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ABSTRACT 1 

A key aim for current genome-wide association studies (GWAS) is to interrogate the full 2 

spectrum of genetic variation underlying human traits, including rare variants, across populations. 3 

Deep whole-genome sequencing is the gold standard to capture the full spectrum of genetic 4 

variation, but remains prohibitively expensive for large samples. Array genotyping interrogates a 5 

sparser set of variants, which can be used as a scaffold for genotype imputation to capture variation 6 

across a wider set of variants. However, imputation coverage and accuracy depend crucially on 7 

the reference panel size and genetic distance from the target population.  8 

Here, we consider a strategy in which a subset of study participants is sequenced and the 9 

rest array-genotyped and imputed using a reference panel that comprises the sequenced study 10 

participants and individuals from an external reference panel. We systematically assess how 11 

imputation quality and statistical power for association depend on the number of individuals 12 

sequenced and included in the reference panel for two admixed populations (African and Latino 13 

Americans) and two European population isolates (Sardinians and Finns). We develop a 14 

framework to identify powerful and cost-effective GWAS designs in these populations given 15 

current sequencing and array genotyping costs. For populations that are well-represented in current 16 

reference panels, we find that array genotyping alone is cost-effective and well-powered to detect 17 

both common- and rare-variant associations. For poorly represented populations, we find that 18 

sequencing a subset of study participants to improve imputation is often more cost-effective than 19 

array genotyping alone, and can substantially increase genomic coverage and power.   20 
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INTRODUCTION 1 

Genome-wide association studies (GWAS) have detected thousands of common genetic 2 

variants associated with hundreds of complex diseases and traits1. A key aim for the next wave of 3 

GWAS is to interrogate the full spectrum of genetic variation underlying human genetic traits, 4 

including rare (minor allele frequency [MAF] < 0.5%) variants, across a wide range of human 5 

populations. Detecting association at rare variants requires both more comprehensive genomic 6 

coverage and sufficient sample size. Deep whole genome sequencing (WGS) is the gold standard 7 

method for capturing rare variation; however, even in the era of the $1,000 genome, large WGS 8 

association studies remain prohibitively expensive. Genotype imputation has been a mainstay of 9 

GWAS, providing increased genomic coverage from inexpensive array-based genotype call sets. 10 

While initial imputation studies only surveyed common variants (e.g.2), larger and more diverse 11 

reference panels now enable more accurate and comprehensive imputation of rare and low-12 

frequency (0.5% < MAF < 5%) variants across a wide range of populations (e.g.3).  13 

Imputation algorithms model haplotypes in the study sample as mosaics of haplotypes in a 14 

reference panel (e.g. from the International HapMap Project4 or 1000 Genomes Project5) to predict 15 

genotypes at untyped variants6. By increasing genomic coverage and accuracy, imputation 16 

increases statistical power to detect association, enables more complete meta-analysis of results 17 

from multiple studies, and facilitates the identification of causal variants through genetic fine-18 

mapping6; 7. Imputation coverage and accuracy depend crucially on the size of the reference panel 19 

and the genetic distance between reference and target populations6; 8. The largest current broadly 20 

available reference panels, e.g. from the Haplotype Reference Consortium9 (HRC) and UK10K 21 

project10, include tens of thousands of predominantly European individuals. These panels provide 22 

near complete imputation of genetic variation down to MAF~0.1% for many European 23 
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populations, but lower imputation quality for non-European and admixed populations and 1 

population isolates, particularly for rare and low-frequency variants11-13. The 1000 Genomes 2 

Project and HapMap panels include individuals from diverse worldwide populations, but provide 3 

more limited imputation coverage and accuracy due to their smaller sample sizes. 4 

Capturing rare variation across diverse populations is crucial to detect population 5 

differences in genetic risk factors, accurately predict genetic risk, and identify causal variants and 6 

biological mechanisms through trans-ethnic fine-mapping14; 15. Population-matched or multi-7 

ethnic reference panels can improve imputation quality and coverage for rare variants in GWAS 8 

of diverse populations11-13; 16-18; this approach has enabled discovery of novel loci and refinement 9 

of association signals for multiple populations and complex traits12; 19; 20. 10 

Here, we consider an approach in which a subset of study participants is whole genome 11 

sequenced and the rest are array-genotyped and imputed using an augmented reference panel that 12 

comprises the sequenced participants and individuals from an external reference panel21; 22. This 13 

hybrid sequencing-and-imputation strategy provides more comprehensive coverage than array 14 

genotyping alone, and is less costly than whole genome sequencing the entire sample. We and 15 

others have used this strategy18; 23-25, but no analysis of coverage, power, and cost-effectiveness 16 

has been carried out to date. Here, we assess how imputation coverage and power to detect 17 

association vary across genotyping arrays and as a functions of the number of population-matched 18 

individuals sequenced and included in the reference panel for two admixed populations (African 19 

