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Abstract 
Humans can operate a variety of modern tools, which are often associated with different 

visuomotor transformations. Studies investigating this ability have repeatedly found that the 

simultaneous acquisition of different transformations appears inextricably tied to distinct 

states associated with movement, such as different postures or action plans, whereas abstract 

contextual associations can be leveraged by explicit aiming strategies. It still remains unclear 

how different transformations are remembered implicitly when target postures are similar. 

We investigated if features of planning to manipulate a visual tool, such as its visual identity 

or the intended effect enable implicit learning of opposing visuomotor rotations. Both cues 

only affected implicit aftereffects indirectly through generalization around explicit strategies. 

In contrast, practicing transformations with different hands resulted in separate aftereffects. 

It appears that different (intended) body states are necessary to separate aftereffects, 

supporting the idea that underlying implicit adaptation is limited to the recalibration of a body 

model.  

Keywords: motor learning; dual adaptation; action effects; explicit; implicit 

Introduction 
A hallmark of human motor skill is that we can manipulate a variety of different objects 

and tools. The apparent ease with which we switch between skilled manipulation of different 

tools requires that our motor system maintains representations of different sensorimotor 

transformations associated with them and retrieves these based on context (Wolpert and 
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Kawato 1998; Higuchi et al. 2007). For this to work, the brain is assumed to rely on contextual 

cues, i.e. sensations that allow the identification of the current context in a predictive manner 

(though see Lonini and colleagues (Lonini et al. 2009)). This capacity has been investigated in 

dual adaptation experiments, where different cues are linked with different – often conflicting 

- sensorimotor transformations to determine the extent with which the cues enable the 

formation of separate visuomotor memories (Ghahramani and Wolpert 1997; Seidler et al. 

2001; Imamizu et al. 2003; Osu et al. 2004; Bock et al. 2005; Woolley et al. 2007, 2011; Hinder 

et al. 2008; Hegele and Heuer 2010; Howard et al. 2012, 2013, 2015; Ayala et al. 2015; van 

Dam and Ernst 2015; Sheahan et al. 2016, 2018; Heald et al. 2018). Whereas earlier studies 

have predominantly found that the posture or initial state of the body act as sufficient cues 

(Gandolfo et al. 1996; Ghahramani and Wolpert 1997; Seidler et al. 2001; Howard et al. 2013), 

a number of more recent studies observed that distinct movement plans effectively separate 

memories for sensorimotor transformations (Hirashima and Nozaki 2012; Howard et al. 2015; 

Day et al. 2016; Sheahan et al. 2016; McDougle et al. 2017; Schween et al. 2018), even when 

these plans are not ultimately executed (Sheahan et al. 2016).  

As suggested by Sheahan and colleagues (Sheahan et al. 2016), these findings can be 

unified under a dynamical systems perspective of neural activity (Churchland et al. 2012). 

Under this framework, neural states during movement execution are largely determined by a 

preparatory state prior to movement onset. Assuming that distinct states of the body as well 

as intended movements set distinct preparatory states, errors experienced during execution 

could therefore be associated with distinct neural states, thus establishing separate memories 

for novel transformations. While this idea is supported by recent findings showing that future 

motor plans can serve as effective cues for the separation of newly formed sensorimotor 

memories, these cues still pertain to intended states of the body such as visually observable 

movement outcomes or final postures. In contrast, context cues that are not directly related 

to the state of the body appear to either not allow for the development of separate motor 

memories (Gandolfo et al. 1996; Howard et al. 2013) or do so only when participants become 

aware of their predictive power and develop distinct explicit movement plans in response to 

them (Hegele and Heuer 2010; van Dam and Ernst 2015; Schween et al. 2018). 

In the use of modern electronic tools such as video game controllers or remotely 

controlled vehicles, however, there are many instances where similar postures or bodily states 

in general are associated with different sensorimotor transformations. These differ, however, 
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with respect to the visual representation of tools that are controlled via bodily movements (as 

in the case of operating a drone or steering a virtual car by the same remote control) and with 

respect to the action effects that one strives to achieve. Thus, distinct preparatory states most 

likely incorporate features beyond bodily states such as the identity of the tool which is 

operated and/or the nature of the intended action effect.  

Here, we considered the identity of the tool being controlled and the intended action 

effect as parts of a movement’s plan (i.e. its preparatory activity) and tested whether these 

cues would allow for the development of separate motor memories. Based on a previous 

study by Howard and colleagues (Howard et al. 2013), which showed that the visual 

orientation of a controlled object was modestly successful in separating motor memories, we 

expected the visually perceived identity of a tool to constitute a relevant contextual cue in 

establishing separate motor memories. To test this, participants in our first experiment 

practiced two opposing cursor rotations associated with different cursor icons or “tools”.  

