bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

Scalable multiple whole-genome alignment and locally collinear
block construction with SibeliaZ

Ilia Minkin*' and Paul Medvedev'! 23

'Department of Computer Science and Engineering, The Pennsylvania State University
2Department of Biochemistry and Molecular Biology, The Pennsylvania State University
3Center for Computational Biology and Bioinformatics, The Pennsylvania State University

Abstract

Multiple whole-genome alignment is a fundamental and challenging problems in bioinformat-
ics. Despite many ongoing successes, today’s methods are not able to keep up with the growing
number, length, and complexity of assembled genomes. Approaches based on using compacted
de Bruijn graphs to identify and extend anchors into locally collinear blocks hold the potential
for scalability, but current algorithms still do not scale to mammalian genomes. We present a
novel algorithm SibeliaZ-LCB for identifying collinear blocks in closely related genomes based
on the analysis of the de Bruijn graph. We further incorporate it into a multiple whole-genome
alignment pipeline called SibeliaZ. SibeliaZ shows drastic run-time improvements over other
methods on both simulated and real data, with only a limited decrease in accuracy. On sixteen
recently assembled strains of mice, SibeliaZ runs in under 12 hours, while other tools could not
run to completion for even eight mice, given a week. SibeliaZ makes a significant step towards
improving scalability of multiple whole-genome alignment and collinear block reconstruction
algorithms and will enable many comparative genomics studies in the near future.

1 Introduction

Multiple whole-genome alignment is the problem of identifying all the high-quality multiple local
alignments within a collection of assembled genome sequences. It is a fundamental problem in
bioinformatics and forms the starting point for most comparative genomics studies, such as re-
arrangement analysis, phylogeny reconstruction, and the investigation of evolutionary processes.
Unfortunately, the presence of high-copy repeats and the sheer size of the input make multiple
whole-genome alignment extremely difficult. While current approaches have been successfully ap-
plied in many studies, they are not able to keep up with the growing number and size of assembled
genomes (Earl et al., 2014). The multiple whole-genome alignment problem is also closely related
to the synteny reconstruction problem and to the questions of how to best represent pan-genomes
— we elaborate on the connection in Supplementary Note 1.

There are two common strategies to tackle the whole-genome alignment problem (Dewey and
Pachter, 2006). The first one is based on finding pairwise local alignments (Altschul et al., 1990,
1997; Schwartz et al., 2003; Harris, 2007; Kent, 2002) and then extending them into multiple
local alignments (Blanchette et al., 2004; Dubchak et al., 2009a; Angiuoli and Salzberg, 2011;

*ium125Q@psu.edu
Tpashadag@cse.psu.edu

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

Paten et al., 2011). While this strategy is known for its high accuracy, a competitive assesment
of multiple whole-genome alignment methods (Alignathon, Earl et al. (2014)) highlighted several
limitations. First, many algorithms either do not handle repeats by design or scale poorly in their
presence, since the number of pairwise local alignments grows quadratically as a function of a
repeat’s copy number. In addition, many algorithms use a repeat database to mask high-frequency
repeats. However, these databases are usually incomplete and even a small amount of unmasked
repeats may severely degrade alignment performance. Second, the number of pairwise alignments
is quadratic in the number of genomes, and only a few existing approaches could handle more than
ten fruit fly genomes (Earl et al., 2014). Therefore, these approaches are ill-suited for large numbers
of long and complex mammalian genomes, such as the recently assembled 16 strains of mice (Lilue
et al., 2018).

Alternatively, anchor based strategies can be applied to decompose genomes into locally collinear
blocks (Darling et al., 2004). These are blocks that are free from non-linear rearrangements, such
as inversions or transpositions. Once such blocks are identified, they can independently be globally
aligned (Darling et al., 2004; Dewey, 2007; Paten et al., 2008; Darling et al., 2010; Minkin et al.,
2013a). Such strategies are generally better at scaling to handle repeats and multiple genomes since
they do not rely on the computationally expensive pairwise alignment.

A promising strategy to find collinear blocks is based on the compacted de Bruijn graph (Raphael
et al., 2004; Pham and Pevzner, 2010; Minkin et al., 2013b) (we note that the de Bruijn graph is also
used in genome assembly, and we elaborate on the connection in Supplementary Note 1). Though
these approaches do not work well for divergent genomes, they remain fairly accurate for closely
related genomes. For example, Sibelia (Minkin et al., 2013b) can handle repeats and works for many
bacterial genomes; unfortunately, it does not scale to larger genomes. However, the last three years
has seen a breakthrough in the efficiency of de Bruijn graph construction algorithms (Marcus et al.,
2014; Chikhi et al., 2016; Baier et al., 2016; Minkin et al., 2017). The latest methods can construct
the graph for tens of mammalian genomes in minutes rather than weeks. We therefore believe the
de Bruijn graph approach holds the most potential for enabling scalable multiple whole-genome
alignment of closely related genomes.

In this paper, we describe a novel algorithm SibeliaZ-LCB for identifying collinear blocks in
closely related genomes, where the evolutionary distance to the closest common ancestor is no
more than 9 PAM units (equivalently, 0.085 substitutions per site). SibeliaZ-LCB is based on the
analysis of the compacted de Bruijn graph and uses a graph model of collinear blocks similar to
the “most frequent paths” introduced by Cleary et al. (2017). This allows it to maintain a simple,
static, data structure, which scales easily and allows simple parallelization. Thus, SibeliaZ-LCB
overcomes a bottleneck of previous state-of-the-art de Bruijn graph-based approaches (Pham and
Pevzner, 2010; Minkin et al., 2013a), which relied on a dynamic data structure which was expensive
to update. Further, we extend SibeliaZ-LCB into a multiple whole-genome aligner called SibeliaZ.
SibeliaZ works by first constructing the compacted de Bruijn graph using our previoulsy published
TwoPaCo tool (Minkin et al., 2017), then finding locally collinear blocks using using SibeliaZ-LCB,
and finally, running a multiple-sequence aligner (spoa, Lee et al. (2002)) on each of the found blocks.
To demonstrate the scalability and accuracy of our method, we compute the multiple whole-genome
alignment for a collection of recently assembled strains of mice. We also use simulations to test
how our method works under different conditions, including various levels of divergence between
genomes and different parameter settings.

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

2 Results

2.1 Accuracy evaluation metrics and strategy

Evaluation of multiple whole-genome aligners is a challenging problem in its own right and we
therefore chose to use the practices outlined in the Alignathon (Earl et al., 2014) competition
as a starting point. They present several approaches to assess the quality of a multiple whole-
genome alignment. Ideally it is best to compare an alignment against a manually curated gold
standard; unfortunately, such a gold standard does not exist. The first approach to deal with the
lack of a gold standard is to generate simulated genomes for which the true alignment is known,
though evolution simulators have their own limitations. The second approach is to use statistical
measures (Prakash and Tompa, 2007; Kim and Ma, 2011; Sela et al., 2015) to evaluate the quality
of the alignment without external ground-truth information. The third approach is to use external
biological information, like gene annotations and homologies, to evaluate the alignments. This
way an alignment can be evaluated in a biological context, but the external information usually
represents only a fraction of the homology relationships between all genome basepairs. The fourth
approach is to evaluate the quality of downstream analysis that uses the alignment; however, these
results tend to be specific to the type of downstream analysis and do not generalize well.

Following the footsteps of the Alignathon project, we first evaluated SibeliaZ on simulated data.
We employed their precision and recall metrics, as implemented by the mafTools package (Earl et al.,
2014). For these metrics, alignment is viewed as an equivalence relation. We say that two positions
in the input genomes are equivalent if they originate from the same position in the genome of their
recent common ancestor. We denote by H the set of all equivalent position pairs, participating in
the “true” alignment. Let A denote the relation produced by an alignment algorithm. The accuracy
of the alignment is then given by recall(A) =1 —|H \ A|/|H| and precision(A) =1—|A\ H|/|A]|,
where \ denotes set difference.

