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Abstract: Changes in cell connectivity and morphology, observed and measured using 
microscopy, implicate a cellular basis of degenerative disease in tissues as diverse as bone, 
kidney and brain. To date, limitations inherent to sampling (biopsy sites) and/or microscopy 
(trade-offs between regions of interest and image resolution) have prevented early identification 15 
of cellular changes in specimen sizes of diagnostic relevance for human anatomy and 
physiology. This manuscript describes work flows for human tissue-based cell epidemiology 
studies. Using recently published sample preparation methods, developed and validated to 
maximize imaging quality, the largest-to-date scanning electron microscopy map was created 
showing cellular connections in the femoral neck of a human hip. The map, from a patient 20 
undergoing hip replacement, comprises an 11 TB dataset including over 7 million electron 
microscopy images. This map served as a test case to implement machine learning algorithms for 
automated detection of cells and identification of their health state. The test case showed a 
significant link between cell connectivity and health state in osteocytes of the human femur. 
Combining new, rapid throughput electron microscopy methods with machine learning 25 
approaches provides a basis for assessment of cell population health at nanoscopic resolution and 
in mesoscopic tissue and organ samples. This sets a path for next generation cellular 
epidemiology, tracking outbreaks of disease in populations of cells that inhabit tissues and 
organs within individuals. 
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Introduction 
In the complex biosystem of the human body, the prediction of emergent behaviors and their 
underlying mechanisms is key to early diagnosis, intervention and/or prevention of disease. Yet 
such predictions have presented a scientifically and technically untenable research challenge. 
This is due to the intrinsic hurdles of imaging cell populations across tissues and organs and 5 
analyzing data from billions of interconnected cells. The combination of geospatial approaches, 
using multibeam scanning electron microscopy (multiSEM), with the Google Maps JavaScript 
API, has enabled cellular studies of aging human tissues, from bone to brain (1–4). In contrast to 
single beam electron microscopy where nano-micrometer scale regions of interest (ROI) are 
imaged in millimeter-sized samples, multiSEM uses parallel beams (up to 91 in current 10 
commercial systems) (4), enabling rapid throughput, nanoscale resolution imaging of millimeter 
scale  ROIs in milli- to centimeter sized, tissue and organ samples (19,21-24). Development of 
workflows integrating such geospatial approaches with advances in machine learning algorithms 
are expected to enable high-throughput, rapid image feature detection and classification, 
cornerstones of early diagnostics. 15 
 
Degenerative processes associated with aging and disease are observable in our cells, the living 
inhabitants of our tissues and organs. Cell viability and connectivity play a critical role in human 
health. Their loss is associated with loss of function in degenerating cellular networks. Until 
recently, an understanding of multiscale structure-function relationships, within, between and 20 
across tissues has been limited by imaging capabilities (2). Imaging fields of view have, until 
recently, been limited to either local (cellular) or global (tissue, organ) perspectives, preventing 
early detection of disease emergence. Early detection greatly increases chances of successful 
treatment of cancer, dementia, osteoporosis and chronic kidney disease (2). 

This manuscript describes workflows for human tissue- and organ-based, cell epidemiology 25 
studies. We integrate a recently developed sample preparation protocol (25) with previously 
described image acquisition, stitching and mapping methods (3, 14–16, 17), to acquire the 
largest to date multiSEM map of a human hip, an 11 TB dataset comprising over seven million 
electron microscopy images (Fig. 1). We then implemented machine learning algorithms, which 
were trained using geographical data from manual pinning of relevant landmarks previous maps 30 
of human tissues and their cellular inhabitants (Fig. 3-8), to determine feasibility of the method 
for rapid throughput imaging and diagnostics.  
 
 
Methods 35 

Sample Preparation Workflow Traditional electron microscopy necessitates specimen size be 
limited to millimeters on edge and progression to much larger specimens, up to 10 cm in 
diameter, challenges basic physical laws, e.g. maximal pathlengths of penetration for chemical 
fixatives and embedding media, as well as preparation of sample surfaces for imaging. Standard 
EM methods serve well for mouse sized samples and smaller (19–21), but new protocols needed 40 
to be developed to prepare macroscopic samples from human and large mammals for imaging 
with multiSEM (25). 
 