Americans and Latino Americans) and two European population isolates (Sardinians and Finns) 20 

to identify powerful and cost-effective GWAS strategies in these populations. We also describe an 21 

interactive web-based tool to assist researchers in the design and planning of their own GWAS.22 
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MATERIALS AND METHODS 1 

We first describe WGS data sources used in our analysis. Next, we describe imputation 2 

strategies, and outline procedures and imputation quality metrics to compare these strategies. 3 

Finally, we present a novel method to estimate power for the sequencing-only, imputation-only, 4 

and sequencing-and-imputation strategies. For ease of presentation, we assume a dichotomous trait 5 

and a multiplicative disease model, although our findings generalize easily to continuous traits and 6 

other genetic models. 7 

Data Resources 8 

We used WGS data on 11,920 individuals to assess imputation quality across reference 9 

panel configurations and genotyping arrays for admixed populations and population isolates. For 10 

our analysis of admixed populations, we used WGS data on 3,412 African Americans (participants 11 

from the Jackson Heart Study) and 2,068 Latino Americans (participants of Puerto Rican and 12 

Mexican descent from the GALA II study and Costa Rican descent from the Genetic Epidemiology 13 

of Asthma in Costa Rica and CAMP studies) in the National Heart, Lung, and Blood Institute 14 

(NHLBI) Trans-Omics for Precision Medicine (TOPMed) WGS program. For our analysis of 15 

isolated populations, we used WGS data on 2,995 Finns (participants of the GoT2D, 1KGP, SISu, 16 

and Kuusamo studies) and 3,445 Sardinians (participants of the SardiNIA study) in the HRC. 17 

Procedures to Evaluate Imputation Coverage and Accuracy 18 

We considered three imputation strategies: (1) using sequenced study participants as a 19 

study-specific reference panel, (2) using an external reference panel alone (for this comparison, 20 

the HRC or HRC subset excluding individuals from the target population), and (3) using an 21 

augmented panel that comprises sequenced study participants and an external panel.  22 
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For African Americans, who are underrepresented in the current version 1.1 of the HRC, 1 

we constructed population-specific and HRC-augmented reference panels with 0 to 2,000 African 2 

Americans. For Latino Americans, we used the same approach but restricted the study-specific 3 

panel size to <1,500 due to the more limited available sample of sequenced Latino American 4 

individuals. For Finns and Sardinians, which are present in the HRC, we constructed augmented 5 

reference panels that comprised the 29,470 non-Finnish or 29,020 non-Sardinian individuals in the 6 

HRC together with 0 to 2,000 Finns or Sardinians from the HRC.  7 

 8 

Table 1. Genotyping Arrays used for Comparisons 9 

Array No. Marker Variants List Cost per Sample26 

Illumina Infinium Core 307K $49 

Illumina Infinium OmniExpress 710K $94 

Illumina Infinium Omni2.5 2.5M $172 

 10 

For each population, each imputation strategy, and each of three commonly-used 11 

genotyping arrays (Table 1), we used sequence-based genotype calls at marker variants present on 12 

the array as a scaffold for imputation using Minimac3, masking the remaining sequence-based 13 

genotype calls7. We then compared the imputed genotype dosages to the true (masked) genotypes 14 

to estimate (a) imputation 𝑟2, the squared Pearson correlation between true genotype and imputed 15 

dosage, and (b) imputation coverage, the proportion of variants with imputation 𝑟2> 0.3 and minor 16 

allele count (MAC) ≥ 5 (the MAC threshold used by the HRC panel9) in the reference panel. 17 
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Estimating Power to Detect Association using Empirical Imputation Quality Data 1 

 When sequenced individuals are included in the reference panel, power calculations should 2 

account for the interdependence between imputation 𝑟2 and the number of participants sequenced 3 