To evaluate accuracy on real data, we relied on the third approach described above and compared
our results against annotations of protein-coding genes. In addition to computing recall as defined
above, we also measured coverage, which is the percent of the genome sequence that is included
in the alignment. We could not measure the precision directly, since the annotation only included
genes. A good proxy for precision could have been a statistical analysis of the alignment blocks (i.e.
the second approach), implemented by the the PSAR tool (Kim and Ma, 2011). However, Earl et al.
(2014) showed that PSAR score does not have a linear correlation with the true precision. Instead,
we define our own score, corresponding to the percentage of nucleotide pairs that are identical in
an alignment column. In an alignment of highly-similar genomes that has high precision, we expect
that the column scores in the alignment blocks are very high. Formally, given a column C' of a
multiple whole-genome alignment, its score f(C') is computed as follows:

1) =¥ Y re=w/('3)

zeC yel

The variable I[x = y] in the formula above is equal to 1 only if both z and y are the same valid
DNA characters and 0 otherwise.

2.2 Evaluated tools

We benchmarked the performance of SibeliaZ against three other programs. First, we compared
SibeliaZ with its predecessor Sibelia (Minkin et al., 2013b), the state-of-the-art de Bruijn-graph-
based synteny finder. To do so, we created a pipeline analogous to SibeliaZ, consisting of the

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

original Sibelia and the global aligner spoa. Although Sibelia is a program for finding synteny,
it is highly flexible and it is possible to tune its parameters to mimic the multiple whole-genome
alignment setting. Second, we compared against Progressive Cactus (Paten et al., 2011) and
MultiZ+TBA (Blanchette et al., 2004), two multiple whole-genome aligners that were shown to
have superior sensitivity compared to other approaches and could scale to the large flies datasets in
the Assemblathon. Other multiple aligners (Dubchak et al., 2009b; Darling et al., 2010; Angiuoli
and Salzberg, 2011) benchmarked in the Alignathon could not handle a dataset of 20 flies and
hence are unlikely to scale to a mammalian dataset. We also chose to not run Mercator (Dewey,
2007) since it requires a set of gene exons as input and hence solves a different problem: in this
paper we focus on computing the whole-genome alignment directly from the nucleotide sequences
without using external information. The details about the tools’ parameters, as well as the exact
command lines used, are given in Supplementary Note 2.

2.3 Sixteen mice genomes

We evaluated the ability of SibeliaZ to align real genomes by running it on several datasets consisting
of varying number of mice genomes. We retrieved 16 mice genomes available at GenBank (Ben-
son et al., 2017) and labeled as having a “chromosome” level of assembly. They consist of the
mouse reference genome and 15 different strains assembled as part of a recent study (Lilue et al.,
2018) (Table S1). The genomes vary in size from 2.6 to 2.8 Gbp and the number of scaffolds
(between 2,977 and 7,154, except for the reference, which has 377). We constructed 4 datasets of
increasing size to test the scalability of the pipelines with respect to the number of input genomes.
The datasets contain genomes 1-2, 1-4, 1-8 and 1-16 from Table S1, with the genome 1 being the
reference genome. We compared against Cactus, since Sibelia does not support such large datasets
and Multiz+TBA did not finish on even the smallest dataset (we terminated the program after a
week).

The running times of SibeliaZ and Cactus are shown on Figure 1 (Table S2 contains the raw
values). On the dataset consisting of 2 mice, SibeliaZ is more than 10 times faster than Cactus,
while on 4 mice SibeliaZ is more than 20 times faster. On the datasets with 8 and 16 mice, SibeliaZ
completed in under 8 and 12 hours, respectively, while Cactus did not finish (we terminated it after
a week). For SibeliaZ, we note that the global alignment with spoa takes 42-62% of the running
time, and, for some applications (e.g. rearrangement analysis), this step may be omitted to save
time.

To evaluate the recall of the results, we retrieved all pairs of homologous protein-coding gene
sequences from Ensembl and then computed pairwise global alignments between them using LA-
GAN (Brudno et al., 2003). The alignment contains both orthologous and paralogous genes, though
most of the paralagous pairs come from the well-annotated mouse reference genome. We removed
any pairs of paralogous genes with overlapping coordinates, as these were likely mis-annotations,
as confirmed by Ensembl helpdesk (Perry, 2018). We made these filtered alignments available for
public download from our github repository'. We define the nucleotide identity of an alignment
as the number of matched nucleotides divided by the length of the shorter gene. The distribution
of nucleotide identities as well as the coverage of the annotation is shown in Figure S1. In our
analysis, we binned pairs of genes according to their nucleotide identity. We used this annotation
alignment to evaluate the recall of SibeliaZ and Cactus.

"https://github.com/medvedevgroup/SibeliaZ/blob/master/DATA. txt

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

I
104 | SlbellaZ
B Cactus

103

rr7

777

777
777 7
7

102

T T T T
N

10!

7 777 777 777
77 277 777 777
100 ol 77| il 2l

Dataset

Running time in minutes (log scale)

Figure 1: Running times of the different pipelines on the mice datasets (on a log scale). Each bar
corresponds to a pipeline. The bar of SibeliaZ is split according to its components: spoa (hatch
fill), TwoPaCo (solid fill), and SibeliaZ-LCB (empty fill). Raw numbers are shown in Table S2.

In Table 1, we show the properties of the alignments found by SibeliaZ and Cactus. To compute
recall, we only used nucleotides from gene pairs having at least 90% identity in the annotation.
For the datasets where Cactus was able to complete, SibeliaZ has significantly better recall on
paralogous pairs, but slightly worse recall on orthologous pairs. The coverage of both tools is
roughly the same, but SibeliaZ has only about half the blocks, indicating a less fragmented align-
ment. SibeliaZ’s coverage and recall decreases only slightly going up to the whole 16 mice dataset,
indicating that the recall scales with the number of genomes.

Recall
Dataset N. of blocks Coverage Ort. nt. pairs Par. nt. pairs
SibeliaZ Cactus | SibeliaZ | Cactus | SibeliaZ | Cactus | SibeliaZ | Cactus
1-2 2,031,729 | 4,228,063 0.88 0.85 0.96 0.97 0.78 0.19
1-4 2,587,182 | 6,133,662 0.86 0.84 0.96 0.97 0.80 0.03
1-8 3,059,048 - 0.87 - 0.96 - 0.73 -
1-16 4,373,981 - 0.86 - 0.95 - 0.71 -

Table 1: Properties of the multiple whole-genome alignments computed by SibeliaZ and Cactus
from the mice datasets.

We further investigated how the recall behaved as a function of nucleotide identity, for the two-
mice dataset (Figure 2). As expected, recall decreased with nucleotide identity, though SibeliaZ’s
recall remained above 90% for nucleotides from similar (80-100% identity) orthologous genes. Cac-
tus generally retains slightly higher recall, except for the case of nucleotides from highly similar
(> 90%) paralogous genes. In this case, Cactus’ recall drops to below 20%, while SibeliaZ’s recall
is 78%.

We also observed that for both Cactus and SibeliaZ, the recall for paralagous nucleotides is
lower than for orthologous ones (Figure 2). Based on manual inspection, we hypothesize that the
problem is likely due to the complex repeat structures embedded inside these genes. These repeat

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

structures of high and varying multiplicity make alignment of those genes challenging, despite their
high nucleotide identity.

Orthologs Paralogs
1 | | | | | | 1 | | |
1Sibeliaz
sl 01 Cactus | 08l |
— 061 1 — 06 8
(0] T
3 9
“ 04) 1% 04) .
i “ ‘ ‘ | i ‘ ‘ |
0 T I T I I I I I I 0 T T \. \. _\I l\I I I I
0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.
Annotation nucleotide identity Annotation nucleotide identity

Figure 2: Recall of orthologous (left panel) and paralogous (right panel) nucleotide pairs, on the
1-2 mouse dataset.

Since the gene annotation constitutes only a fraction of all the homologous nucleotides in the
genomes, it cannot be used to access the precision. However, as a sanity check, we compute the
scores f(C) for the alignment columns (Figure S2). SibeliaZ’s alignment has a high degree of
similarity: 90% of the alignment columns have a score f(C') a of 0.9 or above, which is what we
would expect from aligning closely related genomes.

We wanted to further understand SibeliaZ’s ability to recall homologous nucleotides from large
gene families. Aligning genes having many copies is a challenging task since they generate a tangled
de Bruijn graph. To investigate, we took each pair of genes in the two-mice dataset that have greater
than 90% nucleotide identity. We then identify any other homologous genes that had a nucleotide
identity of at least 90% to one of the genes in the pair. We refer to the number of such genes as
the inferred family size of the gene pair, which roughly corresponds to the gene family size in the
biological sense. Figure S3 then shows the recall of nucleotide pairs with respect to the inferred
family size of their respective genes. The recall shows a lot of variance with respect to the inferred
family size but does exhibit a general trend of decreasing with increasing family size. The largest
bin (with inferred family size of 72) corresponds to a single large gene family on the Y chromosome
(PTHR19368) and actually has relatively high recall.