Hence we sought to improve the preparation of embedded samples to facilitate imaging of 
human and large mammalian tissues at nanometer scale resolution. Study samples were obtained 45 
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from the human femoral neck (Cleveland Clinic Institutional Review Board), which is normally 
discarded after hip replacement surgery. Sheep (Ovis aries) femur and Guinea pig (Cavia 
porcellus) knee samples were also used to test multimodal imaging modalities.  
 

The workflow applies to any human and large mammalian tissues available for collection and 5 
applicable for the specific study design. For the purposes of the current study, we were interested 
in mapping the connectivity of osteocytes in the human hip. 3 - 5 mm coronal and transverse 
sections of femoral neck (up to 10 cm in diameter) were acquired from patients (Cleveland 
Clinic IRB approved) undergoing hip replacement; these tissues are discarded in the normal 
course of arthroplasty. The sections were prepared using methods previously developed to image 10 
at nanoscopic resolution the osteocyte and their interconnecting processes using atomic force 
microscopy studies (22,23,25).  

The tissues (undecalcified) were fixed in 2.5% glutaraldehyde, 4% formaldehyde, and 0.2M 
cacodylate buffer at 4°C and then processed for bulk embedding in poly(methyl methacrylate) 
(PMMA). Curing in a vacuum in a cold environment facilitated gradual polymerization to 15 
minimize artifacts. Once the embedding medium polymerized, specimen surfaces to be imaged 
were milled using a CNC-mill for mirror-like planarity. Sample surfaces were then prepared for 
etching to reveal the cellular network, after which carbon coating and imaging took place.  

Stepwise etching was carried out using 0.02M HCl for 90s and/or 10% NaOCl, to image the 
respective organic or inorganic phase of the extracellular matrix (22,23,25). By etching away the 20 
matrix around the cells, layer by layer and capturing each step with multiSEM and other imaging 
modalities, it is possible to render the three dimensional network for later multi-modal, 
correlative microscopy analysis. Prior to multiSEM imaging, specimens were carbon sputtered. 

MultiSEM imaging Samples was imaged with a Zeiss MultiSEM 505 imaging system. This 
microscope uses 61 parallel electron beams arranged hexagonally to minimize electron-optical 25 
aberrations. Imaging typically used a landing energy in the range of 1–3 keV, 100 ns of dwell 
time per beam, resulting in a resolution of 3.5nm.  

For the newest dataset (Fig. 3), a surface area spanning 18.1 cm2 was imaged, resulting in 
120,262 hexagonally shaped multi-beam fields of view (mFOV), made of more than 7.335 
million high-resolution image tiles and a total of 10.7 billion megapixels (Table 1). Each mFOV 30 
was composed of 61 rectangular, single-beam image tiles arranged in a flat, hexagonal pattern 
(Fig 1), with a frame size of 1288 x 1120 pixels for each tile. The stage used for this study 
operated with a precision of 2 μm. Image files were stored as bitmap files, accumulating circa 
10.98 TB of storage space. Pixel coordinates for individual single-beam images were available 
from the microscope metadata, providing a first approximation for relative positioning. 35 

Machine Learning Workflow 
Overview 
Recent work from our lab (17) has investigated the use of the navigable bone maps, and has 
sought solutions for the technical challenges inherent to handling and analyzing massive imaging 
data sets for biomedical and diagnostic applications. A previous proof-of-principle study to 40 
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elucidate the relationship between bone tissue and cell health in the human femoral neck, the 
Google JavaScript API was used to enable labeling of landmarks on a navigable map. A blinded 
observer marked blood vessel edges, viable and pyknotic osteocytes. This coordinate-based 
mapping enabled testing of specific hypotheses related to bone health in terms of osteocyte 
viability, transport path distances, and network relationships. While adequate for feasibility 5 
testing, this manual approach was not conducive to the pipeline scalability necessary for the 
magnitude of current datasets (Table 1). 
 
