Bacteroides ovatus	1001217B_150727_E1	B. ovatus D
Bacteroidetes	Bacteroides ovatus	ATCC_8483	B. ovatus E
Bacteroidetes	Bacteroides ovatus	BSD3178_07_1175_160815_A10	B. ovatus F
Bacteroidetes	Bacteroides ovatus	BSD3448_08_0949_C3	B. ovatus G
Bacteroidetes	Bacteroides ovatus	1001099B_141217_E5	B. ovatus H
Bacteroidetes	Bacteroides ovatus	1001275B_160808_G11	B. ovatus I
Bacteroidetes	Bacteroides ovatus	1001713B_170207_170306_D4	B. ovatus J
Bacteroidetes	Bacteroides ovatus	J1101437_171009_F12	B. ovatus K
Bacteroidetes	Bacteroides ovatus	1001302B_F3	B. ovatus L
Bacteroidetes	Bacteroides ovatus	1001136B_E5	B. ovatus M
Bacteroidetes	Bacteroides ovatus	1001271B_150615_H2	B. ovatus N
Bacteroidetes	Bacteroides ovatus	1001262B_160229_F6	B. ovatus O
Bacteroidetes	Bacteroides ovatus	1001175B_160314_D1	B. ovatus P
Bacteroidetes	Bacteroides ovatus	BSD2780_06_1687_150420_H2	B. ovatus Q
Bacteroidetes	Bacteroides ovatus	1001254J_160919_B1	B. ovatus R
Bacteroidetes	Bacteroides ovatus	BSD2780_06_1688b_171218_A7	B. ovatus S

131 Supplementary Table 3. % dissimilarity of genomic DNA sequences amongst various *B*.

ovatus strains.

		Different <i>B. ovatus</i> strains																		
		D	В	L	К	Α	R	0	J	Ν	Р	Q	Е	S	F	М	1	С	G	н
	D	0.00	0.83	0.85	0.73	0.72	0.72	0.73	0.73	0.74	0.74	0.74	0.74	0.74	0.70	0.73	0.73	0.73	0.74	0.74
	В	0.83	0.00	0.47	0.61	0.62	0.62	0.61	0.72	0.69	0.68	0.68	0.71	0.71	0.73	0.73	0.71	0.72	0.73	0.73
	L	0.85	0.47	0.00	0.67	0.67	0.63	0.64	0.68	0.69	0.70	0.70	0.71	0.70	0.73	0.71	0.72	0.73	0.73	0.72
	К	0.73	0.61	0.67	0.00	0.40	0.39	0.38	0.52	0.46	0.45	0.45	0.46	0.47	0.47	0.49	0.47	0.47	0.47	0.48
	A	0.72	0.62	0.67	0.40	0.00	0.33	0.33	0.52	0.48	0.47	0.48	0.50	0.49	0.48	0.52	0.49	0.49	0.49	0.49
	R	0.72	0.62	0.63	0.39	0.33	0.00	0.03	0.50	0.46	0.47	0.47	0.50	0.48	0.48	0.52	0.50	0.51	0.51	0.52
strains	0	0.73	0.61	0.64	0.38	0.33	0.03	0.00	0.51	0.46	0.46	0.46	0.49	0.49	0.47	0.51	0.49	0.50	0.51	0.51
	J	0.73	0.72	0.68	0.52	0.52	0.50	0.51	0.00	0.32	0.31	0.32	0.30	0.30	0.49	0.49	0.48	0.49	0.47	0.48
ovatus	Ν	0.74	0.69	0.69	0.46	0.48	0.46	0.46	0.32	0.00	0.09	0.09	0.27	0.29	0.46	0.42	0.40	0.43	0.43	0.44
	Р	0.74	0.68	0.70	0.45	0.47	0.47	0.46	0.31	0.09	0.00	0.05	0.25	0.26	0.46	0.43	0.41	0.42	0.42	0.42
nt B.	Q	0.74	0.68	0.70	0.45	0.48	0.47	0.46	0.32	0.09	0.05	0.00	0.25	0.27	0.46	0.43	0.41	0.42	0.42	0.43
Different	Е	0.74	0.71	0.71	0.46	0.50	0.50	0.49	0.30	0.27	0.25	0.25	0.00	0.12	0.44	0.43	0.42	0.42	0.42	0.43
Dif	S	0.74	0.71	0.70	0.47	0.49	0.48	0.49	0.30	0.29	0.26	0.27	0.12	0.00	0.46	0.45	0.45	0.44	0.43	0.43
	F	0.70	0.73	0.73	0.47	0.48	0.48	0.47	0.49	0.46	0.46	0.46	0.44	0.46	0.00	0.40	0.41	0.41	0.40	0.41
	М	0.73	0.73	0.71	0.49	0.52	0.52	0.51	0.49	0.42	0.43	0.43	0.43	0.45	0.40	0.00	0.19	0.21	0.20	0.20
	1	0.73	0.71	0.72	0.47	0.49	0.50	0.49	0.48	0.40	0.41	0.41	0.42	0.45	0.41	0.19	0.00	0.11	0.11	0.11
	С	0.73	0.72	0.73	0.47	0.49	0.51	0.50	0.49	0.43	0.42	0.42	0.42	0.44	0.41	0.21	0.11	0.00	0.11	0.10
	G	0.74	0.73	0.73	0.47	0.49	0.51	0.51	0.47	0.43	0.42	0.42	0.42	0.43	0.40	0.20	0.11	0.11	0.00	0.07
	н	0.74	0.73	0.72	0.48	0.49	0.52	0.51	0.48	0.44	0.42	0.43	0.43	0.43	0.41	0.20	0.11	0.10	0.07	0.00