𝑛, and for the possibility that the variant is not imputable (absent in the reference panel or not 4 

imputed due to insufficient MAC, or filtered prior to association analysis due to imputation 𝑟2 5 

falling below a given threshold). While common variant associations are likely to be captured by 6 

LD proxy SNPs even when the causal variant is not directly genotyped or imputed, rare variant 7 

associations are much less likely to be captured by proxy SNPs27. Here, we assume that power to 8 

detect association for variants that are not imputable is zero. This assumption affects power 9 

calculations almost exclusively for rare variants, since common variants are almost uniformly 10 

imputable with large reference panels7; 9. 11 

We assume that the 𝑛 participants who are sequenced are randomly subsampled from the 12 

overall sample of 𝑛 + 𝑚 study participants, and that test statistics are calculated separately for the 13 

sequenced and imputed subsamples and combined using the effective sample size weighted meta-14 

analysis test statistic 𝑍𝑛𝑚 = 𝑐𝑛𝑚
1/2

𝑍𝑛
𝑠𝑒𝑞 + (1 − 𝑐𝑛𝑚)1/2𝑍𝑚

𝑖𝑚𝑝
, where 𝑐𝑛𝑚 = 𝑛/(𝑛 + 𝑟2𝑚). The 15 

asymptotic distribution of 𝑍𝑛𝑚 − 𝜂√𝑛 + 𝑟2𝑚 is normal with mean 0 and variance 1, where  𝑟2 is 16 

the squared correlation between imputed dosages and true genotypes, and 𝜂 is an effect size 17 

parameter which is equal to 0 under the null hypothesis of no association. The form of 𝜂 depends 18 

on the association model (e.g. additive, dominant, multiplicative), relative risk or odds ratio, MAF, 19 

and population prevalence and, for binary traits, the case-control ratio. Under an arbitrary 20 

association model for binary traits, we can write  21 

𝜂 =
2(𝑝𝑐𝑎𝑠𝑒 − 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙)

√(1 + 𝑠) (𝑣𝑐𝑎𝑠𝑒 +
1
𝑠 𝑣𝑐𝑜𝑛𝑡𝑟𝑜𝑙) + 4(𝑝𝑐𝑎𝑠𝑒 − 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙)2

 22 
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where 𝑝𝑐𝑎𝑠𝑒 and 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 are the alternate allele frequencies in the disease-positive and disease-1 

negative populations, 𝑣𝑐𝑎𝑠𝑒  and 𝑣𝑐𝑜𝑛𝑡𝑟𝑜𝑙 are the variances of genotypes in the disease-positive 2 

and disease-negative populations, and 𝑠 is the GWAS case-control ratio.  3 

To estimate power while accounting for variability in imputation 𝑟2 and the possibility that 4 

a variant is not imputable, we average empirical imputation 𝑟2 values and MACs across variants 5 

from experiments with real data described in the previous section. Specifically, we estimate power 6 

to detect association when 𝑛 individuals are sequenced and 𝑚 are genotyped and imputed as 7 

𝑃𝑜𝑤𝑒𝑟̂ (𝑚, 𝑛) =
1

∑ 𝑤𝑗
𝑀𝐴𝐹𝑤𝑗

𝑃𝑆
𝑗

∑ 𝑤𝑗
𝑀𝐴𝐹𝑤𝑗

𝑃𝑆𝐶𝑛𝑗
 ∫ 𝜙

𝑧1−𝛼/2

−𝑧1−𝛼/2𝑗

(𝑢 − 𝜂√𝑛 + 𝑟𝑛𝑗
2 𝑚 ) 𝑑𝑢 8 

where 𝜙(𝑢) = 𝑒−
𝑢2

2 /√2𝜋  is the standard normal density function, 𝑧1−𝛼/2 is the 𝛼-level 9 

significance threshold, 𝑟𝑛𝑗
2  is the imputation 𝑟2 value for the 𝑗𝑡ℎ variant, 𝐶𝑛𝑗 = 𝐼(𝑀𝐴𝐶𝑛𝑗

𝑝𝑎𝑛𝑒𝑙 ≥10 

5, 𝑟𝑛𝑗
2 ≥ 0.3) is an indicator equal to 1 if the 𝑗𝑡ℎ variant was imputable and 0 otherwise, and 11 