Here we aimed to combine high throughput multiSEM with advanced convolutional machine 
learning algorithms to increase throughput for cellular and feature detection in such large 10 
samples, while reducing observer bias and sampling errors (26,27). We implemented a machine 
learning algorithm for osteocyte detection based on the YOLO convolutional neural network, 
originally described by Redmon et al. (28) (Figure 4). Using the osteocyte coordinates extracted 
from this algorithm, a novel script was created to compare the location of each osteocyte with 
every other osteocyte and extract the minimum distance to its nearest neighbor. This novel 15 
framework enabled high-throughput, large-scale analysis of cellular network relationships in 
human samples, consisting of over seven million multiSEM images and 11TB of data. We 
compared and tested basic network hypotheses using automated, machine learning-based and 
observer-marked (pinned) osteocyte detection in EM maps of human hips to test feasibility of the 
automated workflow. 20 
 
Data Description 
The machine learning workflow feasibility study was based on two mSEM datasets, including 
images and coordinates for generating the respective stitched images (Table 1). The smaller 
dataset ("Previous Dataset", Table 1), which included manually entered (pins dropped, see 25 
above) expert annotation indicating health status as "viable" and "pyknotic" (cells in necrotic or 
apoptotic state), was downsampled by a factor of 8 to obtain the stitched image of size 44288 x 
39936 pixels or 560MB. These annotations alone were insufficient for the object detection task, 
and were thus extended further to bounding boxes by a non-expert (equivalent to a "blinded 
observer", Fig. 4). The resulting dataset, compiled for object detection training, contains samples 30 
of 630 viable and 49 pyknotic cells. 
 
The "Current Dataset" (Table 1) was much larger, i.e. on the order of 10TB, and included the 
coordinate information used to obtain the stitched image. Similar to the smaller, "Previous 
Dataset", the "Current Dataset" was downsampled by a factor of 8. In contrast to the previous, 35 
smaller dataset, this dataset included no annotations for cell health states.  
 

To test the feasibility and utility of using machine learning to automatically detect viable and 
pyknotic cells, the model was trained on the "Previous Dataset" and tested on the "Current 
Dataset".  40 
 
Training the Algorithm 
The following quantitative evaluation was based on the annotated ("Previous") dataset, using a 
60/40 train/validation split. Due to the limited training data and high class imbalance, we 
performed data augmentation to obtain 10,000 examples for each class. Augmented samples 45 
were obtained by randomly selecting the following operations: rotation [0, 360•], image scaling 
[0.8x to 1.2x], gamma correction factor [0.95 to 1.05], scaling illumination [0.8 to 1.2] and 
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translation [-80 to 80] (Figure 6). Training examples were obtained by cropping to 500x500 
pixels, centered at the transformed images. Further, single channel mSEM images are converted 
to 3-channel gray scale images by replicating data.  
 
Object Detection Model 5 
We chose the YOLO object detection model due to its performance [YOLO9000] and reasonable 
runtimes. As the proposed approach was flexible with respect to model choice, quantitative 
analysis presented in our experiments serves as a baseline for comparing with other techniques.  
The 2-class detection model is obtained by finetuning all weights of a model pretrained on 
ImageNet [ImageNet]. For finetuning, we use momentum 0.9, learning rate 0.0001, batch size 10 
64, decay 0.0005, maximum batch size 45000 and step-policy at 100, 25000 and 35000 iterations 
to scale down the learning rate by 10, 0.1 and 0.1 respectively. The anchors are left unchanged. 
Early stopping is used with a loss threshold of 1e-8. The model was trained on GTX1080 in under 
36 hours. During testing, detections for a stitched image are obtained by accumulating those 
obtained by testing non-overlapping 500x500 crops. Each detection encodes the bounding box 15 
[x, y, width, height], a confidence score [0 to 100] and a class id. 
 