Our second experiment was inspired by ideomotor theory, according to which actions 

are represented by their perceivable effects (see Stock and Stock (Stock and Stock 2004) for a 

review of its history). More specifically, our approach is based on a strong version of 

ideomotor theory claiming that effect anticipations directly trigger actions (Shin et al. 2010). 

According to the theory of event coding (Hommel et al. 2001), effect anticipations are not 

limited to spatial properties, but can refer to any remote or distal sensory consequences 

anticipated in response to an action. The direct-activation hypothesis has received empirical 

support from neurophysiological studies showing that the mere perception of stimuli that had 

been established as action effects during a preceding practice phase were able to elicit neural 

activity in motor areas (Elsner et al. 2002; Melcher et al. 2008; Paulus et al. 2012). If we allow 

effect anticipations to be part of a neural preparatory state under the above view, this 

suggests that distinct action effects that a learner intends to achieve should allow distinct 

sensorimotor transformations to be associated with them. If confirmed, this would extend the 

state space relevant for the separation of motor memory from physical to psychological 

dimensions (Shepard 1987; Tenenbaum and Griffiths 2001) and thereby potentially explain 

separation of memory for movements with similar body states. To test this, we investigated 

how participants adapted to two opposing visuomotor cursor rotations when these were 

associated with different action effects.  
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Finally, we conducted a control experiment where we tested if the use of separate 

hands and thus clearly distinguishable bodily states would cue distinct motor memories of the 

opposing visuomotor transformations. Given that different effectors can be considered 

different states of the body and that intermanual transfer of adaptation is limited (Malfait and 

Ostry 2004; Sarwary et al. 2015; Poh et al. 2016), we hypothesized that this would lead to 

clearly separate memories for the two transformations.  

Results 

Experiment 1: Visual tools 
The goal of experiment 1 was to determine if different visual tools in separate 

workspaces could afford dual adaptation to conflicting sensorimotor transformations. In 

alternating blocks, participants practiced overcoming two opposing 45° visuomotor rotations 

by controlling two different visual tools, either a cartoon of a hand or an arrow cursor, in 

separate regions of the visual workspace (figure 1A, figure 2A). The clockwise and 

counterclockwise perturbations were uniquely associated with either the hand or arrow 

cursor (and workspaces), counterbalanced across participants. To distinguish whether 

separate memories were formed and retrieved based on the context cue or separate explicit 

motor plans (Schween et al. 2018), we tested spatial generalization of learning under each cue 

differentially and dissociated total learning into explicit plans and implicit adaptation by a 

series of posttests (Heuer and Hegele 2008).  
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Figure 1: Experimental setup (A) and an exemplary task protocol (B). Adapted from Schween 

et al. (Schween et al. 2018) under CC BY-4.0 license. Participants made rapid shooting 

movements, dragging a motion-captured sled attached to their index finger across a glass 

surface, to bring the different tools to a single target (indicated by darker red/blue color), 

which was oriented at 90° and presented on a vertically-mounted computer screen. 

Continuous, online feedback was provided during reach practice, where cursor movement 

was veridical to hand movement in familiarization, but rotated 45° during rotation practice, 

with rotation sign and contextual cue level alternating jointly in blocks of 8 trials. Pre and 

posttests without visual feedback tested generalization to different targets (practice target + 

targets indicated in lighter red/blue) with participants either instructed that the rotation was 

present (total learning) or absent (aftereffects) or judging the required movement direction 

using a visual support (explicit judgment), from which we inferred total, implicit and explicit 

learning, respectively.  

 

Within a few blocks of practice, all participants were able to compensate for the 

opposing rotations (figure 2B). Total learning, which is believed to comprise both explicit and 
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implicit contributions, generalized broadly across the workspace in a pattern that is suggestive 

of dual adaptation (figure 2C). Much of the dual adaptation could be attributed to different 

explicit judgments (figure 2D) for each tool, while implicit aftereffects appeared to contribute 

very little to the total learning (figure 2E). What’s more, the pattern of generalization of the 

aftereffects appeared to be similar for each tool and exhibited a bimodal shape, indicative of 

plan-based generalization (figure 2E). These findings are remarkably similar to our previous 

findings, which had just visual workspace separation as contextual cue (Schween et al. 2018), 

suggesting that distinct visual tools did not afford greater dual adaptation.  