2.4 Generation of simulated data

We used simulated data in order to understand the role of a dataset’s genomic distance and of
our parameter settings, directly measure the precision of the tools, and, in general, to compare
SibeliaZ against tools which could not scale to the mice genomes. We used ALF (Dalquen et al.,
2011) for simulation because it simulates point mutations as well as genome-wide events such as
inversions, translocations, fusions/fissions, gene gain/loss, and lateral gene transfer. Furthermore,
ALF is useful for benchmarking as it also produces an alignment which represents the true homology

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

between the genomes, making it possible to directly assess the precision and recall. We simulated
nine datasets, each one consisting of 10 bacterial genomes. FEach genome is composed o 1500 genes
and of size approximately 1.5 Mbp. We used such relatively small datasets to allow us to efficiently
explore the parameter space. Each of the 9 datasets corresponded to a different parameter for
distance from the root to leaf species, which we varied from 1 to 24 PAM units. PAM units are
a standard measure of divergence between genomes used in the literature. The PAM range used
here corresponds to a substitution rate from 0.01 to 0.2. For genome-wide events, we used ALF’s
default rates. Links to download the the simulation parameter files, the simulated genomes, and
their alignments are are available at the github repository?.

To measure performance on a larger simulated dataset, we also used a simulated dataset from
Alignathon with small root-to-leaf divergence, called “primates” in (Earl et al., 2014). In this
dataset, the distance from the root to the leaves in the phylogenetic tree is equal to 0.02 substitutions
per site, or approximately 2 PAM units. The dataset has four genomes, with four chromosomes
each, and each genome is approximately 185 Mbp in size. We did not use the other simulated
dataset in (Earl et al., 2014) since its divergence is outside the target range of SibeliaZ.

T T T T T T T
Ly % | gl AN |
0351 | <098]
= 0
0 ¥l P)
9 Y o 2
12 o
091 1o
—o— Cactus I i
—»— Sibelia & \® 0.6
—6— SibeliaZ
0.85 | MultiZ+TBA |
| | [| | | | | | | | | |
0) 10 15 20 25 0) 10 15 20 25
Genomic distance (PAM) Genomic distance (PAM)

Figure 3: Alignment accuracy of the different pipelines on the simulated bacterial datasets. The
vertical line at 9 PAM denotes the target range of SibeliaZ.

2.5 Effect of divergence and k-mer size

SibeliaZ-LCB is based on the analysis of genomic k-mers using the de Bruijn graph. When the
divergence between genomes is high, the frequency of shared k-mers is not sufficiently high to
recover homologous regions. To test the level of divergence which SibeliaZ can tolerate, we looked at
SibeliaZ’s precision and recall for the various simulated datasets (Figure 3). For these experiments,
k = 15 was used. This should give the best attainable accuracy, since lower values would generate
many genomic locations with identical k-mers due to simple chance. Figure 3 shows that the recall

“https://github.com/medvedevgroup/SibeliaZ/blob/master/DATA. txt

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

10°

- I I I I I]
= L. SibeliaZ B Cactus |
% 10*| |MESibelia-based pipeline ™ MultiZ+TBA £
2 :]
~ " i
ot 103 3 E
3 - .
= N b
S - .]
£ 10} - I E
v i 21 | 1
E i 7l I |
= - 2| ||P .
@ 10t} 2| [P E
= B Zl |2 i
c - A 7 |
S i 2| |7 i
s A

1 3

Dataset

Figure 4: Running times of the different pipelines on the simulated datasets. Each bar corresponds
to a pipeline. The hatched part of SibeliaZ and the Sibelia pipeline indicates the part of the running
time taken up by spoa. Numerical labels correspond to the datasets simulated by ALF and denote
the genomic divergence, while ”P” denotes the “primates” dataset from Alignathon.

deteriorates significantly for PAM values greater than 9, hence we do to recommend SibeliaZ for
such divergent datasets.

The overall runtime (Figure 4 and Table S3) generally decreases with increasing divergence,
albeit only slightly after PAM of 6. Memory use also generally decreases up to PAM of 12, after
which it remains constant (Table S4). However, the divergence of the genomes does not seem to
consistently affect the graph construction (TwoPaCo) and block finding (SibeliaZ-LCB) runtime
and memory usage. The overall decrease in these resources’ utilization is due to the global alignment
component of SibeliaZ (spoa). This is expected, since higher divergence results in blocks that are
shorter and hence easier for spoa to align.

Figure S4 shows the effects of k on recall and precision on the datasets within our target PAM
range. As expected, increasing k leads to lower recall, more so for larger PAM. Precision remains
mostly unchanged. However, for large datasets such as the mice, smaller values of k£ lead to denser
graphs and hence more time- and memory-consuming performance. We therefore recommend two
values of k for the practical usage. For a small dataset, k = 15 is the best choice since it yields the
highest recall (we used this for the bacterial data). This value is impractical for large datasets due
to runtime, so we recommend setting £k = 25 in those cases as it provides a reasonable trade-off
between accuracy and required computational resources (we used this for the mouse and primates
data). In general, we recommend the user to use Figures 3 and S4 to guide the application of
SibeliaZ to their own dataset.

2.6 Comparison against other tools on simulated data

SibeliaZ was substantially faster than other tools on all datasets (Figure 4 and Table S3). Using
the 9 PAM dataset as an example, SibeliaZ was nine times faster than the Sibelia pipeline, 43
times faster than Cactus and 23 times faster than Multiz+TBA. On the larger primates dataset,
SibeliaZ was 17 times faster than Cactus and consumed 33% less memory, while both Sibelia and
MultiZ+TBA could not finish in a week. Comparing only the collinear block reconstruction times

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

(i.e. excluding spoa), SibeliaZ-LCB (including graph construction) is at least 17 times faster than
Sibelia.

The speed improvements come at a small cost to accuracy (Figure 3). Focusing on SibeliaZ
intended range of < 9 PAM units, SibeliaZ’s recall is 1-2 percentage points lower than Cactus,
about the same as Sibelia, and 2-4 points higher than MultiZ+TBA. SibeliaZ’s precision was about
the same as Cactus and Sibelia, and 0.5-1 percentage points higher than MultiZ+TBA. On the
primates, SibeliaZ had the same precision as Cactus (95%) but slightly lower recall (95% versus
97%). Overall, our simulations indicate that Cactus is still the preferred tool when the datasets
are smaller and there is enough access to compute resources.

3 Methods

3.1 Preliminaries

First, we will define the de Bruijn graph and related objects. Given a positive integer k, we define a
multigraph G(s, k) as the de Bruijn graph of s. The vertex set consists of all substrings of s of length
k, called k-mers. For each substring x of length k+1 in s, we add a directed edge from u to v, where
u is the prefix of z of length k and v the suffix of of length k. Each occurrence of a (k + 1)-mer
yields a unique multiedge, and every multiedge corresponds to a unique location in the input. Two
edges are parallel if they have the same endpoints. Parallel edges are not considered identical. The
de Bruijn graph can also be constructed from a set of sequences S = {s1,...,s,}. This graph is
the union of the graphs constructed from the individual strings: G(S,k) = U;<;<,, G(si, k). See
Fig. 5 for an example. o

The set of a multiedges in a graph G is denoted by E(G). We write (u,v) to denote a multiedge
from vertex u to v. A walk p is a sequence of multiedges ((v1,v2), (v2,v3),. .., (Vjp|—1,v)p|)) Where
each multiedge (v;,v;+1) belongs to E(G). The length of the walk p, denoted by |p|, is the number
of multiedges it contains. The last multiedge of a walk p is denoted by end(p) and the first one by
start(p). A simple path is a walk that visits each vertex at most once. We use the term path to
refer to a simple path.

In a de Bruijn graph, a given multiedge = was generated by a (k + 1)-mer starting at some
position j of some string s;. We denote gen(z) = i and pos(x) = j. For a multiedge z, its
successor, denoted by next(z), is a multiedge y such that gen(z) = gen(y) and pos(y) = pos(z)+1.
Note that a successor does not always exist. A walk p = (z1,..., 7)) is genomic if next(x;) = ;41
for 1 < i < |p| — 1. In other words, a walk is genomic if it was generated by a substring in the
input. The b-extension of a genomic walk p is the longest genomic walk ¢ = (y1, ...,y) such that
y1 = next(end(p)) and |g| < b. The b-extension of a walk p is uniquely defined and usually has
length b, unless p was generated by a substring close to an end of an input string. The concatenation
of two walks x and y is a walk (if it exists) zy consisting of multiedges of x followed by multiedges
of y.