𝑀𝐴𝐶𝑛𝑗
𝑝𝑎𝑛𝑒𝑙

 is the reference panel MAC for the 𝑗𝑡ℎ variant when the 𝑛 sequenced individuals from 12 

the target population were included in the reference panel.  13 

We define the first weight term 𝑤𝑗
𝑀𝐴𝐹 = 𝑃𝑁

𝐺𝑊𝐴𝑆(𝑝̂𝑗)/ 𝑃̂𝑁(𝑝̂𝑗), where 𝑁 is the total number 14 

of samples used in our analysis for the given population (e.g. 𝑁 =3,412 for African Americans), 15 

𝑝̂𝑗  is the sample MAF for the 𝑗𝑡ℎ variant in the total sample, 𝑃̂𝑁(𝑥) is the proportion of variants 16 

with MAF = 𝑥, and 𝑃𝑁
𝐺𝑊𝐴𝑆(𝑥) is the probability of observing sample MAF = 𝑥 in a sample of size 17 

𝑁 given the specified association model. For example, in a GWAS with sample size 𝑁 and case-18 

control ratio 𝑠, the sample MAC (which is equal to 2𝑁𝑝̂, where 𝑝̂ is the sample MAF) is 19 

approximately Poisson distributed with mean 2𝑁(𝑠𝑝𝑐𝑎𝑠𝑒 + 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙)/(𝑠 + 1), where 𝑝𝑐𝑎𝑠𝑒 =20 

𝑝𝛾/[1 + 𝑝(𝛾 − 1)] and 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = (𝑝 − 𝐾𝑝𝑐𝑎𝑠𝑒)/(1 − 𝐾) for a variant with population MAF 𝑝 21 
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and relative risk 𝛾 for a disease with prevalence 𝐾. This weighting approach adjusts for differences 1 

between the empirical distribution of MACs across variants in real data, and the theoretical MAC 2 

distribution for a variant with the specified MAF, effect size, prevalence in a GWAS with sample 3 

size 𝑁 and case-control ratio 𝑠.  4 

The second weighting term 𝑤𝑗
PS accounts for the probability that a variant with the 5 

specified population MAF 𝑝 is population-specific (monomorphic outside the target population), 6 

and is defined 7 

𝑤𝑗
𝑃𝑆  = {

𝑃̂𝑃𝑆(𝑝)/ 𝑃̂𝑃𝑆(𝑝̂𝑗) , variant 𝑗 is population-specific,

[1 − 𝑃̂𝑃𝑆(𝑝)]/[1 − 𝑃̂𝑃𝑆(𝑝̂𝑗)], otherwise,
 8 

where 𝑃̂𝑃𝑆(𝑥) is the fraction of variants that are population-specific among variants with MAF=𝑥 9 

in the target population. This adjustment factor ensures that the weight assigned to population-10 

specific variants in power calculations reflects the probability that a variant with the specified 11 

population MAF 𝑝 is population-specific. 12 

 13 
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RESULTS 1 

First, we compare strategies to improve imputation using study-specific WGS data for 2 

African Americans, Latino Americans, Sardinians, and Finns. Next, we assess the effects of 3 

genotyping array on imputation quality and coverage for each population and reference panel. We 4 

then use these results to estimate statistical power to detect association as a function of study-5 

specific panel size, number of participants imputed, external reference panel, and genotyping 6 

array. Finally, we identify cost-effective study designs by comparing statistical power and total 7 

experimental (sequencing and genotyping) costs for sequencing-only, imputation-only, and 8 

sequencing-and-imputation GWAS designs for each population and genotyping array. 9 

Strategies to Improve Imputation using Study-Specific WGS Data 10 

We compared imputation 𝑟2 and coverage (proportion of variants with imputation 𝑟2> 0.3 11 

and reference MAC ≥ 5) for three imputation strategies: (1) using an external reference panel (the 12 

HRC or HRC subset) alone, (2) using an augmented reference panel that combines the study-13 

specific and external panels, and (3) using a study-specific reference panel alone. 14 

The external panel alone (HRC for Latino Americans and African Americans, and HRC 15 

subset that excludes individuals from the target population for Finns and Sardinians) provided 96% 16 

imputation coverage for MAF ≥ 0.25% variants (where MAF is calculated separately within each 17 

population) for Finns, 84% coverage for Sardinians, 86% coverage for Latino Americans, and 77% 18 

coverage for African Americans (Figure 1, top row). The relatively lower coverage for African 19 