135 Supplementary Table 4. Multiplex cocktails of *B. ovatus* strains used in MT.

Cocktail name	Strain
	B. ovatus B
B. ovatus 4M	B. ovatus C
D. Ovalus 410	B. ovatus E
	B. ovatus F
	B. ovatus B
	B. ovatus C
	B. ovatus E
B. ovatus 8M	B. ovatus F
D. Ovalus ow	B. ovatus A
	B. ovatus H
	B. ovatus J
	B. ovatus K

138 Supplementary Table 5. Bacterial strains in synthetic cocktail of diverse bacterial species

139 (8member community).

Phylum	Species	Strain	Strain Abbreviation
Bacteroidetes	Bacteroides ovatus	BSD2780_06_1687_150420_H2	B. ovatus Q
Bacteroidetes	Bacteroides caccae	ATCC®43185	B. caccae
Bacteroidetes	Bacteroides thetaiotaomicron	ATCC®VPI5482	B. theta.
Bacteroidetes	Bacteroides vulgatus	ATCC®8482	B. vulgatus
Firmicutes	Ruminococcus gnavus	ATCC®29149	R. gnavus
Firmicutes	Clostridium bolteae	ATCC®BAA-613	C. bolteae
Actinobacteria	Collinsella aerofaciens	ATCC® 25986	C. aero.
Proteobacteria	Escherichia coli	ATCC®K-12 MG1655	E. coli

141

142 Supplementary Table 6. Bacterial composition in different microbiota arrayed culture

143 collections.