3.2 Problem formulation

In this section, we will define the collinear block reconstruction problem in de Bruijn graphs. A
collinear block is a set of multiedge-disjoint genomic walks with length at least m, where m is
a parameter. We call walks constituting a collinear block collinear walks. In order to quantify
how well collinear walks correspond to homologous sequences, we will define a collinearity score
of a collinear block. Our problem will then be to find a set of collinear blocks that are pairwise
multiedge-disjoint and have the largest score.

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

Figure 5: The de Bruijn graph and an example of a collinear block. (a) The graph built from
strings “GCACGTCC” and “GCACTTCC”, with k = 2. The two strings are reflected by the blue
and red walks, respectively. This is an example of a collinear block from two walks. There are four
bubbles. The bubble formed by vertices “AC” and “TC” describes a substitution within the block,
while three other bubbles are formed by parallel edges. The blue and red walks form a chain of
four consecutive bubbles. (b) An example of more complex block, where we have added a third
sequence “CACGTTCC” (green) to the input. We can no longer describe the block as a chain of
bubbles, as they overlap to form tangled structures. Instead, we consider the path in the graph
(dashed black) that corresponds to a hypothetical common ancestor of the three collinear walks.
The ancestral path shares many vertices with the three extant walks, and each walk forms its own
chain with the ancestral path. The task of finding good collinear blocks can then be framed as
finding ancestral paths that form good chains with the extant walks.

4,

d,

Figure 6: An example of computing the score of a walk p (solid) relative to an ancestral path
Pa = q1G2q3 (dashed). The path p forms a chain with the subpath ¢y of p, while subpaths ¢; and g3
form “hanging ends”. We count the length of p and subtract lengths of the hanging ends. Thus,
the score f(pg,p)=4—1—1=2.

10

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

We capture the pattern of two homologous collinear walks through the concept of chains
and bubbles. A bubble is a subgraph corresponding to a possible mutation flanked by equal se-
quences. Formally, a pair of walks x and y form a bubble (z,y) if all of the following holds: (1)
x and y have common starting and ending vertices; (2) = and y have no common vertices ex-
cept the starting and ending ones; (3) |z| < b and |y| < b where b is a parameter. A chain ¢ =
((z1,v1), (z2,92), - - -, (Tn,yn)) is a sequence of bubbles such that x = 122 ...z, and y = Y192 ... Yn
are walks in a de Bruijn graph. In other words, a chain is a series of bubbles where each bubble
is a “proper” continuation of the previous one. Note that two parallel edges form a bubble and a
chain arising from equal sequences corresponds to a series of such bubbles. For an example of a
bubble and a chain, see Fig. 5.

The subgraph resulting from more than two collinear walks can be complex, and there are
several ways of capturing it. Our approach is to give a definition that naturally leads itself to
an algorithm. As homologous sequences all originate from some common ancestral sequence s,
there should be some ancestral path p, = G(s4, k) through the graph forming a long chain with
each walk p in the collinear block. We require the chains to be longer than a predefined threshold
to avoid confusing spuriously similar sequences with true homologs. At the same time, a collinear
walk may only partially form a chain with the ancestral path, leaving “hanging ends” at the ends of
the ancestral path, which is undesirable since it implies that these graphs originate from dissimilar
sequences. We formalize this intuition by introducing a scoring function quantifying how well an
ancestral path describes a collection of the collinear walks. The function rewards long chains formed
by the ancestral path and a collinear walk and penalizes the hanging ends. Given an ancestral path
pq and a genomic walk p, let go be the longest subpath of p, that forms a chain with p. Then, we
can write p, = q1¢2q3. Recall that m is the parameter denoting the minimum length of a collinear
block, and b is the maximum bubble size (in practice, we typically set m = b). We define the score

f(pa,p) as:

0, if [p| <m
f(Pa;p) = 1 Ipl = (laa| + lgs])?, if [p| = m and |q1],|q3] < b
—00, if [p| > m and (Jg1| > b or |g3| > b)

Note that the longer the part of p, forming a chain with p, the higher the score is. At the
same time, the score is reduced if the collinear walks leave hanging ends ¢; and g3 — the parts
of p, not participating in the chain. The penalty induced by these ends is squared to remove
spuriously similar sequences from from the collinear block. This form of scoring function showed
better performance compared to other alternatives. Walks where the hanging ends are too long are
forbidden under this score function (given a score of —o0), and walks that weave through p, but
are too short are ignored (given a score of 0). Fig. 6 shows an example of computing the score.
The collinearity score of a collinear block is given by

f(P) =maxy_ f(pa,p),

peEP

where p, can be any path (not necessarily genomic). In other words, we are looking for a path
forming longest chains with the collinear walks and thus maximizes the score. The collinear blocks
reconstruction problem is to find a set of collinear blocks P such that) p.p f(P) is maximum and
no two walks in P share a multiedge. Note that the number of collinear blocks is not known in
advance. For an example of a complex collinear block in the de Bruijn graph and an ancestral path
capturing it, refer to Fig 5b.

11

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

3.3 The collinear blocks reconstruction algorithm

Algorithm 1 Find-collinear-blocks
Input: strings S, integers k, b and m
Output: a set of edge-disjoint subgraphs of G(S, k) representing collinear blocks

P+ > Collinear blocks

2. G+ G(S,k) > Construct the multigraph

3: for all distinct pairs (u,v) € E(G) do > Check possible seeds

4: Initialize the current ancestral path p, with (u,v)

5: P+ > Sorted set of collinear walks forming chains with p,

6: Piest < 0 > Highest-scoring collinear block induced by p,

7: for multiedges = € E(G) parallel to (u,v) not marked as used do

8: Add to P a new collinear walk consisting of x

9: while f(P) > 0 do > Extend the ancestral path as far as possible

10: Q@ < {q] q is the b-extension of a p € P}

11: wp < last vertex in p,

12: t < a vertex, reachable from wg via a genomic walk, that is visited by the most walks
of Q.

13: Let r € @ be the shortest walk from wq to t

14: Denote the vertices of r as wo, w1, ..., wy, with wy, =1

15: for i < 1 to |r| do

16: Append (w;—1,w;) to the ancestral path p,

17: P « Update-collinear-walks(P, w;)

18: if f(P) > f(Ppest) then

19: Poest — P

20: if f(Pbest) > 0 then

21: P+ PU{Poest}

22: Mark multiedges visited by walks of Ppest as used

23: return P

Our algorithm’s main pseudocode is shown in Algorithm 1 and its helper function in Algorithm 2.
First, we describe the high-level strategy. The main algorithm is greedy and works in the seed-
and-extend fashion. It starts with an arbitrary multiedge in the graph, and tries to extend it into
an ancestral path that induces a collinear block with the highest possible collinearity score Ppest.
If the block has a positive score, then Py.g is added to our collection of collinear blocks P. The
algorithm then repeats, attempting to build a collinear block from a different multiedge seed. New
collinear blocks cannot use multidges belonging to previously discovered collinear blocks. This
process continues until all possible multiedges are considered as seeds. The algorithm is greedy
in a sense that once a block is found and added to P, it cannot be later changed to form a more
optimal global solution.