 
Figure 2: Results of experiment 1. A: Opposing rotations were cued by different screen 

cursors and display in different parts of the visual workspace (VWS). B: Light and dark grey 

lines and shades represent means and standard deviations of hand direction averaged over 

participants who began practice with CW rotation/left VWS or CCW rotation/right VWS, 

respectively (as this was counterbalanced). Participants quickly learned to compensate for 

both rotations, as indicated by grey lines approaching red and blue dashed horizontal lines 

marking perfect compensation. C-E: Symbols with error bars represent across participant 

means and standard deviations of baseline-corrected posttest directions by generalization 

target (x-axis) and rotation sign/VWS (red vs. blue). Note that the pairing of cue level (i.e. 

cursor type) to rotation sign/VWS was counterbalanced across participants and the rotation-

specific red and blue curves therefore contain both cue levels, but are distinct in VWS and 

rotation sign experienced. Thin, colored lines are individual participant values. Total learning 
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(C) and explicit judgments (D) appeared to depend on the context cue, but implicit learning 

(E) only varied with test direction, and was fit better by a bimodal than a unimodal Gaussian 

(thick red and green lines), in line with local generalization around separate explicit 

movement plans.  

 

As our primary goal was to determine if distinct tools could serve as cues to separate 

implicit visuomotor memories, we sought to further characterize the pattern of interference 

(or generalization) of the aftereffects. Here, we found that the mean aftereffects across 

generalization targets were fit better by the sum of two Gaussians (“bimodal” Gaussian) than 

a single Gaussian (ΔBIC: 16.1 for cued CW rotation, 17.0 for cued CCW rotation), which is 

consistent with our previous findings (Schween et al. 2018). The gain parameters had opposite 

signs and their respective bootstrapped confidence intervals did not include zero (table 1), 

suggesting that adaptive changes in response to both rotations were represented in each 

generalization function. The locations and signs of the peaks comply with what we previously 

explained by implicit adaptation for each of the two practiced rotations generalizing narrowly 

around the cue-dependent explicit movement plans (Schween et al. 2018). Here, the bimodal 

curve can be thought of as the sum of these independent generalization functions, where the 

two modes reflect the two opposite peaks of the individual functions and interference is 

maximal at the practiced target. Importantly, confidence intervals of differences between 

bootstrapped parameters for the two curves included zero (table 1), indicating that 

adaptation retrieved under the two context cue levels did not differ significantly. In summary, 

we take these results to show that visual tools did not cue separate implicit visuomotor 

memories, except indirectly, mediated by plan-based generalization around separate explicit 

movement plans. 

Experiment 2: Action effects 
Motivated by ideomotor theory (Shin et al. 2010), experiment 2 tested whether 

opposing transformations could be learned and retrieved separately when they were 

associated with different intended effects of the motor action. For this purpose, participants 

were instructed that they should either “paint” or “explode” the target. The current effect 

was announced by an on-screen message at the beginning of each block and participants saw 

an animation of a brushstroke (paint-cue) or an explosion (explode-cue) where their cursor 

crossed the specified target amplitude and heard respective sounds. Again, we retained 

separate visual workspaces as in our previous experiments.  
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Figure 3: Results of experiment 2. A: Opposing rotations were now cued by participants’ 

intention to either “paint” or “explode” the target. Target intentions were instructed by 

onscreen messages at the beginning of each block and supported by animations where the 

cursor crossed the target amplitude, accompanied by respective sounds. B: Similar to 

experiment 1, mean hand directions during practice (grey lines with shades indicating SDs) 

indicated that participants learned to compensate both rotations, quickly. C-E: Baseline-

corrected mean (±SD) and individual participant posttest directions for total learning (C) and 

explicit judgments (D) were specific to the contextual cue (red vs. blue) and generalized 

broadly across target directions (x-axis), while implicit aftereffects (E) remained cue-

independent and only varied with target direction. It therefore appears that opposing 

transformations were learned specific to the intended effect only by explicit strategies and 

local, plan-based generalization around these (bimodal Gaussian fits indicated by thick red 

and blue lines in panel E), but no distinct implicit memories were formed depending on the 

intended effect. 

 

The results show no relevant qualitative differences compared to the combination of 

visual tool and workspace used in experiment 1. Participants quickly compensated for both 

rotations during practice (figure 3B). Total learning and explicit judgments compensated for 

the rotations in a cue-dependent fashion and generalized broadly (figure 3C-D). Aftereffects 

(figure 3E) displayed a bimodal pattern (ΔBIC CW: 19.7, CCW: 18.8) that is visually similar to 

that of experiment 1. The oppositely signed peaks again complied with plan-based 
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generalization and bootstrapped parameters indicated no difference between the curves for 

the different cue levels (table 1). It therefore appears that separate action effects were 

ineffective in cuing separate memories for the opposing transformations, except as mediated 

by spatially separate explicit movement plans. 

Experiment 3: Separate hands 
As the first two context cues we tested were effective only via separate explicit 

strategies, we wanted to test a cue that would allow separate implicit memories to be created 

with relative certainty. Based on the findings that distinct body states cue separate memories 

and that transfer of learning between hands is incomplete, we reasoned that using different 

hands to practice the two rotations would be a promising approach. In experiment 3, a 

clockwise cursor rotation was therefore associated with left hand movements and visual 

display in the left half of the screen (left visual workspace), whereas a counterclockwise 

rotation was cued by right hand movements and right visual workspace display. 