Library Name	Phylum	Species	Strain	Strain Abbreviation
	Bacteroidetes	Bacteroides eggerthii	1001175st1_B5_1001175B_160314	B. eggerthii
	Bacteroidetes	Bacteroides fragilis	1001175st1_C3_1001175B_160314	B. fragilis
	Bacteroidetes	Bacteroides intestinalis	1001175st1_A4_1001175B_160314	B. intestinalis
	Bacteroidetes	Bacteroides ovatus	1001175st1_E11_1001175B_160314	B. ovatus
	Bacteroidetes	Bacteroides thetaiotaomicron	1001175st1_E5_1001175B_160314	B. theta.
	Bacteroidetes	Bacteroides uniformis	1001175st1_F6_1001175B_160314	B. uniformis
	Bacteroidetes	Bacteroides vulgatus	1001175st1_C6_1001175B_160314	B. vulgatus
	Actinobacteria	Bifidobacterium longum	1001175st1 G10 1001175B 160314	B. longum
	Firmicutes	Clostridium 1001175sp1	1001175st1_A10_1001175B_160314	Clostridium
	Firmicutes	Clostridium clostridioforme	1001175st1 C5 1001175B 160314	C. clostridioforme
	Firmicutes	Clostridium perfringens	1001175st1_F9_1001175B_160314	C. perfringens
	Firmicutes	Dorea longicatena	1001175st1_H1_1001175B_160314	D. longicatena
HuLib1175B	Firmicutes	Enterococcus avium	1001175st1_D6_1001175B_160314	E. avium
	Proteobacteria	Escherichia coli	1001175st1 F3 1001175B 160314	E. coli F3
	Proteobacteria	Escherichia coli	1001175st2_F4_1001175B_160314	E. coli F4
	Proteobacteria	Escherichia coli	1001175st3_A2_1001175B_160314	E. coli A2
	Firmicutes	Lachnospiraceae 1001136sp1	1001175st1 C9 1001175B 160314	Lachnospiraceae
	Firmicutes	Lactobacillus 1001175sp1	1001175st1_D8_1001175B_160314	Lactobacillus
	Bacteroidetes	Parabacteroides merdae	1001175st1 A1 1001175B 160314	P. merdae
	Firmicutes	Roseburia 1001271sp1	1001175st1 E3 1001175B 160314	Roseburia
	Firmicutes	Ruminococcus 1001175sp1	1001175st1 E1 1001175B 160314	Ruminococcus
	Firmicutes	Streptococcus 1001175sp1	1001175st1 H6 1001175B 160314	Streptococcus H6
	Firmicutes	Streptococcus 1001283sp2	1001175st1 H3 1001175B 160314	Streptococcus H3
	Firmicutes	Streptococcus anginosus	1001175st1 H11 1001175B 160314	S. anginosus
	Firmicutes	Anaerofustis stercorihominis	1001271st1 D3 1001271B 150615	A. stercorihominis
	Bacteroidetes	Bacteroides ovatus	1001271st1 H2 1001271B 150615	B. ovatus
	Bacteroidetes	Bacteroides uniformis	1001271st1 A10 1001271B 150615	B. uniformis
	Bacteroidetes	Bacteroides vulgatus	1001271st1 G7 1001271B 150615	B. vulgatus
	Actinobacteria	Bifidobacterium adolescentis	1001271st1_A4_1001271B_150615	B. adolescentis
	Actinobacteria	Bifidobacterium bifidum	1001271st1 H11 1001271B 150615	B. bifidum
HuLib1271b	Actinobacteria	Bifidobacterium longum	1001271st1_B4_1001271B_150615	B. longum
	Actinobacteria	Bifidobacterium pseudocatenulatum	1001271st1 F3 1001271B 150615	B. pseudocatenulatum
	Firmicutes	Clostridium 1001271sp1	1001271st1_H5_1001271B_150615	Clostridium
	Actinobacteria	Collinsella aerofaciens	1001271st1_C3_1001271B_150615	C. aerofaciens
	Firmicutes	Eubacterium rectale	1001271st1_63_1001271B_150615	E. rectale
	Firmicutes	Ruminococcus obeum	1001271st1_F12_1001271B_150615	R. obeum
	Bacteroidetes	Alistipes shahii	BSD2780061688st1 A10 BSD2780061688b 171218	A. shahii
	Bacteroidetes	Bacteroides caccae	BSD2780061689st1_A10_BSD2780061688b_171218	B. caccae
	Bacteroidetes	Bacteroides ovatus	BSD2780061688st1_C6_BSD2780061688b_171218	B. ovatus
	Bacteroidetes	Bacteroides uniformis	BSD2780061689st1_C6_BSD2780061688b_171218 BSD2780061689st1_G7_BSD2780061688b_171218	B. uniformis
	Actinobacteria	Bifidobacterium animalis	BSD2780061688st1_G7_BSD2780061688b_171218 BSD2780061688st1_E5_BSD2780061688b_171218	B. animalis
	Actinobacteria	Bifidobacterium bifidum	BSD2780061688st1 G1 BSD2780061688b 171218	B. bifidum
	Actinobacteria		BSD2780061688st2_H1_BSD2780061688b_171218	
		Bifidobacterium longum		B. longum
	Firmicutes	Clostridium BSD2780061688sp2	BSD2780061688st1_H5_BSD2780061688b_171218	Clostridium E5
L.I.1. 0700 00h	Firmicutes	Clostridium BSD2780061688sp3	BSD2780061688st1_E8_BSD2780061688b_171218	Clostridium E8
HuLib2780_88b	Firmicutes	Clostridium bartlettii	BSD2780061688st1_A9_BSD2780061688b_171218	C. bartlettii
	Firmicutes	Clostridium hylemonae	BSD2780061688st1_A6_BSD2780061688b_171218	C. hylemonae
	Firmicutes	Clostridium perfringens	BSD2780061688st3_G3_BSD2780061688b_171218	C. perfringens
	Firmicutes	Clostridium symbiosum	BSD2780061688st1_G6_BSD2780061688b_171218	C. symbiosum
	Actinobacteria	Collinsella aerofaciens	BSD2780061688st1_F5_BSD2780061688b_171218	C. aerofaciens
	Actinobacteria	Collinsella species	BSD2780061688st1_H8_BSD2780061688b_171218	C. species
	Firmicutes	Enterococcus 1001136sp1	BSD2780061688st2_D3_BSD2780061688b_171218	Enterococcus
	Firmicutes	Enterococcus faecalis	BSD2780061688st3_G10_BSD2780061688b_171218	E. faecalis
	Firmicutes	Enterococcus faecium	BSD2780061688st2_C8_BSD2780061688b_171218	E. faecium
	Firmicutes	Pseudoflavonifractor BSD2780061688sp1	BSD2780061688st1 E11 BSD2780061688b 171218	Pseudoflavonifractor