To extend a seed into a collinear block P, we first initialize the collinear block with a walk
for each unused multiedge parallel to the seed (including the seed) (lines 7 to 8). These parallel
multiedges represent the different occurences of the seed string in the input and, hence, form the
initial collinear block. We then proceed in phases, where each phase is an iteration of the while
loop (lines 9 to 19). During each phase, the ancestral path p, is extended using a walk r of length
at most b (lines 10 to 14). Next, we try to extend each of the collinear walks in a way that forms
chains with the extended p, (lines 15 to 19). The extension of a seed into a collinear block is also

12

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

Algorithm 2 Update-collinear-walks
Input: A sorted set of collinear walks P, a vertex w
Output: Updated set P
1. for multiedges x € E(G) ending at w not marked as used do
2: Let p € P be a walk such that its b-extension ¢ contains = and pos(end(p)) is maximized >
Find a walk extendable with z

3: if such p exists then
4: Truncate g so that end(q) = x
5: Append p with ¢ > Lengthen the chain that p forms with p,
6: else
7 Add a new walk consisting of the multiedge x to P
8: return P
ﬁ/p\ KJq\
OO =250
pll

Figure 7: Ilustration for Algorithm 2. A collinear walk p (solid) requires an update after the
ancestral path p, is extended with the dashed edge (wp,w). The path p, now ends at the vertex
w, which has another incoming edge z. Since x is a part of b-extension of p (denoted by ¢), p can
be appended with ¢ to form a longer chain and boost the collinearity score.

a greedy process, since we only change p, and the walks in P by extending them and never by
changing any edges. Finally, we check that the collinearity score for our extended block is still
positive — if it is, we iterate to extend it further, otherwise, we abandon our attempts at further
extending the block. We then recall the highest scoring block that was achieved for this seed and
save it into our final result P (lines 20 to 22).

To pick the walk r by which to extend p,, we use a greedy heuristic (lines 10 to 14). First,
we pick the vertex ¢ which we want to extension to reach (lines 10 to 12). We limit our search to
those vertices that can be reached by a genomic walk from the end of p, and greedily chose the
one that is most often visited by the b-extensions of the collinear walks in P. Intuitively, we hope
to maximize the number of collinear walks that will form longer chains with p, after its extension
and thereby boost the collinearity score. We then extend p, using the shortest b-extension of the
walks in P to reach t. We chose this particular heuristic because it showed superior performance
comparing to other possible strategies.

Once we have selected the genomic walk r by which to extend p,, we must select the extensions
to our collinear walks P that will form chains with p,r. This is done by the function Update-
collinear-blocks (Algorithm 2). We extend the walks to match r by considering the vertices of r
consecutively, one at a time. To extend to a vertex w, we consider all the different locations of w
in the input (each such location is represented by a multiedge x ending at w). For each location,
we check if it can be reached by a b-extension from an existing p € P. If yes, then we extend p, so
as to lengthen the chain that it forms with p,. If there are multiple collinear walks that reach w,
we take the nearest one. If no, then we start a new collinear walk using just z. Fig. 7 shows an
example of updating a collinear walk and Fig. 8 shows a full run of the algorithm for a single seed.

13

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

cG i GT
G S
CCT e TT
(a)
CG i GT
g @‘e TC | cC
LT o TT
(b)

(d)

Figure 8: An example of running Algorithm 1 on the graph from Fig. 5b, starting from edge GC —
CC as the seed. Each subfigure shows the content of the collinear block P and the ancestral path.
The collinear walks are solid, the ancestral path is dashed, and the rest of the graph is dotted.
Subfigure (a) shows the state of these variables after the initialization; subfigures (b-d) show the
state after the completion of each phase.

Our description here only considers extending the initial seed to the right, i.e. using out-going
edges in the graph. However, we also run the procedure to extend the initial seed to the left, using
the in-coming edges. The case is symmetric and we therefore omit the details.

3.4 Other considerations

For simplicity of presentation, we have described the algorithm in terms of the ordinary de Bruijn
graph; however, it is crucial for running time and memory usage that the graph is compacted
first. Informally, the compacted de Bruijn graph replaces each non-branching path with a single
edge. Formally, the vertex set of the compacted graph consist of vertices of the regular de Bruijn
graph that have at least two outgoing (or ingoing) edges pointing at (incoming from) different

vertices. Such vertices are called junctions. Let £ = vq,...,v, be the list of k-mers corresponding
to junctions, in the order they appear in the underlying string s. The edge set of the compacted
graph consists of multiedges {vi — wvo,v2 — v3,...,v,—1 — v,}. We efficiently construct the

14

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

compacted graph using our previously published algorithm TwoPaCo (Minkin et al., 2017).

This transformation maintains all the information while greatly reducing the number of edges
and vertices in the graph. This makes the data structures smaller and allows the algorithm to
“fast-forward” through non-branching paths, instead of considering each (k + 1)-mer one by one.
Our previous description of the algorithm remains valid, except that the data structures operate
with vertices and edges from the compacted graph instead of the ordinary one. The only necessary
change is that when we look for an edge y parallel to x, we must also check that y and x spell the
same sequence. This is always true in an ordinary graph but not necessarily in a compacted graph.

An important challenge of mammalian genomes is that they contain high-frequency (k + 1)-
mers, which can clog up our data structures. To handle this, we modify the algorithm by skipping
over any junctions that correspond to k-mers occurring more than a times; we call a the abundance
pruning parameter. Specifically, prior to constructing the edge set of the compacted de Bruijn
graph, we remove all high abundance junctions from the vertex set. The edge set is constructed as
before, but using this restricted list of junctions as the starting point. This strategy offers a way to
handle high-frequency repeats at the expense of limiting our ability to detect homologous blocks
that occur more than a times.

The organization of our data in memory is instrumental to achieving high performance. To
represent the graph, we use a standard adjacency list representation, annotated with position
information and other relevant data. We also maintain a list of the junctions in the paragraph
above in the order they appear in the input sequences, thereby supporting next() queries. The
walks in the collinear block P are stored as a dynamic sorted set, implemented as a binary search
tree. The search key is the genome/position for the end of each walk. This allows performing
binary search in line 2 of Algorithm 2.

Another aspect that we have ignored up until now is that DNA is double-stranded and collinear
walks can be reverse-complements of each other. If s is a string, then let 5 be its reverse complement.
We handle double strandedness in the natural way by using the comprehensive de Bruijn graph,
which is defined as Geomp(s,k) = G(s, k) U G(5,k) (Minkin et al., 2017). Our algorithm and
corresponding data structures can be modified to work with the comprehensive graph with a few
minor changes which we omit here.

Our implementation is parallelized by exploring multiple seeds simultaneously, i.e. parallelizing
the while loop at line 9 of Algorithm 1. This loop is not embarrassingly parallelizable, since two
threads can start exploring two seeds belonging to the same ancestral path. In such a case, there
will be a collision on the data structure used to store used marks. To account for this situation,
we create locks on multiedges so that when a collision is detected, one thread truncates its block
accordingly. We utilized the Intel Threading Building Blocks (TBB) library for implementing
parallelism.

4 Discussion

In this paper, we presented a novel whole-genome-alignment pipeline SibeliaZ based on an algorithm
for identifying locally collinear blocks. The algorithm analyses the compacted de Bruijn graph
and jointly reconstructs the path corresponding to the ancestral copy of each collinear block and
identifies the induced collinear walks. We assume that the collinear walks share many vertices with
this ancestral path and form so-called chains of bubbles. Each ancestral path and the induced block
is found greedily, using a scoring function that measures how close this ancestral path is to all the
sequences in the block.

The main strength of our approach is speed — we achieve drastic speedups on a small dataset

15

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

compared to the state-of-the-art Progressive Cactus aligner (Paten et al., 2011). On 16 mice
genomes, SibeliaZ ran in under 15 hours, while Progressive Cactus is not able to complete for
even 8 mice genomes, within seven days. Although Progressive Cactus showed better recall on the
simulated data, especially for highly divergent genomes, SibeliaZ was able to recall more position
pairs belonging to highly-similar paralogous genes on the real dataset. While Cactus remains the
best option for smaller or highly divergent datasets, SibeliaZ is the only tool that can scale to many
large, closely-related genomes using reasonable computing resources.

We have demonstrated how SibeliaZ-LLCB can be incorporated into a whole-genome alignment
pipeline, but it can be also used in any application which requires the construction of collinear blocks
without the alignment. Such applications mostly stem from studies of genome rearrangements,
which can be applied to study breakpoint reuse (Pevzner and Tesler, 2003b), ancestral genome
reconstruction (Kim et al., 2017) and phylogenetic studies (Luo et al., 2012). Locally collinear
blocks are also a required input for scaffolding tools using multiple reference genomes (Kim et al.,
2013; Kolmogorov et al., 2014; Chen et al., 2016; Aganezov and Alekseyev, 2016). For such ap-
plications output of SibeliaZ-LCB can be used either directly or after postprocessing by a synteny
block generator (Pham and Pevzner, 2010; Proost et al., 2011).