 

Figure 4: When using distinct hands to learn opposing transformations (A), participants also 

quickly compensated the rotation, as indicated by mean hand directions during practice (grey 

lines with SD shades) quickly approaching ideal compensation (red/green, dashed lines). C-E: 

In contrast to experiment 1 and 2, across participant mean (±SD) directions now appeared 

specific to the cue level (red vs. blue symbols and thin lines) for aftereffects (E) in addition to 
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total learning (C) and explicit judgments (D) and were best fit by a unimodal Gaussian (thick 

red and blue lines in E). 

Similar to experiment 1 and 2, total learning and explicit judgments indicated that 

participants learned to compensate each rotation in a cue-specific fashion. Total learning at 

the practiced target almost completely compensated the rotation associated with each cue 

and relatively broad generalization to other targets occurred (figure 4C). Explicit judgments at 

the practiced target compensated about half of the cued rotation and also displayed a flat 

generalization pattern (figure 4D). Different than in the first two experiments, implicit 

aftereffects also showed a clear, cue dependent separation, with a single-peaked 

generalization pattern (figure 4E). This was supported by BIC being similar between single and 

bimodal Gaussian (ΔBIC CW: 1.9, CCW: 0.4, each in favor of the single Gaussian). The direction 

of the single Gaussians’ peaks depended on the hand cue, in line with each reflecting 

adaptation to the respective rotation practiced with that hand. Further, their locations were 

shifted off the practiced target in the direction consistent with plan-based generalization 

(table 1). Interestingly, generalization appeared to be considerably wider than the peaks in 

the first two experiments and in previous studies (McDougle et al. 2017; Poh and Taylor 2018). 

Furthermore, we note that, despite separate implicit memories being established, implicit 

learning seemed incapable of accounting for the full cursor rotation, as it was supplemented 

by explicit strategies, in line with recent findings that the extent of implicit adaptation is 

limited (Kim et al. 2018).  

In summary, these results indicate that the cue combination of using separate hands 

in addition to the separate visual workspaces successfully cued separate visuomotor 

memories for both implicit adaptation and explicit strategies. As contextual separation of 

memories can be considered the inverse of transfer between contexts, this is in line with 

findings suggesting that intermanual transfer of sensorimotor adaptation relies largely on 

strategies being flexibly applied across hand-context (Malfait and Ostry 2004; Poh et al. 2016) 

and that implicit learning transfers incompletely to the other hand (Sarwary et al. 2015; Poh 

et al. 2016) (but see Kumar and colleagues (Kumar et al. 2018)).  

 
 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 13, 2019. ; https://doi.org/10.1101/548602doi: bioRxiv preprint 

https://doi.org/10.1101/548602
http://creativecommons.org/licenses/by/4.0/


11 
 

Table 1: Parameters of generalization functions fit to across-participant mean aftereffects. 
Only parameters for the better-fitting model (unimodal or bimodal Gaussian) are shown. 
Square brackets contain 95% confidence intervals obtained by bootstrap resampling of 
participants and fitting to mean data. Differences between CW and CCW were calculated 
within each bootstrap sample to test for differences between aftereffects obtained under the 
cue levels. Abbreviations: Std. dev.: standard deviation. VWS: visual workspace. 

Discussion 
Based on the assumption that distinct preparatory states most likely incorporate 

features beyond bodily states, we considered the identity of a tool being controlled and the 

intended action effect as being part of a movement’s plan (i.e. its preparatory activity) and 

tested whether these cues would allow for the development of separate motor memories. 

We also distinguished between explicit and implicit forms of motor memories. Contrary to our 

expectation, neither distinct tools nor action effects appeared to produce separate implicit 

memories. Instead, the opposing transformations were represented in implicit memory only 

indirectly via local spatial generalization around explicit movement plans (Hirashima and 

Nozaki 2012; Day et al. 2016; Sheahan et al. 2016; McDougle et al. 2017; Schween et al. 2018). 

Consistent with previous findings, it appears that separate implicit memories are inextricably 

linked to states of the movement or the body. Indeed, in a control experiment (experiment 

Experiment Cued 
rotation 

Parameters 

  „gain“ a1 „center“ b1 „gain“ a2 „center“ b2 „std.dev.“ c 

1: tool + 
VWS 

CW 16.3° [10.5°; 
85.1°] 

105.5° [86.7°; 
124.5°] 

-13.2° [-
83.3°; -5.6°] 

66.0° 
[38.8°; 
86.9°] 

47.2° 
[31.7°; 
56.0°] 

CCW 16.3° [10.4°; 
98.1°] 

103.5° [82.7°; 
120.5°] 

-15.4° [--
97.4°; -8.2°] 