Model Evaluation 
We used the AUC metric [PascalVOC, microsoftCOCO] in order to evaluate the object detection 
performance. Under this metric, a detected bounding box is said to be successful if its 20 
intersection over union (IoU) ratio with respect to the groundtruth bounding box is greater than a 
threshold, e.g. 0.50. Precision-recall curves for a random 60/40 train/validation split are 
indicative of performance (Figure 7). Results were observed to be consistent across four different 
splits. The AUC0.30 for living and deceased were 0.76 and 0.79 respectively (Figure 7). This is a 
relaxed measure as the overlap for detected and groundtruth bounding boxes is not stringent. For 25 
a more stringent criterion, i.e. AUC0.50, the performance drops slightly to 0.727 and 0.782. At a 
highly stringent AUC0.75, the performance drops to 0.60 and 0.67. As the cells are localized 
"roughly" (simple identification, not at a particular location of the cell), AUC0.50 provides an 
optimal trade-off between object detection performance and its localization capability (Figure 7). 
 30 
A qualitative analysis of detected samples at a high detection confidence of 75% shows detection 
and a rare missed detection (Figure 3D). Based on this data, the false positives are either 
structurally similar to true positive detections or illustrate noisy annotations. This indicates the 
need for more training data or iterative model learning.  
 35 
With regard to runtimes, testing for the first ("Previous Dataset") took 2 hours on a GTX1080 
system. Under similar conditions, the current data set ("Current Dataset")  took circa 100 hours 
to be tested.  
 

Integrated Approaches to Test Network Based Hypotheses 40 
Our initial focus investigated network relationships in tissue samples based on the path distances 
between all osteocytes detected using the YOLO algorithm (Figures 3, 4). The neural network 
identified a total of 206,180 osteocytes in 100 hours on GPU (GeForce GTX 1080) compared to 
the manual pinning method of our previously published work (17) that identified 708 osteocytes 
manually over several weeks.   45 
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Previous work, using manual pinning methods with the Google Maps JavaScript API, tested two 
network hypotheses, showing no significant relationship in path distance between viable 
osteocytes and the nearest blood supply albeit significant relationships between osteocyte 
viability and distance to nearest the viable osteocyte (17). The current investigation built further 5 
on this work to include the relationship from each osteocyte (whether viable or pyknotic) to all 
others per sample (Figure 8). A new script was written to measure the distance from every 
identified osteocyte to others in its near surrounding. From this, the identity of the osteocyte with 
the closest absolute distance was extracted.  

ML algorithm training 10 
Automated object detection algorithms such as the YOLO neural network (28) facilitate rapid 
throughput diagnostic assessment of imaging datasets, also mitigating the effects of observer 
bias. Initially, YOLO was trained for automated osteocyte detection, using 629 annotated cells, 
which were further augmented to 106 examples through variation by rotation, scale and contrast. 
Unseen images were then processed with YOLO and automatically detected objects were 15 
identified by bounding boxes. Latest testing of the YOLO algorithm has proved successful in 
detecting osteocytes in a complete cross-section of the human femoral neck in less than 100 
hours, and early hypotheses have begun testing. Collection of more (circa 1000) false- and 
missed-detections (cf. Figure 3), to obtain a more representative training dataset, provides a 
straight-forward approach to improve detector performance and is currently underway. 20 
 
Data analytics were compared for both pipelines and showed similar results. The modified 
YOLO neural network was readily trainable in context of previous as well as new image features 
in mesoscopic tissue maps created using multiSEM, and Google Maps API. It will be key for 
large-scale epidemiology studies that all relevant cell types can be automatically identified, from 25 
osteocytes to osteoclasts to blood vessel edges. With procedures now in place for the timely re-
training, existing training sets can also be refined to increase the performance of the algorithm, 
currently performing at better than 92% accuracy for osteocyte detection and classification. 
 
  30 
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Results  
Connectivity of cells in human hip tissue samples implicate network transport patency in 
osteocyte survival throughout life, and in health as well as disease (e.g. osteoporosis, 
osteoarthritis). Our previous study indicated significant relationships in path distances between 
viable cells and no significant relationships in path distances between viable cells and the 5 
distance to the nearest blood supply. Here, by training the algorithm to identify detected 
osteocytes as viable (three or more cell processes) or pyknotic (defined as in a state of necrosis 
or apoptosis, less than three cell processes observed) and classifying cell-to-cell connections as 
either between two viable osteocytes (viable to viable), between a viable and a pyknotic 
osteocytes (pyknotic to viable) of between pyknotic osteocytes (pyknotic to pyknotic), we could 10 
test further hypotheses that viable osteocytes exhibit shorter path distances to other viable 
osteocytes compared to path distances to pyknotic osteocytes. (Figure 8) 
 
Significant differences were observed in the mean distances across the different connection 
types. In both cases, healthy-pyknotic connection distances were significantly larger compared to 15 
viable-viable cases. Distances between pyknotic cells were significantly (p < 0.0001) lower than 
those between viable cells. This result was not expected, suggesting either that osteocytes die in 
clusters and/or networks, unrelated to their distance to the nearest healthy osteocyte or blood 
supply (as initially thought in previous experiments) or that dying cells send out death signals 
that impact the local population, not unlike a disease outbreak in an epidemiological context. 20 
Future work will implement network analysis tools, such as clustering and central node analysis. 
 