There are several important research directions. Improving the accuracy to match that of
Sibelia and Cactus would be beneficial to downstream analyses. A formal analysis of SibeliaZ-LCB’s
runtime would also be interesting, but doing it in a useful way is a challenge. The worst-case run-
time does not reflect the actual running time; moreover, we observed that the run-time depends on
the multi-thread synchronization, which is challenging to model. However, it would be interesting
if such a time analysis can be performed parametrized by the crucial properties of the structure of
the input. We also did not investigate how close to an optimal solution our greedy heuristic gets.
One way to do this would be to find an optimal ancestral path using exhaustive enumeration, but
the search space even for a small realistic example is too big. We suspect that a polynomical time
optimal solution is not possible, but the computational complexity of our problem is open.

SibeliaZ is the first multiple whole-genome aligner that can run in reasonable time on a dataset
such as the 16 mouse genomes analyzed in this paper. With ongoing initiatives like the Vertebrate
Genomes Project and the insectbk, tens of thousands species will have a reference genome available.
Furthermore, the sequencing and assembly of various sub-species and strains will be the next logical
step for many comparative genomics studies. SibeliaZ makes a significant leap towards the analysis
of such datasets.

Acknowledgements

We would like to thank Mikhail Kolmogorov for useful suggestions on the empirical evaluation of
our algorithm; Robert Harris for his help with running MultiZ; and the Ensembl support team for
helping us with retrieving the gene annotations.

Funding

This work has been supported in part by NSF awards DBI-1356529, CCF-1439057, 11S-1453527,
and IIS-1421908 to PM. Research reported in this publication was supported by the National
Institute Of General Medical Sciences of the National Institutes of Health under Award Number
R01GM130691. The content is solely the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health.

16

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

References

Aganezov, S. and Alekseyev, M. A. (2016). Multi-genome scaffold co-assembly based on the analysis of gene orders and genomic repeats.
In International Symposium on Bioinformatics Research and Applications, pages 237-249. Springer.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. Journal of molecular
biology, 215(3), 403-410.

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997). Gapped blast and psi-blast:
a new generation of protein database search programs. Nucleic acids research, 25(17), 3389-3402.

Angiuoli, S. V. and Salzberg, S. L. (2011). Mugsy: fast multiple alignment of closely related whole genomes. Bioinformatics, 27(3),
334-342.

Baier, U., Beller, T., and Ohlebusch, E. (2016). Graphical pan-genome analysis with compressed suffix trees and the burrows-wheeler
transform. Bioinformatics, 32(4), 497-504.

Beller, T. and Ohlebusch, E. (2016). A representation of a compressed de bruijn graph for pan-genome analysis that enables search.
Algorithms for Molecular Biology, 11(1), 20.

Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Ostell, J., Pruitt, K. D., and Sayers, E. W. (2017). Genbank. Nucleic
acids research.

Blanchette, M., Kent, W. J., Riemer, C., Elnitski, L., Smit, A. F., Roskin, K. M., Baertsch, R., Rosenbloom, K., Clawson, H., Green,
E. D., et al. (2004). Aligning multiple genomic sequences with the threaded blockset aligner. Genome research, 14(4), 708-715.

Brudno, M., Do, C. B., Cooper, G. M., Kim, M. F., Davydov, E., Green, E. D., Sidow, A., Batzoglou, S., Program, N. C. S., et al.
(2003). Lagan and multi-lagan: efficient tools for large-scale multiple alignment of genomic dna. Genome research, 13(4), 721-731.

Chen, K.-T., Chen, C.-J., Shen, H.-T., Liu, C.-L., Huang, S.-H., and Lu, C. L. (2016). Multi-car: a tool of contig scaffolding using
multiple references. BMC bioinformatics, 17(17), 469.

Chikhi, R., Limasset, A., and Medvedev, P. (2016). Compacting de bruijn graphs from sequencing data quickly and in low memory.
Bioinformatics, 32(12), i201-i208.

Cleary, A., Kahanda, I., Mumey, B., Mudge, J., and Ramaraj, T. (2017). Exploring frequented regions in pan-genomic graphs. In
Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, pages

89-97. ACM.

Dalquen, D. A., Anisimova, M., Gonnet, G. H., and Dessimoz, C. (2011). Alfa simulation framework for genome evolution. Molecular
biology and evolution, 29(4), 1115-1123.

Darling, A. C., Mau, B., Blattner, F. R., and Perna, N. T. (2004). Mauve: multiple alignment of conserved genomic sequence with
rearrangements. Genome research, 14(7), 1394-1403.

Darling, A. E., Mau, B., and Perna, N. T. (2010). progressivemauve: multiple genome alignment with gene gain, loss and rearrangement.
PloS one, 5(6), e11147.

Dewey, C. N. (2007). Aligning multiple whole genomes with mercator and mavid. In Comparative genomics, pages 221-235. Springer.

Dewey, C. N. and Pachter, L. (2006). Evolution at the nucleotide level: the problem of multiple whole-genome alignment. Human
Molecular Genetics, 15(suppl-1), R51-R56.

Doerr, D. and Moret, B. M. (2018). Sequence-based synteny analysis of multiple large genomes. In Comparative Genomics, pages
317-329. Springer.

Dubchak, I., Poliakov, A., Kislyuk, A., and Brudno, M. (2009a). Multiple whole-genome alignments without a reference organism.
Genome research, 19(4), 682-689.

Dubchak, I., Poliakov, A., Kislyuk, A., and Brudno, M. (2009b). Multiple whole genome alignments without a reference organism.
Genome research, pages gr-081778.

Earl, D., Nguyen, N., Hickey, G., Harris, R. S., Fitzgerald, S., Beal, K., Seledtsov, I., Molodtsov, V., Raney, B. J., Clawson, H., Kim, J.,
Kemena, C., Chang, J.-M., Erb, 1., Poliakov, A., Hou, M., Herrero, J., Kent, W. J., Solovyev, V., Darling, A. E., Ma, J., Notredame,
C., Brudno, M., Dubchak, I., Haussler, D., and Paten, B. (2014). Alignathon: a competitive assessment of whole-genome alignment

methods. Genome Research, 24(12), 2077-2089.

Ernst, C. and Rahmann, S. (2013). Pancake: a data structure for pangenomes. In OASIcs-OpenAccess Series in Informatics,
volume 34. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Harris, R. S. (2007). Improved pairwise alignment of genomic DNA. The Pennsylvania State University.

17

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

Holley, G., Wittler, R., and Stoye, J. (2016). Bloom filter trie: an alignment-free and reference-free data structure for pan-genome
storage. Algorithms for Molecular Biology, 11(1), 3.

Kent, W. J. (2002). Blatthe blast-like alignment tool. Genome research, 12(4), 656-664.

Kim, J. and Ma, J. (2011). Psar: measuring multiple sequence alignment reliability by probabilistic sampling. Nucleic Acids Research,
39(15), 6359-6368.

Kim, J., Larkin, D. M., Cai, Q., Zhang, Y., Ge, R.-L., Auvil, L., Capitanu, B., Zhang, G., Lewin, H. A., Ma, J., et al. (2013).
Reference-assisted chromosome assembly. Proceedings of the National Academy of Sciences, 110(5), 1785-1790.

Kim, J., Farré, M., Auvil, L., Capitanu, B., Larkin, D. M., Ma, J., and Lewin, H. A. (2017). Reconstruction and evolutionary history
of eutherian chromosomes. Proceedings of the National Academy of Sciences, 114(27), E5379-E5388.

Kolmogorov, M., Raney, B., Paten, B., and Pham, S. (2014). Ragouta reference-assisted assembly tool for bacterial genomes. Bioin-
formatics, 30(12), i302-i309.

Laing, C., Buchanan, C., Taboada, E. N., Zhang, Y., Kropinski, A., Villegas, A., Thomas, J. E., and Gannon, V. P. (2010). Pan-genome
sequence analysis using panseq: an online tool for the rapid analysis of core and accessory genomic regions. BMC' bioinformatics,

11(1), 461.

Lee, C., Grasso, C., and Sharlow, M. F. (2002). Multiple sequence alignment using partial order graphs. Bioinformatics, 18(3),
452-464.

Lilue, J., Doran, A. G., Fiddes, I. T., Abrudan, M., Armstrong, J., Bennett, R., Chow, W., Collins, J., Collins, S., Czechanski, A.,
et al. (2018). Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci. Nature

genetics, 50(11), 1574.