 

62.5° 
[39.3°; 
84.0°] 

45.3° 
[33.7°; 
52.4°] 

CW - CCW [-79.2°; 
66.7°] 

[-28.4°, 
35.4°] 

[-65.8°; 
81.9°] 

[-37.5°; 
38.2°] 

[-13.6°; 
13.7°] 

2: effect + 
VWS 

CW 10.2° [7.6°; 
48.7°] 

125.0° [94.9°; 
133.4°] 

-8.3° [-
48.1°; -5.7°] 

44.2° 
[35.0°; 
82.2°] 

40.4° 
[33.3°; 
54.0°] 

CCW 13.4° [10.9°; 
90.2°] 

119.3° [91.6°; 
128.3°] 

-9.3° [-
87.4°; -5.7°] 

58.4° 
[36.5°; 
91.8°] 

42.3° 
[32.0°; 
53.8°] 

CW - CCW [-77.7°; 
3.7°] 

[-15.2°, 
35.0°] 

[-6.3°; 
77.4°] 

[-48.0°; 
19.4°] 

[-14.1°; 
11.0°] 

3: hands + 
VWS 

CW 14.2° [11.4°; 
17.5°] 

108.6° [97.8°; 
118.1°] 

  52.9° 
[44.2°; 
61.8°] 

CCW -16.5° [-
20.6°; -
13.1°] 

75.2° [67.0°; 
85.2°] 

  68.2° 
[52.8°; 
86.2°] 
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3), we found that distinct aftereffects, an indicator for the development of separate implicit 

motor memories, formed when participants practiced the opposing visuomotor rotations with 

separate hands, which represent a strong cue within a bodily state space. Under the dynamical 

systems perspective invoked in the introduction, these results would indicate that only past, 

current and future states of the body determine the preparatory state in areas relevant to 

implicit adaptation, while more abstract contextual cues that relate to the action but not to 

parts of the body, are processed differently.  

Despite our findings, we know that people can manipulate a variety of tools with little 

cognitive effort, even if they share similar movement characteristics and workspaces. Thus, 

we would expect that humans are capable of separating and storing separate implicit 

memories based on cues that do not require distinct states of the body. This raises the 

question as to why studies have consistently failed to find contextual cues that do not depend 

on movement-related states (Gandolfo et al. 1996; Woolley et al. 2007; Hinder et al. 2008).   

One possibility lies in the way in which context was implemented during practice and 

testing: it is well possible that experimental parameters like the duration of practice, the 

frequency and schedule of change between transformation-cue-combinations (Osu et al. 

2004; Braun et al. 2009), or the way cues are presented in tests without visual feedback are 

responsible for the absence of implicit dual adaptation and it is a limitation of our study that 

we did not test different conditions. However, recent findings have shown that implicit 

adaptation in cursor rotation experiments approaches a fixed asymptote (Kim et al. 2018), 

which suggests that even longer practice would not enable this implicit adaptation process to 

account for large-scale change in visuomotor relations. These findings thus align with ours in 

suggesting that learning transformations associated with tools and contexts may rely on 

mechanisms distinct from this implicit adaptation. 

What could be the nature of these mechanisms? Morehead and colleagues (Morehead 

et al. 2015) suggested that explicit movement plans are part of an action selection mechanism 

that can also operate implicitly, whereas implicit adaptation typically observed in cursor 

rotation experiments reflects a calibration mechanism for motor execution on a lower level. 

We speculate that the action selection level is where context-dependent learning of tool 

transformation occurs. Under this view, implicit, context-dependent learning could, for 

example, be achieved by proceduralization of strategies at the action selection level, in line 

with canonical views of skill learning (Fitts and Posner 1967; Willingham 1998). Recent findings 
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have shown that that new policies can be learned by exploration and reinforcement (Shmuelof 

et al. 2012; Vaswani et al. 2015), and that this is closely tied to explicit strategies (Codol et al. 

2018; Holland et al. 2018). A possibility is that explicit action selection tendencies may become 

proceduralized by associative learning. Consistent with this idea, recent findings indicate that 

stimulus-response associations in cursor rotation (Huberdeau et al. 2017; Leow et al. 2019; 

McDougle and Taylor 2019) and visuomotor association paradigms (Hardwick et al. 2018) can 

become “cached”, so that they are expressed by default in situations where cognitive 

processing resources are limited. 

These roles we assign to action selection and execution are reminiscent of another 

canonical distinction in the motor learning literature, between the learning of body versus 

tool transformations (Heuer 1983; Berniker and Körding 2008, 2011; Kong et al. 2017) giving 

rise to modifications of an internal representation of the body (body schema) (Kluzik et al. 