Americans is expected since the HRC consists primarily of Central and Northern Europeans, who 20 

are genetically closer to Finns and Sardinians, and includes relatively few Africans or African 21 

Americans.  Despite the small number of Latino or Native Americans included in the HRC, 22 

imputation coverage was slightly higher for Latino Americans than for Sardinians.  This may 23 
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reflect the high degree of European admixture in many Latino American populations28, and the 1 

abundance of population-specific rare and low-frequency variants in the Sardinian population24.  2 

Augmenting an external reference panel with even a relatively small number of sequenced 3 

individuals substantially increased coverage, particularly for African Americans and Sardinians, 4 

and for variants with lower MAF. For example, augmenting the external panel with 500 sequenced 5 

individuals from the study population improved overall imputation coverage for MAF=0.25-0.5% 6 

variants by 4% for Finns, 9% for Latino Americans, 16% for African Americans, and 23% for 7 

Sardinians genotyped using the OmniExpress relative to the external panel alone (Figure 1). 8 

Similarly, augmenting the external reference panel with even 200 individuals increased imputation 9 

coverage for MAF=0.1-0.25% variants by 3%, 4%, 6%, 10% relative to the external panel alone 10 

for Finns, Latino Americans, African Americans, and Sardinians, respectively. 11 

With 2,000 individuals from the target population (or 1,500 for Latino Americans), 12 

population-specific panels provided roughly equivalent imputation 𝑟2 compared to augmented 13 

panels (Supplemental Figure 1A); however, augmented panels provided higher imputation 14 

coverage overall for low MAF variants (Supplemental Figure 1B). For example, augmented panels 15 

with 2,000 individuals from the target population (or 1,500 for Latino Americans) provided 86%, 16 

80%, 79%, and 86% coverage for 0.1-0.25% MAF variants for Finns, Latino Americans, African 17 

Americans, and Sardinians respectively, whereas population-specific panels alone provided 72%, 18 

51%, 78%, and 72% coverage using the Omni Express array. However, imputation coverage for 19 

variants with MAF>0.25% differed by <1% between augmented and population-specific panels 20 

with 2,000 individuals from the target population (or 1,500 for Latino Americans) for all 21 

populations and genotyping arrays. When a smaller number (less than 500) of individuals from the 22 

target population are sequenced, augmented reference panels provided substantially higher 23 
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imputation coverage and 𝑟2 than population-specific panels alone. For example, augmented panels 1 

with 500 individuals from the target population provided 90%, 85%, 65%, and 85% coverage for 2 

0.25-0.5% MAF variants for Finns, Latino Americans, African Americans, and Sardinians 3 

respectively, whereas population-specific panels of 500 individuals provided <30% coverage 4 

using the Omni Express array.  5 

Even very rare variants (MAF=0.1-0.25%) attained high coverage across all populations 6 

given a sufficient number of population-matched individuals in the reference panel. For example, 7 

attaining >70% imputation coverage for MAF=0.1-0.25% variants required a study-specific panel 8 

of >1,800 individuals for African Americans, 1,000 for Latino Americans, 700 for Sardinians, and 9 

0 for Finns using the OmniExpress. These increases in imputation coverage primarily reflect 10 

increasing numbers of population-specific variants captured in the reference panel, which are 11 

absent from or present in low copy number in the external panel. 12 

Imputation Coverage and Quality across Genotyping Arrays  13 

Imputation coverage was generally similar for the OmniExpress and Omni2.5 arrays, but 14 

consistently lower for the less dense Core array. Coverage differed by <7% between the 15 

OmniExpress and Omni2.5 across all MAF bins, populations, and reference panels, whereas the 16 

Core provided up to 24% lower coverage than the Omni2.5 (Figure 1, upper panels). Imputation 17 

coverage was more heterogeneous across arrays for populations with greater genetic distance from 18 

the external reference panel (e.g., African Americans and the HRC panel), particularly with smaller 19 

(or absent) study-specific panels. Because we used the same reference panels for each genotyping 20 

array, differences in imputation coverage between arrays are solely due to differences in the 21 

proportion of variants that attained imputation 𝑟2 ≥ 0.3. Imputation 𝑟2 varied more across 22 

genotyping arrays than did imputation coverage (Figure 1, lower versus upper panels); however,23 
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Figure 1. Imputation Quality by Population and Genotyping Array. 1 