Luo, H., Arndt, W., Zhang, Y., Shi, G., Alekseyev, M. A., Tang, J., Hughes, A. L., and Friedman, R. (2012). Phylogenetic analysis of
genome rearrangements among five mammalian orders. Molecular phylogenetics and evolution, 65(3), 871-882.

Marcus, S., Lee, H., and Schatz, M. C. (2014). Splitmem: a graphical algorithm for pan-genome analysis with suffix skips. Bioinfor-
matics, 30(24), 3476-3483.

Marschall, T., Marz, M., Abeel, T., Dijkstra, L., Dutilh, B. E., Ghaffaari, A., Kersey, P., Kloosterman, W., Makinen, V., Novak, A.,
et al. (2018). Computational pan-genomics: status, promises and challenges. Briefings in Bioinformatics, 19(1), 118-135.

Minkin, I., Pham, H., Starostina, E., Vyahhi, N., and Pham, S. (2013a). C-sibelia: an easy-to-use and highly accurate tool for bacterial
genome comparison. F'1000Research, 2.

Minkin, I., Patel, A., Kolmogorov, M., Vyahhi, N., and Pham, S. (2013b). Sibelia: A Scalable and Comprehensive Synteny Block
Generation Tool for Closely Related Microbial Genomes, pages 215—229. Springer Berlin Heidelberg, Berlin, Heidelberg.

Minkin, I., Pham, S., and Medvedev, P. (2017). Twopaco: an efficient algorithm to build the compacted de bruijn graph from many
complete genomes. Bioinformatics, 33(24), 4024-4032.

Ng, M.-P., Vergara, I. A., Frech, C., Chen, Q., Zeng, X., Pei, J., and Chen, N. (2009). Orthoclusterdb: an online platform for synteny
blocks. BMC bioinformatics, 10(1), 192.

Onodera, T., Sadakane, K., and Shibuya, T. (2013). Detecting superbubbles in assembly graphs. In International Workshop on
Algorithms in Bioinformatics, pages 338-348. Springer.

Paten, B., Herrero, J., Beal, K., Fitzgerald, S., and Birney, E. (2008). Enredo and pecan: genome-wide mammalian consistency-based
multiple alignment with paralogs. Genome research, 18(11), 1814-1828.

Paten, B., Earl, D., Nguyen, N., Diekhans, M., Zerbino, D., and Haussler, D. (2011). Cactus: Algorithms for genome multiple sequence
alignment. Genome Research, 21(9), 1512-1528.

Paten, B., Novak, A. M., Garrison, E., and Hickey, G. (2017). Superbubbles, ultrabubbles and cacti. In S. C. Sahinalp, editor, Research
in Computational Molecular Biology, pages 173-189, Cham. Springer International Publishing.

Perry, E. (2018). Personal communication.

Pevzner, P. and Tesler, G. (2003a). Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. Genome
research, 13(1), 37-45.

Pevzner, P. and Tesler, G. (2003b). Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution.
Proceedings of the National Academy of Sciences, 100(13), 7672-7677.

Pham, S. and Pevzner, P. (2010). Drimm-synteny: decomposing genomes into evolutionary conserved segments. Bioinformatics,
26(20), 2509-2516.

18

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

Prakash, A. and Tompa, M. (2007). Measuring the accuracy of genome-size multiple alignments. Genome biology, 8(6), R124.

Proost, S., Fostier, J., De Witte, D., Dhoedt, B., Demeester, P., Van de Peer, Y., and Vandepoele, K. (2011). i-adhore 3.0fast and
sensitive detection of genomic homology in extremely large data sets. Nucleic acids research, 40(2), ell-ell.

Raphael, B., Zhi, D., Tang, H., and Pevzner, P. (2004). A novel method for multiple alignment of sequences with repeated and shuffled
elements. Genome Research, 14(11), 2336-2346.

Sakharkar, M. K., Perumal, B. S., Sakharkar, K. R., and Kangueane, P. (2005). An analysis on gene architecture in human and mouse
genomes. In silico biology, 5(4), 347-365.

Schwartz, S., Kent, W. J., Smit, A., Zhang, Z., Baertsch, R., Hardison, R. C., Haussler, D., and Miller, W. (2003). Human-mouse
alignments with blastz. Genome research, 13(1), 103-107.

Sela, I., Ashkenazy, H., Katoh, K., and Pupko, T. (2015). Guidance2: accurate detection of unreliable alignment regions accounting
for the uncertainty of multiple parameters. Nucleic Acids Research, 43(W1), W7-W14.

Sheikhizadeh, S., Schranz, M. E., Akdel, M., de Ridder, D., and Smit, S. (2016). Pantools: representation, storage and exploration of
pan-genomic data. Bioinformatics, 32(17), i487-i493.

Tettelin, H., Masignani, V., Cieslewicz, M. J., Donati, C., Medini, D., Ward, N. L., Angiuoli, S. V., Crabtree, J., Jones, A. L., Durkin,
A. S., et al. (2005). Genome analysis of multiple pathogenic isolates of streptococcus agalactiae: implications for the microbial

pan-genome. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13950-13955.

Vernikos, G., Medini, D., Riley, D. R., and Tettelin, H. (2015). Ten years of pan-genome analyses. Current opinion in microbiology,
23, 148-154.

Zekic, T., Holley, G., and Stoye, J. (2018). Pan-genome storage and analysis techniques. In Comparative Genomics, pages 29-53.
Springer.

19

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

Supplementary Note 1 Other related work

A closely related problem to multiple whole-genome alignment is synteny reconstruction. In this
setting, genomes are decomposed into large blocks such that the gene order within each block is
preserved. This is similar to locally collinear blocks, but collinear blocks are usually smaller blocks
representing single genes or exons (or non-coding DNA). Collinear blocks can be viewed as high
resolution synteny blocks and, in general, the distinction between the two concepts can be blurry.
For a discussion on representation of synteny blocks at multiple scales, see Minkin et al. (2013b).
Synteny blocks are often reconstructed from anchors such as genes (Pevzner and Tesler, 2003a; Ng
et al., 2009; Pham and Pevzner, 2010; Proost et al., 2011) and, less commonly, from the nucleotide
sequences directly (Minkin et al., 2013b; Doerr and Moret, 2018).

A related active research area is data structures for representing pan-genomes (Tettelin et al.,
2005). A pan-genome as a collection of related genomes that are to be analyzed jointly. For a re-
view on computational pan-genomics, see (Vernikos et al., 2015; Marschall et al., 2018; Zekic et al.,
2018). Constructing a data structure for the efficient storage and querying of a pan-genome is re-
lated but tangential to the problem of identifying collinear blocks, which we consider in this paper.
Pan-genome data structures are concerned with efficiently representing the homology within the
pan-genome, while we focus on fast algorithms for obtaining such homologies. There is naturally
some overlap between the two areas, e.g. some pan-genome tools include a multiple whole-genome
alignment component (Ernst and Rahmann, 2013; Laing et al., 2010). Others use the de Bruijn
graph for representing the pan-genome (Marcus et al., 2014; Holley et al., 2016; Beller and Ohle-
busch, 2016; Sheikhizadeh et al., 2016). Our approach also relies on a de Bruijn graph, though we
use it as a technique to find collinear blocks rather than to represent them.

De Bruijn graphs are also used in genome assembly. Sequencing errors in reads often leave
patterns in the graph (e.g. bubbles) that are similar to those observed when de Bruijn graphs
are used for genome comparison. There has been some effort to characterize such patterns more
formally using superbubbles (Onodera et al., 2013), and the concepts were then generalized to

snarls and ultrabubbles in the context of representing variants in the genome graphs (Paten et al.,
2017).

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

Supplementary Note 2 Parameter details and command lines

We tried to find the optimal parameters for all tools. For Sibelia, which could only run on simulated
data, we used the parameter set designed to yield the highest sensitivity (called the “far” set in
Sibelia). Progressive Cactus requires a phylogenetic tree in addition to the input genomes. For
the simulated datasets, we used the real tree generated by the simulator; for the mice genomes, we
used the guide tree from (Lilue et al., 2018). Multiz+TBA were run with default parameters. We
could not compile the version of MultiZ+TBA publicly available for download and used a slightly
modified version provided by Robert S. Harris. For TwoPaCo and spoa, we set the parameters
following the guidelines provided with the respective software.