2008; Cardinali et al. 2009) and internal representations of tools, respectively (Massen 2013; 

Heuer and Hegele 2015). Here, our results would suggest that aftereffects in standard cursor 

rotation experiments reflect a dedicated mechanism that keeps the system calibrated to 

minor changes in the transformations of the body, and is therefore sensitive to context 

regarding the state of the body, but not other aspects of the motor environment. Notably, 

limiting standard implicit adaptation to a body model does not necessarily contradict the idea 

that internal models and the cerebellum underlie tool transformations (Imamizu et al. 2003; 

Higuchi et al. 2007; Imamizu and Kawato 2009). Recent neuroimaging and patient studies 

indicate that cerebellum-based internal models support not only the implicit (Leow et al. 

2017), but also the explicit component of visuomotor adaptation (Werner et al. 2014; Butcher 

et al. 2017). A possibility is that internal models support the selection of suitable actions by 

simulating their hypothetical outcomes (Barsalou 1999).  

Within the theory of event coding (TEC) (Hommel et al. 2001) mentioned in the 

introduction, our findings can be explained along a similar route: TEC acknowledges that 

neural signatures underlying perception and action need to be distinct at the far ends of this 

continuum and common coding and effect-based representation of actions can therefore only 

occur on an intermediate level (Hommel et al. 2001). As such, our results would place implicit 

adaptation to cursor rotations towards the action side of processing, thus explaining why 

separate action effects did not enable separate learning in our study, but the use of separate 

effectors did.  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 13, 2019. ; https://doi.org/10.1101/548602doi: bioRxiv preprint 

https://doi.org/10.1101/548602
http://creativecommons.org/licenses/by/4.0/


14 
 

Throughout this work, we chose to call visual tools, action effects and the limb used 

for execution a “contextual cue”, whereas we did not consider the different targets contextual 

cues, that we utilized to test generalization. This reflects the arbitrary choice to define a 

visuomotor memory as representing the physical space of the experiment. Modelling-based 

accounts have assumed more clear formulations of similar ideas, e.g. in defining “contextual 

signals” as “all sensory information that is not an element of dynamical differential equations” 

(Haruno et al. 2001). However, it is unclear to which extent physical space is relevant to the 

neural organization of the brain and the question of how to define “contextual cue” eventually 

becomes the same as which contextual cues enable the formation of separate memories in 

which ways. In this sense, our findings mean that adaptation of the implicit body model 

reflected in aftereffects only responds to contextual cues that are directly related to the state 

of the body, whereas supposed action selection component can in principle account for any 

contextual cue provided that the cue is either subject to overt attention or supported by a 

previously reinforced association. 

In conclusion, it remains a puzzle how we appear to use tools that share the same body 

states but require different sensorimotor transformations, most strongly exemplified in 

“modern” tools like video game controllers. Our work indicates that action effects and visual 

tools are insufficient to cue separate implicit memories for this scenario under the practice 

conditions studied. We speculate that, rather than implicit recalibration replacing explicit 

strategies with prolonged practice, these strategies may become proceduralized, with 

associative learning supporting the brain in acquiring the contingencies between contextual 

cues and appropriate action selection policies. 

Methods 
Sixty-three human participants provided written, informed consent as approved by the 

local ethics committee of the Department of Psychology and Sport Science of Justus-Liebig-

Universität Giessen and participated in the study. To be included in analysis, participants had 

to be between 18 and 30 years old, right handed, have normal or corrected to normal visual 

acuity and were not supposed to have participated in a similar experiment, before. We 

therefore excluded 8 participants (5 for not being clearly right-handed according to the lateral 

preference inventory (Büsch et al. 2009), 2 for failing to follow instructions according to post-

experimental standardized questioning, one for exceeding our age limit), giving us a total of 

18 analyzed participants in experiment 1, 17 in experiment 2, and 20 in experiment 3. 
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Apparatus 
The general task and protocol were similar to those described in our previous study 

(Schween et al. 2018). Participants sat at a desk, facing a screen running at 120 Hz (Samsung 

2233RZ), mounted at head height, 1 m in front of them (figure 1A). They moved a plastic sled 

(50 x 30 mm base, 6 mm height) strapped to the index finger of their right hand (and left hand, 

respectively, in experiment 3), sliding over a glass surface on the table, with low friction. A 

second tabletop occluded vision of their hands. Sled position was tracked with a trakSTAR 

sensor (Model M800, Ascension technology, Burlington, VT, USA) mounted vertically above 

the fingertip, and visualized by a custom Matlab (2011, RRID:SCR_001622) script using the 

Psychophysics toolbox (RRID:SCR_002881 (Brainard 1997)), so that participants controlled a 

cursor (cyan filled circle, 5.6 mm diameter or specific cursors in experiment 1).  