 2 

Imputation coverage (upper panels) and mean imputation 𝑟2 (lower panels) as functions of the number of population-matched 3 

individuals included in augmented reference panels (Number Sequenced, x-axis). Here and elsewhere, MAF is calculated separately 4 

within each population.  5 

 6 
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the magnitude of differences in imputation 𝑟2 between arrays was still generally modest, 1 

particularly for the Finns and Sardinians. 2 

Powerful and Cost-Effective Strategies for GWAS across Populations  3 

We compared the cost-effectiveness of sequencing-only, imputation-only, and sequencing-4 

and-imputation strategies by analyzing statistical power to detect association as a function of 5 

numbers of study participants sequenced and imputed, genotyping array, and reference panel 6 

across a range of genetic models. Here, we define the most cost-effective strategy as either (1) 7 

minimizing total experimental (sequencing and genotyping) cost while attaining power at or above 8 

a given threshold, or equivalently (2) maximizing power while maintaining cost no greater than a 9 

specified constraint.  10 

The cost-effectiveness of sequencing a subset of study participants varied greatly across 11 

populations. For Finns, imputation-only designs were most powerful to detect association and 12 

adding sequenced individuals increased power only minimally, even for low-frequency and rare 13 

variants. For Sardinians, Latino Americans, and African Americans, sequencing a subset of study 14 

participants was optimal, and often achieved substantially greater power than imputation-only or 15 

sequencing-only studies. For example, a GWAS of African Americans with equal numbers of 16 

cases and controls in which 400 participants are sequenced and 11,100 are imputed using the 17 

Illumina Infinium Core array has 90% power to detect a risk variant with MAF = 0.5% and RR = 18 

4 for a disease with prevalence 1%, whereas an imputation-only GWAS with the same total cost 19 

(19,250 participants) has only 68% power (Figure 2). Even for populations in which optimal 20 

sequencing-and-imputation designs had substantially greater power than imputation-only, the 21 

optimal number to sequence was often modest. For example, only 210 participants are sequenced 22 

under the optimal design using the Illumina OmniExpress to attain 80% power in the previous 23 
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example (Figure 3). This is expected because even a relatively small study-specific panel can 1 

substantially increase imputation coverage (Figure 1, upper panels). 2 

Denser Genotyping Arrays vs. Sequencing: Which is More Cost-Effective to Increase Power?  3 

Imputation coverage and power to detect association can be increased by using denser 4 

genotyping arrays, which provide a more informative framework for imputation, or by sequencing 5 

population-matched individuals and augmenting the reference panel. We assessed the cost-6 

effectiveness of these two strategies by comparing power to detect association across genotyping 7 

arrays for study designs that have the same total cost assuming $1000 for WGS and current list 8 

prices for genotyping arrays (Table 1). As expected, the optimal number of participants sequenced 9 

to maximize power given fixed total cost generally decreased with increasing array density. For 10 

example, the optimal number sequenced to maximize power to detect association was 500, 300, 11 

and 90 for the Infinium Core, OmniExpress, and Omni2.5 respectively for Sardinians given total 12 

sequencing and genotyping budget of $2M for a risk variant with RR = 2, MAF = 1%, and disease 13 

prevalence 1%. Power to detect association under the optimal design given a fixed total cost was 14 

generally greater for sparser arrays; in the previous example, power under the optimal design was 15 

98%, 91%, and 55% for the Infinium Core, OmniExpress, Omni2.5.  16 

We also compared optimal designs to attain power above a given threshold at minimum 17 

total cost across genotyping arrays based on the per-sample array genotyping costs reported in 18 

Table 1. Generally, sparser arrays were more cost-effective (reached the power threshold with 19 

lower total cost) than dense arrays. In fact, the sparsest genotyping array in our analysis, the 20 

Infinium Core, was most cost-effective across all disease models and populations apart from 21 

African Americans, for whom the Infinium OmniExpress was most cost-effective for some rare-22 

variant disease models. This last result is unsurprising given the substantial difference in 23 
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Figure 2. Power and Optimal Design by Population and Genotyping Array. 1 

 2 

Power to detect association for case-control studies with equal numbers of cases and controls as a function of sequenced subsample 3 

size (x-axis) and imputed subsample size (y-axis) for a variant with MAF 0.5% and relative risk 4 for a disease with prevalence 1%. 4 

