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Abstract 

How does the brain combine information predictive of the value of a visually guided task (incentive                

value) with information predictive of where task relevant stimuli may occur (spatial certainty)? Human              

behavioural evidence indicates that these two predictions are combined additively to bias visual             

selection (additive hypothesis), whereas neuroeconomic studies posit that they may be           

multiplicatively combined (expected value hypothesis). We sought to arbitrate between these two            

alternatives, and to test the possibility that both operations are available to visual prioritization              

mechanisms, but that their use is context dependent (mixed operations hypothesis). Participants            

viewed two coloured placeholders that specified the potential value of correctly identifying an             

imminent letter target if it appeared in that placeholder. Then, prior to the target’s presentation, an                

endogenous spatial cue was presented indicating the target’s more likely location. Spatial cues were              

parametrically manipulated with regard to the information gained (in bits). Across two experiments,             

response time and accuracy were greater for targets appearing in high versus low value placeholders               

and higher when targets appeared in validly cued locations, even under conditions designed to              

impinge the optimality of an additive operation. Interestingly, these factors did not interact; Bayesian              

model selection showed that the additive hypothesis clearly outperformed the expected value and             

mixed operations hypotheses in accounting for the observed data from both experiments. These             

findings refute theories that expected value computations are the singular mechanism driving the             

deployment of endogenous spatial attention. Instead, incentive value and spatial certainty seem to act              

independently to influence visual selection. 
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Incentive value and spatial certainty combine additively to determine visual priorities 
 

Humans are good at learning that specific sensory information, or cues, can predict             

subsequent events. For example, we learn quickly that hearing a siren on the left predicts a fast                 

moving emergency vehicle appearing from that direction, or that seeing a smile predicts a likely future                

opportunity to gain social approval. Knowledge about where and when new, important sensory             

information may appear or new reward opportunities may arise is only useful, however, if such               

knowledge can be deployed to modulate and control the neural processes that control behaviour. Our               

understanding of exactly how learning and experience act to modify such prioritisations of visual              

signals, i.e. ​visual selection​, is still far from complete. Particularly, it remains unclear how multiple               

concurrent sensory cues, each associated with and therefore predictive of specific consequent            

outcomes are combined to influence goal-directed visual selection. In the current study, we seek to               

understand how two types of learned associations are combined by the brain to influence visual               

selection behaviours. These are (1) the association between sensory cues and available reward             

outcomes (incentive value) and (2) the association between sensory cues and response-defining            

information, in this case the probability of the upcoming target location (spatial certainty).  

Many cognitive, computational, and neurobiological theories of visual selection ​(see Itti and            

Koch 2001; Buschman and Kastner 2015; Moore and Zirnsak 2017, for reviews)​, assume that              

competition for high-level neural representation of external objects is flexibly biased by goal-directed             

mechanisms. For example, if information is provided that indicates the most likely location of an               

imminent task-relevant visual target, visual processing of information appearing at the predicted            

location is faster than for that for information appearing at other locations. This clear demonstration of                

the influence of internal knowledge on visual selection has been widely studied using the spatial               

cueing paradigm ​(Posner, Snyder, and Davidson 1980)​. In such studies, including the current one,              

participants observe two locations, typically indicated by placeholders, and then are required to             

identify a briefly presented pre-specified target that suddenly appears in one of the placeholders (left               

or right with chance probability). At the same time, a distracting stimulus appears in the other                

placeholder, requiring active selection of the target. Preceding target onset, a symbolic cue such as               
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an arrow indicates one of the potential locations. Even though the probability that a target will appear                 

on the left versus right is at chance, participants are faster to respond when the target appears in the                   

cued location, relative to when it appears in the uncued location. The influence of symbolic spatial                

cues on performance is assumed to reflect the leveraging of information pertinent to current goals,               

such as using accrued knowledge that arrows are spatially informative, to bias visual selection              

towards the cued location.  

Recent investigations have focused on the possibility of multiple parallel endogenous           

influences on visual selection. In particular, studies asked how previous experience regarding            

associations between sensory cues and meaningful outcomes can influence a cues’ ability to gain              

visual priority ​(see Hutchinson and Turk-Browne 2012; Le Pelley et al. 2016, for reviews)​, even when                

processing the cue is at odds with the current goal as defined by the task-set ​(see Awh, Belopolsky,                  

and Theeuwes 2012, for a review)​. One example of such an association is when cues predict                

information relevant to success in the current task, such as directional cues that provide probabilistic               

information regarding potential target locations (predictive spatial cues). Another, yet distinct,           

example is when a stimulus signals an opportunity to gain a reward for appropriately engaging in a                 

visual task. Such incentive cues typically indicate the magnitude of rewards on offer but are               

uninformative about visual targets or the actions required to acquire the reward. Here, we asked how                

these two sources of influence, spatial cues and incentive cues, might be combined by the brain to                 

prioritise visual selection. 

The effects of predictive spatial cues on attention has been intensively studied and is very well                

established. Critically, spatial cueing effects, indexed by response time slowing when cues are invalid              

relative to valid, scale with the reliability of the cue; i.e., the higher the probability that the target will                   

appear in a location, given the cue, the larger the difference in response times to valid versus invalidly                  

cued targets ​(Lanthier et al. 2015; van der Heijden 1989; Jonides 1980; Kingstone 1992)​. This               

occurs, even though participants may be unaware of cue-target contingencies ​(Lanthier et al. 2015)​.              