Trial types 
Trials began with arrows on the outline of the screen guiding participants to a starting 

position (red/green circle, 8 mm diameter) centrally on their midline, about 40cm in front of 

their chest. Here, the cursor was only visible when participants were within 3mm of the start 

location. After participants held the cursor in this location for 500ms, a visual target (white, 

filled circle, 4.8mm diameter) appeared at 80mm distance and participants had to “shoot” the 

cursor through the target, without making deliberate online corrections. If movement time 

from start to target exceeded 300ms, the trial was aborted with an error message.  

Participants experienced 3 types of trials. On movement practice trials, they saw the 

cursor moving concurrently with their hand. Here, cursor feedback froze for 500ms, as soon 

as target amplitude was reached. On movement test trials, we tested behavior without visual 

feedback meaning that the cursor disappeared on leaving the start circle. On explicit judgment 

trials (Heuer and Hegele 2008), we asked participants to judge the direction of hand 

movement required for the cursor to hit the target, without performing a movement. For this 

purpose, participants verbally instructed the experimenter to rotate a ray that originated in 

the start location to point in the direction of their judgment. During judgments, they were 

asked to keep their hand supinated on their thigh in order to discourage them from motor 

imagery. Accordingly, moving towards the start position was not required. 

General task protocol 
The experiment consisted of four phases: familiarization, pretests, rotation practice 

and posttests (figure 1B). Familiarization consisted of 48 movement practice trials to a target 
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at 90° with veridical cursor feedback, thus requiring a movement “straight ahead”. The cue 

condition (see Specific experiments) alternated every 4 trials, with condition order 

counterbalanced across participants. Pretests contained movement practice tests and explicit 

judgment tests to establish a baseline for subsequent analysis. We tested generalization to 9 

target directions from 0° to 180° at the amplitude of the practice target. We obtained one set 

per cue level, which in turn consisted of 3 blocks of randomly permuted trials to each of the 9 

target directions for movement tests and one such block for explicit judgment tests. The sets 

were interspersed by blocks of 8 practice movements (4 per cue level) to the 90° target, to 

refresh participants’ memory (figure 1B). There were thus 104 trials in the pretests: 2x27 

movement tests, 2x9 explicit tests, 4x8 movement practice trials. 

In the subsequent rotation practice phase, participants performed 144 trials toward 

the practice direction with cursor movement being rotated relative to hand movement by 45°. 

The sign of the rotation switched between clockwise (CW) and counterclockwise (CCW) 

depending on the context condition, which here alternated every 8 trials. Before we first 

introduced the cursor rotation, we instructed participants that they would still control the 

cursor, but that the relation between the direction of hand and cursor movement would be 

changed and that this changed relation would be signaled by a red, instead of the already 

experienced green start circle. 

Rotation practice was followed by a series of posttests to dissociate implicit, total and 

explicit learning. The posttests were structured like the pretests, except that the movement 

tests were repeated twice: the first repetition tested for implicit aftereffects by instructing 

participants to assume the rotation was switched off, reasoning that this would induce them 

to abandon potential aiming strategies and aim right at the target. The second repetition 

tested for total learning by instructing them that the rotation was switched on. For the explicit 

judgment tests, the rotation was instructed as switched on to test for explicit knowledge 

about the cursor rotation. Throughout the experiment, the presence or absence of the 

rotation was additionally cued by the color of the starting position (green = switched off, red 

= switched on), which participants were repeatedly reminded of.  

Specific experiments 
The experiments differed in the type of contextual cue associated with the opposing 

cursor rotations. In all experiments, the rotation sign was associated with a visual workspace 

cue, meaning that start, cursor and target locations were presented with a constant x-axis 
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shift of ¼ screen width (figure 1A). CW cursor rotation was always associated with display in 

the left half of the screen while CCW rotation was displayed in the right half. Hand movements 

were performed in a joint central workspace. We retained this for consistency with our 

previous experiments, where we found that it did not cue separate implicit memories and 

instead produced a pattern consistent with plan-based generalization (Hegele and Heuer 

2010; Schween et al. 2018). Our main interest was thus on whether the added cues would 

enable separate implicit memories to be formed. 

In experiment 1, the added cue was the visual identity of the cursor: participants either 

saw a hand icon or an arrow cursor. These cursor types were associated with the existing 

combination of visual workspace and cursor rotation in a way that was constant within, but 

counterbalanced across participants. As the cursor was visible once participants were in the 

vicinity of the start location, they could anticipate the upcoming rotation based on the cue in 

all movement trials. On explicit posttests, the cursor cue was attached to the far end of the 

ray that signaled participants response.  

The added contextual cues for experiment 2 were two different action effects: 

Participants were instructed that they would have to either “explode” the target or “paint” it. 