 
 
Discussion 25 
The multiSEM platform allows for scanning electron microscopy of specimens up to 10 cm in 
diameter at nanometer length scale. The method may be expanded in the future using methods 
such as those of Denk et al., who integrate in-chamber milling to achieve serial block-face 
images that can be constructed in 3D to achieve volumetric data sets in nanoscopic detail (19, 
20). Alternatively, Lichtman et al. use an automated tape capture system to image ultrathin serial 30 
brain slices using SEM, again reconstructing volumes in 3D to create digital tissue volume sets 
(21, 24). In the current method, a novel etching protocol was adapted from atomic force 
microscopy protocols (22, 23) to enable serial imaging of nanoscopically etched macroscopic 
samples, which can be reconstructed digitally in three and higher dimensions when etching 
organic and inorganic phases of tissues, with multiSEM alone as well in conjunction with other 35 
modes of microscopy, for instance multimodal, correlative microscopy. This rapidly developed 
advancement using multiSEM will further expand the breadth of investigations, enabling 
correlative studies of structure and function within, spanning across and between length scales, 
as well as imaging modalities.  
 40 
Current clinical uses of high throughput electron microscopy include the diagnosis of malignant 
schwannomas (5) and other kidney disorders. The pipeline from biopsy to diagnosis is 
geographically circuitous and occurs in anything but real time. Namely, biopsies are first 
express-shipped daily from clinics across the world to one of the few major medical clinic core 
laboratories that offer electron microscopy services. Then EM images are acquired and shared 45 
with the pathology department for diagnosis and data entry for later reading of results by the 
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doctors who originally sent the biopsy. In addition to the obvious limitations of this approach, 
with regard to lack of rapid diagnostics and loss of time between biopsy and treatment, regions 
of interest are limited, and diagnostics can be fraught with sampling error, depending on biopsy 
sampling sites and numbers. These issues provide the impetus to advance throughput and 
automation of advanced EM technologies for clinical diagnostic applications such early detection 5 
of kidney disease (6, 7) as well as early detection of degenerative conditions affecting other 
physiological systems.  
 
While EM resolution imaging is not yet feasible in live patients in situ, advancement of the 
method is expected to enable a new era of cellular epidemiology. Epidemiology denotes the 10 
study of the incidence and spatiotemporal distribution of health events or states related to health. 
Tracking of such events, e.g. tracking epidemic outbreaks worldwide, enables early detection and 
prevention, thus promoting health of the world's inhabitants. Analogously, cellular epidemiology 
tracks outbreaks of health-related states or events within and between individuals, enabling early 
detection and therapy and paving the way for the development of next generation theranostics, 15 
i.e. combined diagnostics and therapies.  
 
The sample preparation and machine learning algorithms enable rapid, automated identification 
of image features, including osteocytes, determination of their health status, and first analyses of 
pathlengths and relationships between healthy and sick cells in osteocyte networks. The resulting 20 
dataset analysis demonstrates, for the first time to our knowledge, a highly significant correlation 
between cell health and proximity to a viable network of osteocytes in aged human femoral neck 
tissue (Figure 8). Thus, combining multiSEM with new machine learning techniques enables 
large-scale network health assessment in mesoscopic tissue and, ultimately, organ-sized samples.  
 25 
The current study demonstrates a clear link between osteocyte connectivity and cell health status 
in osteoarthritic human femoral necks, validating previous work in smaller volumes of healthy, 
and diseased tissue imaged using confocal microscopy (12). Further studies will elucidate the 
exact nature of these networks, the information and signals and cargo they transfer, as well as 
how they can be harnessed to promote tissue health throughout life. Data mining of the vast 30 
datasets acquired with multiSEM and rendered with Google Maps API will enable 
epidemiological investigations of cellular inhabitants within and between individual patient's 
tissues and organs, as well as cohorts of such patients. These datasets and resulting 
epidemiological insights are expected to spawn next generation theranostic as well as diagnostic 
device design.  35 
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Supplementary Materials 