SibeliaZ’s parameter settings for k is described in the main text. For the abundance pruning
parameter, we recommend setting it as high as the compute resources allow. In our case, we used
a = 150. For the maximum length of a bubble’s branch (b), we observed that SibeliaZ-LCB is
robust for different values. We used b = 200 as the default as it led to high accuracy across all
tested ranges of k on our simulated data. For the minimum length of a collinear block, we set
m = 50 as a default, since this is smaller than 93.1% of the known mice exons (Sakharkar et al.,
2005) and, more generally, we do not expect most applications to be interested in blocks shorter
than 50nt.

We performed all experiments on a machine running Ubuntu 16.04.3 LTS with 512 GB of RAM
and a 64 core CPU Intel Xeon CPU E5-2683 v4. We were limited to using at most 32 threads at
any given time. Progressive Cactus was run with 32 threads, since the authors recommended to use
as many threads as possible for the best performance. MultiZ+TBA and Sibelia are both single-
threaded. (There were several submissions to Alignathon which used an extensively parallelized
MultiZ or TBA; unfortunately, the software packages used for those submissions are not available
publicly for download.) TwoPaCo and SibeliaZ-LCB were run with at most 16 threads. We note
that spoa is run on each block, and our software includes a wrapper to automate this.

Here are the exact command lines for the tools we ran.

TwoPaCo:
twopaco -k <k_value> -f <bloom_filter_size> -t 16 -o <dbg_graph> <genomes_file>
SibeliaZ-LCB:

SibeliaZ-LCB --fasta <genomes_file> --graph <dbg_graph> -o <output_directory>
-k <k_value> -b 200 -m 50 -a 150 -t 4

spoa:

spoa <input_fasta_file> -1 1 -r 1
Sibelia:

Sibelia <genomes_file> -o <output_directory> -s far --lastk 50 -m 50 --nopostprocess
MultiZ:

all_bz <guide_tree>
tba <guide_tree> *.*.maf <outputMafFile>

Progressive Cactus:

runProgressiveCactus.sh --maxThreads 32 <seqFile> <workDir> <outputHalFile>
source ./environment && hal2mafMP.py <outputHalFile> <outputMafFile>

All running times and memory usage numbers were obtained using the GNU time utility.

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

Tables and Figures

Orthologs Paralogs
107 E | | | | | | E 107 E | | | E
B |)] i]
1000 (B0 14 108
v - |In1-8 1 @ § 1
[y [|] L |
g 10°p |Dni-16 3 100
& i | ow i i
= 10 1= 10t E
g | 8 | 1
E 0%} 1 By
< B 1 2 § 1
101 L I I I] 101 L]
010203040506070809 010203040506070809
Annotation nucleotide identity Annotation nucleotide identity
Orthologs Paralogs
| | | 008 — | | | -
0.3 .
0.06 |- 8
(])
E" 0.2 . E’é’
% % 0.04 |- .
O o
0Ly | 1 002 ‘ ‘ |
0 ‘ ‘ ‘ R -II-lIIl‘ O |I ‘ I ‘I |I |I ‘II |Il||llll--
0102030405 06 07 08 09 0.1 020304 0506 0708 09
Annotation nucleotide identity Annotation nucleotide identity

Figure S1: Properties of the pairwise alignments constructed from pairs of homologous protein-
coding genes in the various mice datasets.

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

1 | |
I 12
081 I 14 |
In 18
ln1-16
5 06| —
o
)
2 o04f .
0.2 :
0 ml . ' 1

T T I T T T I T T
0.1 020304 05 0.6 0.7 08 0.9
Column score

Figure S2: Histogram of the column scores f(C') of the SibeliaZ alignment, for the various mice
datasets.

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

le3

Gene pairs

H
(= o
i
——i
1
f
]

0.8

UL

0.4 1

0.2 1 \I‘

0.0 1 =
T T
2 5 8 11 14 17 20 22 25 28 31 34 37 40 43 46 49 52 55 57 60 63 66 69 72
Inferred family size

——

Recall
= 1
—

1
—|

Figure S3: The recall as a function of inferred family size, using the two-mice dataset. The family

size is binned into 25 equally sized bins. The top histogram shows the number of gene pairs in each
bin.

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

1 T T T T T T T
00000000609 o0 00
099 L e o e By
0.95 b c
- 5
g 3
= 20990 |]
0.9 :
o1 MW
=3
6 WM/’N
9
0.85 1 | | | | | 09857\ | | | | | L]
‘ 15 20 25 30 35 40 45 15 20 25 30 35 40 45
k k

Figure S4: Effects of the parameter k£ on recall and precision, on the simulated bacterial datasets.
Each line corresponds to a dataset with the specified root-to-leaf divergence in PAM units. We

show curves only for datasests with divergence less or equal to 9 PAM as they corresponds to the
target range of SibeliaZ.

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

ID Strain Size (Mb) | N. Scaffolds | Accession number
1 C57BL/6J 2,819 336 GCA_000001635.8
2 | 129S1/SvIimJ 2,733 7,154 GCA_001624185.1
3 A/J 2,630 4,688 GCA_001624215.1
4 AKR/J 2,713 5,953 GCA_001624295.1
5 CAST/EiJ 2,654 2,977 GCA_001624445.1
6 CBA/J 2,922 5,466 GCA_001624475.1
7 DBA/2J 2,606 4,105 GCA_001624505.1
8 FVB/NJ 2,589 5,013 GCA_001624535.1
9 | NOD/ShiLtJ 2,982 5,544 GCA_001624675.1
10 | NZO/HiLtJ 2,699 7,022 GCA_001624745.1
11 | PWK/PhJ 2,560 3,140 GCA_001624775.1
12 WSB/EiJ 2,690 2,239 GCA_001624835.1
13 BALB/cJ 2,627 3,825 GCA_001632525.1
14 | C57BL/6NJ 2,807 3,894 GCA_001632555.1
15 C3H/HeJ 2,701 4,069 GCA_001632575.1
16 LP/J 2,731 3,499 GCA_001632615.1

Table S1: Properties of the assembled mice genomes available at GenBank.

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

Dataset SibeliaZ Cactus
TwoPaCo | SibeliaZ-LCB spoa Total

1-2 16 (35) 113 (23) 93 (127) | 222 (127) | 2,279 (38)

1-4 28 (35) 122 (47) 148 (127) | 298 (127) | 6,105 (90)

1-8 48 (35) 134 (80) 293 (129) | 475 (129) -

1-16 90 (35) 174 (153) 435 (134) | 699 (153) -

Table S2: Running time (minutes) and memory usage (gigabytes, in parenthesis) of SibeliaZ and
Cactus on the mice datasets. A dash in a column indicates that the program did not complete
within in a week.

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

Data SibeliaZ Sibelia-based Cactus Multiz
set TwoPaCo | SibeliaZ-LCB | spoa | Total | Sibelia | spoa | Total + TBA
1 5 1 58 64 107 126 | 233 1,285 688
3 6 2 85 93 155 103 | 258 1,214 662
6 6 2 12 20 253 21 274 1,134 652
9 6 2 21 29 253 20 273 1,254 661
12 6 3 10 19 271 12 283 1,282 690
15 7 3 10 20 279 12 291 1,150 680
18 7 3 14 24 304 8 312 1,148 731
21 6 2 9 17 261 10 271 1,275 704
24 6 3 11 20 302 9 311 1,164 707
P 110 173 918 | 1,201 - - - 21,234 -

Table S3: Running time (in seconds) on the simulated datasets. A dash in a column indicates that
the program did not complete within in a week.

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548123; this version posted February 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

Data SibeliaZ Sibelia-based Cactus Multiz
set TwoPaCo | SibeliaZ-LLCB | spoa | Total | Sibelia | spoa | Total + TBA
1 1,168 53 7,092 | 7,092 427 18,458 | 18,458 | 1,326 163
3 1,247 81 8,495 | 8,495 500 15,815 | 15,815 770 164
6 1,233 123 993 1,233 508 1,612 | 1,612 339 153
9 1,312 129 2,336 | 2,336 517 2,749 | 2,749 340 164
12 1,203 134 396 1,203 533 530 533 323 133
15 1,191 134 535 1,191 533 530 533 323 133
18 1,233 141 313 1,233 560 505 560 277 146
21 1,193 120 421 1,193 507 530 530 1,295 163
24 1,262 138 252 1,262 546 490 546 683 164
P 1,326 4,748 12,055 | 12,055 - - - 18,422 -

Table S4: Memory consumption (in megabytes) on the simulated datasets. A dash in a column
indicates that the program did not complete within in a week.

10

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