144

Supplementary Table 7. Detailed information about various bacterial strains.

Phylum	Species	Strain	Strain Abbreviation		
Bacteroidetes	Bacteroides ovatus	ATCC®8483	B. ovatus E		
Bacteroidetes	Bacteroides caccae	ATCC®43185	B. caccae A		
Bacteroidetes	Bacteroides caccae	1001285I_161205_F12	B. caccae B		
Bacteroidetes	Bacteroides caccae	BSD3178_07_1176_160815_A7	B. caccae C		
Bacteroidetes	Bacteroides thetaiotaomicron	ATCC®VPI5482	B. theta. A		
Bacteroidetes	Bacteroides thetaiotaomicron	BSD2780_12_0875b_A6	B. theta. B		
Bacteroidetes	Bacteroides thetaiotaomicron	BSD2780_06_1689_150309_F9	B. theta. C		
Bacteroidetes	Bacteroides vulgatus	ATCC®8482	B. vulgatus A		
Bacteroidetes	Bacteroides vulgatus	BSD2780_12_0874b_170522_A7	B. vulgatus B		
Bacteroidetes	Bacteroides vulgatus	1001271B_150615_G7	<i>B. vulgatus</i> C		
Bacteroidetes	Parabacteroides johnsonii	DSMZ_18315	P. johnsonii		
Bacteroidetes	Bacteroides intestinalis	DSMZ_17393	B. intestinalis		
Bacteroidetes	Bacteroides fragilis	J1001437_171009_C3	B. fragilis		