Materials and Methods 

1 Specimen Acquisition 
One challenge for the successful implementation of human sample studies is finding a surgeon 
who will partner in the research. The surgeon not only serves as the clinical investigator on the 5 
ethics protocol, but also his/her team facilitates the identification and screening of potential study 
participants, attainment of informed consent/enrolment of the patient, and, perhaps most 
importantly, serves as the first step in procuring and preparing samples for multiSEM imaging. 
Similarly, identification of personnel in the pathology and/or tissue procurement department of 
the clinic is essential to facilitate rapid sectioning and immediate fixation of the specimen. 10 
 
Human femur samples were collected at the Orthopaedic and Rheumatologic Institute of 
Cleveland Clinic, in accordance with Institutional Review Board (IRB) protocol #12-335 (16). 
This involved collection of tissues ordinarily discarded during hip arthroplasty (age and gender 
not disclosed). The tissues were prepared according to techniques adapted from previous atomic 15 
force microscopy studies (22).  
 
Power analyses conducted for previous studies determined a sample size of 5 patients per cohort 
was necessary. Post hoc analyses on these data indicated the robustness of study outcomes; from 
a translational perspective, even if more than 700 patients were tested to obtain statistical 20 
significance, differences (in periosteum derived stem cell regenerative capacity attributable to 
age and/or disease state) would remain small, due to the small to medium effect size (of age and 
disease), even if significantly different (16).  

2 Sample Fixation and Post-Fixation 
Biological samples require fixation prior to embedding and implemented were protocols typical 25 
for transmission electron microscopy. Immediately after plane sectioning in pathology, 
specimens were placed in glutaraldehyde, formaldehyde in sodium cacodylate buffer. Thereafter, 
the sample was washed with buffer. Fixation time is largely dependent on the specimen size and 
longer times are required to ensure adequate penetration by diffusion. Following fixation, the 
samples are washed in buffer before sequential dehydration with ethanol (30%, 50%, 75%, 30 
95%). 
 
Biological samples are typically non-conductive and require an increase in secondary electron 
emission and consequently contrast to discern biologically relevant details. Typically, electron 
microscopy employs heavy metal staining, uranyl acetate (UA) and lead citrate, combined with 35 
osmium tetroxide (OsO4) in the fixation process to increase contrast. These contrast agents are 
commonly selected for their ability to highlight subcellular detail.  For identification of cells 
after etching steps (see below), it was also determined that use of UA and OsO4 was neither 
necessary nor desirable since the stains causes light and UV sensitivity in the specimen and puts 
an exogenous colour on the specimen surface, impairing multimodal imaging, e.g. using confocal 40 
microscopy. 
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In this protocol we were able to eliminate the use of heavy metals in the fixation and staining 
process as carbon coating alone provided sufficient contrast and sample stability. This exclusion 
of additional pre-embedding steps allowed the process to be greatly streamlined, which is 
especially important with large samples where considerable time may be required for complete 
infiltration.  5 

3 Resin Embedding 
Epoxy resins are commonly used as the embedding media for morphological samples. To find 
the optimal embedding protocol, initial attempts to use EPON® (epoxy based) embedding 
medium proved unfruitful as it is traditionally used for samples 1-2 mm on edge. EPON® 
embedded samples showed topographic differences on the surface of up to 100µm. Incomplete 10 
or inconsistent infiltration of EPON® throughout the specimen was also observed and likely 
resulted from the larger-than-typical sample sizes. It is possible that the viscosity of EPON® was 
too high, too few dilution steps were undertaken, and/or the immersion was too short, resulting in 
insufficient EPON® penetration into the tissue pores. Additionally, there may have been ethanol 
and propylene oxide remaining in the sample, which would have diluted the EPON® and 15 
interfered with polymerization.  
 
For these reasons as well as an abundance of experience with polymethyl methacrylate (PMMA) 
embedding as well as associated post hoc etching protocols used on surfaces of PMMA 
embedded samples, we opted to adapt PMMA embedding protocols to enable longer penetration 20 
times and deep embedding of large samples. 
 