The effect that participants should intend was prompted by a screen message at the beginning 

of each block (German: “Zerstören!” or “Anmalen!”). Accordingly, an animated explosion or 

brushstroke appeared at the location where the cursor crossed target amplitude, 

accompanied by respective sounds. As in experiment 1, action effects were fixed to visual 

workspaces and rotation direction within, but counterbalanced across participants. During 

movement tests without feedback, participants received the onscreen message before each 

block and the audio was played to remind them of the intended action effects.  

In experiment 3, the additional cue was the hand used to conduct the movement, 

where we always associated the left hand with the left visual workspace and the right hand 

with the right visual workspace. At the beginning of each block, participants were prompted 

about which hand to use by an onscreen message and we asked them to rest the idle hand in 

their lap.  

Data Analysis 
We performed data analysis and visualization in Matlab (RRID:SCR_001622) and R 

(RRID:SCR_001905). X- and y-coordinates of the fingertip were tracked at 100Hz and low-pass 

filtered using MATLAB’s “filtfilt“ command (4-th order Butterworth, 10 Hz cutoff frequency). 
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We then calculated the movement-terminal hand direction as the angular deviation of the 

vector between start and hand location at target amplitude and the vector between start and 

target. We excluded the following percentages of trials for producing no discernible 

movement endpoints (usually because the trial was aborted): experiment 1: 5.3%, experiment 

2: 4.4%, experiment 3: 3.6%, and an additional total of 24 trials for producing hand angles 

more than 120° from the ideal hand direction on a given trial. Explicit direction judgments 

were calculated as the deviation between the vector connecting the start position with the 

target and the participants’ verbally instructed direction judgement. To obtain our measures 

of aftereffects, total learning, and explicit judgments, we calculated the median of the three 

repetitions per target  in each pre- and posttest, under each cue level, for each participant, 

and subtracted the individual median of pretests from their respective posttests to account 

for any biases (Ghilardi et al. 1995). As main outcome measure, we therefore report direction 

changes from pretest to the different posttests types, depending on test target direction and 

context cues. 

Statistical Analysis 
As we were interested in whether or not the contextual cues enabled separate implicit 

memories, we focused on aftereffects and only report explicit judgments and total learning 

descriptively, for completeness. Furthermore, as generalization of explicit judgments appears 

to strongly depend on methodological details (Poh and Taylor 2018; Schween et al. 2018), we 

would not claim universal validity of our findings in this respect. In our main analysis, we aimed 

to infer whether implicit aftereffects assessed under each cue reflected only the cued 

transformation, or both, and if aftereffects differed depending on the cue level. We therefore 

fit two candidate functions to the group mean aftereffect data obtained under each cue, 

respectively. In line with our previous reasoning (Schween et al. 2018), we chose a single-

peaked Gaussian to represent the hypothesis that aftereffects reflected only one learned 

transformation:  

𝑦 = 𝑎 ∗ 𝑒
−

(𝑥−𝑏)2

𝑐2  

Here, 𝑦 is the aftereffect at test direction 𝑥. Out of the free parameters, 𝑎 is the gain, 

𝑏 the mean and 𝑐 the standard deviation. 

The hypothesis that aftereffects reflected two transformations was represented by the 

sum of two Gaussians:  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 13, 2019. ; https://doi.org/10.1101/548602doi: bioRxiv preprint 

https://doi.org/10.1101/548602
http://creativecommons.org/licenses/by/4.0/


19 
 

𝑦 = 𝑎1 ∗ 𝑒
−

(𝑥−𝑏1)2

𝑐2 + 𝑎2 ∗  𝑒
−

(𝑥−𝑏2)2

𝑐2  

For this, we assumed separate gains 𝑎1; 𝑎2 and means 𝑏1; 𝑏2but a joint standard 

deviation 𝑐. For fitting, we used Matlab’s “fmincon” to maximize the joint likelihood assuming 

independent Gaussian likelihood functions for the residuals. We restarted the fit 100 times 

from different values selected uniformly from the following constraints: -180° to 180° on a, 0° 

to 180° on b-parameters, 0° to 180° on c, and subsequently compared the fits with the highest 

likelihood for each model by Bayesian information criterion (BIC), calculated as:  

𝐵𝐼𝐶 =  ln(𝑛) ∗ 𝑘 + 2 ∗ ln(𝑙𝑖𝑘) 

with 𝑛 being the number of data points, 𝑘 number of free parameters and 𝑙𝑖𝑘 the joint 

likelihood of the data under the best fit parameters.  

In order to test if the generalization functions thus obtained differed significantly 

between the two context cues used in each experiment, respectively, we created 10000 

bootstrap samples by selecting participants randomly, with replacement, and fitting on the 

across subject mean, starting from the best fit parameters of the original sample. For each 

sample, we calculated the difference between parameters obtained for each cue level. We 

considered parameters to differ significantly if the two-sided 95% confidence interval of these 

differences, calculated as the 2.5th to 97.5th percentile, did not include zero.  
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