Axes are scaled to reflect costs of genotyping arrays (Table 1) and sequencing ($1K per sample). Dashed diagonal lines indicate study 5 

designs with the same total cost, given by 𝑦 = 𝑎 − 𝑏𝑥 where 𝑎 = (𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡) /(𝐴𝑟𝑟𝑎𝑦 𝐶𝑜𝑠𝑡) and 𝑏 = (𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑛𝑔 𝐶𝑜𝑠𝑡)/6 

(𝐴𝑟𝑟𝑎𝑦 𝐶𝑜𝑠𝑡). Circled points indicate optimal study designs, which attain the indicated power level at minimum total experimental 7 

cost (or, maximize power at the indicated total experimental cost), shown only for optimal designs with total genotyping cost ≤ $2M 8 

($1.5M for Latino Americans).  9 
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Figure 3. Power as a Function of Minor Allele Frequency and Effect Size. 1 

 2 

Statistical power (y-axis) to detect a rare large-effect variant (MAF=0.25%, RR=3; top row) and common modest-effect variant 3 

(MAF=5%, RR=1.3; bottom row) for a disease with prevalence 1% as a function of the number of participants array-genotyped and 4 

imputed (x-axis) when 0, 500, or 2,000 participants are sequenced and included in an augmented reference panel. The number of 5 

participants sequenced has a far greater impact on statistical power for the rare variant association. Importantly, statistical power is 6 

bounded above by the probability that the variant is imputable (𝑟2 > 0.3 and reference 𝑀𝐴𝐶 ≥ 5), causing power to asymptote below 7 

1 as a function of the number of imputed participants (e.g., upper-left panel). 8 

 9 
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imputation coverage between the Infinium Core and Omni arrays for African Americans (Figure 1 

1). Importantly, our analysis assumes 1) a direct trade-off between the GWAS sample size and 2 

sequencing/array genotyping costs, and 2) no additional costs per GWAS sample other than 3 

sequencing/genotyping. Under these assumptions, we found that denser arrays are generally less 4 

cost-effective than sparser arrays; of course, denser arrays provide higher imputation coverage 5 

given a fixed GWAS sample size.  6 

Optimal Study Design as a Function of Minor Allele Frequency and Effect Size 7 

Power to detect association under a given study design depends on MAF, effect size 8 

(relative risk or odds ratio), and population prevalence29. These parameters also influence the 9 

relative cost-effectiveness of sequencing and imputation. While common variants can be 10 

accurately imputed with small reference panels, large population-matched reference panels are 11 

needed to capture rare (population-specific) variants. In Figure 3, we illustrate the impact of 12 

sequencing on statistical power for two combinations of MAF and effect size in each of the four 13 

study populations. 14 

The optimal percentage of study participants sequenced to attain ≥80% power to detect 15 

association at minimum total cost increases with decreasing MAF (Figure 4). This is expected, 16 

since larger reference panels are needed to capture variants with lower frequency. Finally, the 17 

optimal percentage of study participants sequenced to attain ≥80% power decreases with 18 

increasing effect size magnitude. This is expected, since the expected number of risk alleles 19 

captured in the reference panel increases with effect size magnitude. 20 
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Figure 4. Optimal Design as a Function of Minor Allele Frequency and Effect Size. 1 

 2 

Percentage of participants sequenced (x-axis) and total sample size (y-axis) under optimal designs to attain statistical power ≥80% for 3 

rare and common variants across two effect size values for each of the four study populations using the Infinium Core array. Here, 4 

effect size refers to the χ-squared non-centrality parameter (NCP) for single-variant association tests given perfect genotype accuracy, 5 

which is defined as η2 in Methods.  Relative risk (RR) values corresponding to each combination of MAF and NCP are indicated in the 6 

far-right panel (for Sardinians). With NCP held constant, differences in optimal design for different MAF values are solely due to 7 

differences in imputation coverage and quality across the MAF spectrum.  8 
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DISCUSSION 1 

While the cost of genome sequencing has fallen dramatically29, large genome sequencing 2 

studies remain prohibitively expensive. Large imputation reference panels are now enabling 3 

accurate imputation of even very rare variants (MAF>0.001)9; 13; 30, making imputation-based 4 