We opted to increase the time for dehydration, and to decrease typical viscosity PMMA 
embedding medium, to ensure complete infiltration of tissue pores and ensure the sample surface 
would exhibit minimal perturbations. As such tissues were processed for bulk embedding in 25 
PMMA to promote gradual polymerization within a vacuum environment. The results were 
superior to EPON® embedding and were adopted as the protocol standard. 

4 Sample Size and Planarity 
The rapid throughput of multiSEM enables practical specimen size is far greater than traditional 
EM, reaching up to 100mm×100mm×30mm. Samples require a surface flatness of ≤ 500 nm/100 30 
µm (peak-to-peak) parallel to the surface of the sample holder, to prevent edge effects caused by 
increased electron emission at edges and peaks within the specimen.  
 
Upon polymerization of the embedding medium, the specimens were initially polished to achieve 
mirror-like planarity. Polishing with an automated polishing head resulted in rapid and excessive 35 
removal the sample face. Whereas, polishing by hand on an automated polishing wheel with 
different grit sanding and polishing papers resulted in scratches and opening of macroscopic 
cracks on surfaces, likely via release of residual stresses. These cracks caused charging artifacts 
and charging at crack interfaces during imaging.  
 40 
Precision CNC-milling and hand polishing were used and showed superior results to automated 
polishing methods. For CNC milling, specimens were placed in the lathe and a carbide insert 
without a honed edge was used to face the plastic. Then acrylic polish (NOVUS #2) on a soft 
cloth with some water was used to polish the surface. The CNC-milled specimens did not exhibit 
any surface cracks and achieved the required planarity.  45 
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5 Surface Preparation and Serial Imaging 
Finally, to reveal the underlying cellular networks as well as molecular details of the collagen 
and apatite composite matrix, we tested controlled chemical etching, a technique previously 
developed and used for AFM (22, 23). Selective etching, between imaging steps, involved 
sectioning off regions of interest by covering the surrounding areas (with electrical tape or nail 5 
polish) and creating a resist. Controlled removal of the extracellular matrix involved 0.02M 
Hydrochloric acid (HCl) and 10% sodium hypochlorite (NaClO), removing organic and 
inorganic material, respectively. This enabled imaging of   the extracellular matrix and residing 
cells from correlating tissues of the hip joint complex. Following the initial chemical etch, the 
sample required carbon coating, to enhance electron conductivity, and was placed under vacuum 10 
before imaging using SEM.  
 
Subsequent etching steps allow the visualization of serial planes of the sample and the collection 
of 3D data. This requires the removal of the carbon coat by immersing the sample in methanol in 
an ultrasonic cleaner. Once the coating has been removed the sample can be etched again. This 15 
can be repeated until the desired depth is reached. The resultant image set may be of 
considerable size (in the range of tens of terabytes) and a suitable data handling pipelines are 
required for effective high throughput data processing. 
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Tables, Figures and Legends 
 

Table 1. Dataset Information. 

 
 5 
 
 
 
 
 10 
 
 
 
 
 15 
 
 
Figure 1 (next page). Workflow feasibility for a new era of cellular epidemiology - case 
study on the largest mSEM map to date. A region of the human femoral head was imaged 
with the 61 beam multiSEM microscope (see Table 1 for details of data set). The femoral head 20 
was removed, in the normal course of hip replacement, from the hip of an aged patient with 
severe osteoarthritis; erosion of the joint surface is evident on the upper left quadrant of the top 
image. Seamlessly zooming in closer into a region of interest (dashed box) reveals cellular 
connections, which branch further at the subcell length scale.  The complete map can be 
accessed and explored via http://www.mechbio.org/sites/mechbio/files/maps7/index.html  25 
[prior to publication, input of username and password are required to access the dataset]. 
username: mechbio 
password:  #google-maps 
  

 Current Dataset Previous Dataset (3) 

Approximate 
Scanned 
Area (mm2) 

1,810 5.69 

Number of 
mFOVs 

120,262 897 

Total 
number of 
images 

7,335,982 54,717 

Number of 
pixels 
(megapixels) 