GWAS viable and cost-effective for detecting associations across much of the allele frequency 5 

spectrum. For populations with limited reference panel data, we have shown that sequencing a 6 

subset of study participants can substantially increase imputation coverage and accuracy, 7 

particularly for rare and population-specific variants, at a fraction of the cost of sequencing the 8 

entire study cohort. Our results also suggest that it is almost always advantageous to augment 9 

existing reference panels, except when the study-specific sequenced panel is large or the target 10 

population has high genetic distance from the external panel. 11 

Complementary sequencing-and-imputation GWAS strategies have been applied to refine 12 

association signals and discover novel associations for several populations and complex traits12; 19; 13 

20. While most sequencing-and-imputation studies to date have been carried out in European 14 

isolated populations, our results suggest that this strategy can also be powerful and cost-effective 15 

for admixed and non-European populations. In addition to increasing genomic coverage and power 16 

to detect association for the study itself, sequencing a subset of study participants provides a data 17 

resource that can be used to enhance imputation in future studies of the same or related populations 18 

so long as the sequence data can be shared. 19 

Directly augmenting an existing reference panel with study-specific sequence data is not 20 

always feasible due to technical, logistical, and privacy constraints. However, we and others have 21 

found that the distributed reference panel approach (separately imputing with two or more 22 

reference panels and combining the results) provides nearly equivalent imputation quality 23 
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(Supplemental Figure 2). Thus, study-specific WGS data can be used to improve imputation even 1 

when directly augmenting an external panel is not feasible. 2 

While large reference panels enable accurate imputation across a wide range of the allele 3 

frequency spectrum9; 13, the extent of genetic variation that can be captured through imputation is 4 

limited relative to WGS. For example, de novo mutations cannot be imputed regardless of 5 

reference panel size. This is particularly salient for monogenic disorders; for example, over 80% 6 

of achondroplasia cases occur from recurrent de novo mutations in FGFR331. Thus, imputation 7 

may be unable to detect causative alleles for traits with extreme genetic architectures, even with 8 

very large reference panels.  9 

As increasingly large and diverse sequencing projects are conducted, larger and more diverse 10 

reference panels will become available. In the design and planning of GWAS, it may be prudent 11 

to consider resources under development and pending release in addition to resources that are 12 

currently available. More broadly, our analysis highlights the utility of collaboration and 13 

coordination across institutions for effective study design and resource allocation. For example, 14 

the optimal design to maximize power in an individual study does not necessarily maximize meta-15 

analysis power across multiple studies of the same trait and population. 16 

Our analysis of cost-effectiveness and optimal design depends crucially on the relative per-17 

sample costs of sequencing and array genotyping. Both sequencing and array genotyping costs 18 

have fallen markedly in recent years, and are likely to continue to do so. Depending on the relative 19 

rates of change, cost-effectiveness and optimal design also may change. In addition, the cost of 20 

participant recruitment and DNA sample collection may alter the relative cost-effectiveness of 21 

sequencing and genotyping. Finally, our cost-effectiveness analysis assumes that sample size is 22 

unconstrained; this may not apply for small populations or rare diseases.  23 
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While our results are illustrative, investigators may wish to explore questions of the relative 1 

cost-effectiveness of sequencing and array genotyping strategies in the context of their own study 2 

and relevant assumptions about population, reference panels, and sequencing and array genotyping 3 

costs. To enable this exploration, we have developed a flexible, easy-to-use tool, APSIS (Analysis 4 

of Power for Sequencing and Imputation Studies), which is open source and freely available (see 5 

Web Resources). 6 

Conclusions 7 

Here, we assessed the genomic coverage, statistical power, and cost-effectiveness of 8 

sequencing and imputation-based designs for GWAS in four populations across a range of genetic 9 

models. We developed a novel method to account for available reference haplotype data in power 10 

calculations using empirical data, which can be applied to inform GWAS planning and design. For 11 

European populations that are well-represented in current reference panels, our results suggest that 12 

imputation-based GWAS is cost-effective and well-powered to detect both common- and rare-13 

variant associations. For populations with limited representation in current reference panels, we 14 

found that sequencing a subset of study participants can substantially increase genomic coverage 15 

and power to detect association, particularly for rare and population-specific variants. Our results 16 

also suggest that larger and more diverse reference panels will be important to facilitate array-17 

based GWAS in global populations. 18 

WEB RESOURCES 19 

APSIS (Analysis of Power for Sequencing-and-Imputation Studies): 20 

http://github.com/corbinq/APSIS 21 

 22 
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