1.07×1010 75,276 

Megabytes/
mFOV  

84.8 88.2 

Total 
terabytes 

10.98 0.08 

website for 
map of 
dataset 

http://www.mechbio.org/sites/mechbio/files/
maps7/index.html  
username: mechbio 
password:  #google-maps 
 

http://www.mechbio.org/sites/mechbio/files/
maps5/index.html 
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 5 
 
 
 
 
 10 
 
 
 
 
Figure 2. Workflow for acquisition and epidemiological analysis of nanoscale cell15 
population data using mesoscopic samples.  
A Sample preparation work flow is a critical first step in insuring data quality and impact.  
B Image acquisition and creation of organ maps, described in previous publications (3, 4, 15–
17), and used with permission (4). 
C Multimodal imaging and D data management workflows enable epidemiological study of20 
cellular populations within individuals. 
 
 
 
 25 
 
 
 
 
 30 
 
 
 
 
 35 
 
 
 
 
 40 
 
Figure 3. Pipeline utilizing a trained neural network for automatic osteocyte detection in
human femoral neck tissue from patients undergoing hip arthroplasty. 
A,B This largest-to-date imaged multiSEM dataset comprises 11 TB of images acquired with the
61-beam Zeiss MultiSEM 505, allowing for automatic detection of over 200,000 osteocytes45 
(C,D).  
The complete map can be accessed via 
http://www.mechbio.org/sites/mechbio/files/maps7/index.html  
[prior to publication, input of username and password are required to access the dataset]. 
username: mechbio 50 
password:  #google-maps 

A Sample preparation B Image acquisition and creation of tissue/organ map C Multimodal, 

Correlative imaging 

D Data management  
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Figure 4. YOLO (You Only Look Once) machine learning system description.  
The multiSEM output is pre-processed A by stitching individual images into region-wide5 
panoramas by virtue of the recorded image coordinates. In the interest of computational
efficiency, the resulting image is down-scaled such that individual cells occupy circa 200x200
pixels. Here, the 11TB multiSEM output is stitched into 30 image regions, amounting to 150GB
of data after downscaling. The pretrained object detector B is applied. The output is a file listing
the location of each detected cell as bounding box (X,Y,W,H), class C (viable/pyknotic) and10 
associated confidence p (C) . The object detector is pretrained using 600 living and 50 pyknotic
examples (17) and takes 12hrs to train on a single GTX1080. The testing phase on the 150GB
dataset lasts 100hrs (B).  
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Figure 5. Manual annotations (dropped pins) and extended bounding box notations for5 
object detection. The median width and height of the bounding boxes are 129 and 126 pixels
respectively.  
 
 
 10 
 
 
 
 
 15 
 
 
 
 
 20 
 
 
Figure 6. Annotated and augmented examples. To aid visualization, cell regions of interest
are overlaid in blue with the background in yellow. Top: viable cells, annotated manually by
pinning, were bounded with a tight bounding box. Bottom: image augmentation was performed25 
through scale, rotation, illumination and translation transformations on annotated samples. Note
the resulting transformed foreground regions. 
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Fig. 7. Precision-recall curves for increasing the IoU threshold. Object detection performance is
depicted for viable (blue) and pyknotic (red) cells for increasingly stringent overlap criteria. A
practical tradeoff is IoU>0.5 which preserves detection performance of 0.73 and 0.78 while
accurately localizing cells. 5 
 

 
Figure 8. Machine learning algorithms enable automatic detection of cells and their
health states. This scales up to enable rapid throughput detection of cells and testing of10 
significant relationships among cells, i.e. cellular epidemiological studies of mesoscopic tissue
and organ samples.  
(A,B) Mean distance to the nearest osteocyte is depicted for viable - viable (V - V) osteocyte
connections (n=158,905), viable-to-pyknotic connections (V - P, n = 12,986) and pyknotic-to-
pyknotic (P - P) connections (n=34,288). Cells were identified and categorised using the trained15 
YOLO neural network. Kruskal-Wallis with Dunn’s multiple comparisons test was performed.
(B,C) The same analysis was performed on a previous, manually pinned data set, comparing
healthy-to-healthy connections (n=619) and healthy-to-pyknotic connections (n=89). Mann-
Whitney t-test was performed. **p<0.005, ****p<0.0001 compared to healthy-healthy
connections. Data are expressed as mean ± SEM.  20 
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