Indeed, Prinzmetal et al. ​(2015) showed that spatial cueing effects follow the Hick-Hyman law of               

decision-time ​(Hick 1952; Hyman 1953)​; i.e., the size of response time (RT) benefits scale linearly               

with the spatial certainty gained (in bits) by a spatial cue. To compute spatial certainty they used                 
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Shannon’s ​(Shannon 1948) measure of entropy (H) as we did here (see Methods). It currently               

remains unknown how spatial certainty is combined with other predictive cues, such as incentive cues               

that provide information about upcoming potential reward magnitudes. 

Multiple previous studies have shown that when stimuli probabilistically predict the reward            

magnitude available for correct performance on a task, they become value-associated and may             

influence subsequent visual selection even when rewards cease to be available ​(Raymond and             

O’Brien 2009; Chelazzi et al. 2014; although see Sha and Jiang 2016)​. Critically, it has also been                 

shown that when such incentive cues are irrelevant to current task objectives they may nevertheless               

interfere with performance, indicating their power to influence visual prioritisation mechanisms           

(Anderson, Laurent, and Yantis 2011; Le Pelley et al. 2015)​. Of course, in many everyday situations                

(e.g., in computer games), incentive cues serve to energize or facilitate visual selection tasks,              

observations supported by controlled experiments ​(Kiss, Driver, and Eimer 2009; Small et al. 2005;              

Pessoa and Engelmann 2010)​. Indeed, the presentation of incentives cues prior to simple visual              

tasks has been shown to not only decrease response times but also to produce modulations of                

electrophysiological correlates of visual readiness and selection ​(Sawaki, Luck, and Raymond 2015)​.            

These and related data from selective attention tasks in monkeys ​(Stănişor et al. 2013) provide strong                

support for the notion that visual selection mechanisms are biased by brain mechanisms that code               

the incentive value of specific stimuli.  

Considering the possibility that there may be multiple influences acting on goal-directed visual             

selection, a question that arises is how might incentive value and spatial certainty be combined to                

influence competition among sensory signals, and thus visual selection? It has recently been shown              

in a study by Stănişor et al ​(2013) that the mechanism that mediates the ultimate influence of                 

incentive value and spatial certainty on visual selection may be unitary. This finding suggests that               

there may be a point where prioritising information from one source is either integrated with or                

overwritten by the other and that a singular mechanism ultimately determines visual selection. In the               

Stănişor et al ​(2013) study, monkeys gained different sized rewards by making saccades to one of                

two different coloured circles appearing at two different locations. Circle colour signalled reward             

magnitude, and each circle was equally likely to become a target prior to the presentation of a 100%                  
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valid spatial cue (a line connecting fixation to one of the circles). Saccades to the cued target were                  

selectively rewarded when made either 50ms or 400ms after spatial cue onset. When the response               

was made shortly after spatial onset (50 ms), V1 spiking activity measured by multiunit electrode               

recordings correlated with the relative reward values associated with the two circles. However, when              

the onset of the saccade was delayed (400 ms condition), V1 activity correlated with the spatial                

location of the cued target, regardless of its associated reward value. Across the short and long                

saccade onset conditions, responses to both value and spatial cues showed a similar latency of onset                

(~120 ms) and the strength of the response to incentive value cues predicted the strength of the                 

response to spatial cues, suggesting overlap in the neurons sensitive to both signals. Finding that the                

incentive value response was abolished by the spatial certainty information motivated the conclusion             

that the symbolic, spatial cue served to reweight the relative incentive values of the two coloured                

circles ​(Stănişor et al. 2013)​. For example, if a spatial cue signalled that the low incentive value circle                  

was the target on that trial, it nullified the incentive value offered by the now irrelevant high incentive                  

value cue. However, as all cues were 100% predictive of target location in this study, it sheds no light                   

on how variation in spatial certainty might be combined with incentive value to guide visual selection.  

In the current study, we examine three plausible alternatives for how incentive value and              

spatial certainty might be combined to control selective attention. The first of these is the expected                

value hypothesis, a concept that has its origins in economic theories of decision making ​(Morgenstern               

and Von Neumann 1953)​. According to this view, visual selection is biased by relative expected               

value, i.e., incentive value multiplied by spatial certainty for each outcome (which directly determines              

reward likelihood), and normalised across potential outcomes given the current trial context.            

(Traditionally, the expected value computation is assumed to draw from the probability of an incentive               

value offered by a single stimulus). Indeed, human saccadic response times have been shown to               

correlate with the relative expected value of potential targets ​(Milstein and Dorris 2007)​. In that study,                

participants were required to saccade to a single red dot that appeared within the left or right                 

hemi-field of a blank display. Over blocks, the likelihood of a specific target location varied as well as                  

its location-contingent reward value. The time taken to initiate a saccade to the target was more                

tightly correlated with the relative expected value of the potential target location than with either the                
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relative likelihood of the target location, or its relative reward value. However, these learned              

associations were tied to the appearance of the target rather than to ​a priori sensory cues, meaning                 

they could not be used to bias selective attention before the target’s appearance. Moreover, previous               

research has shown that similar interactive effects between spatial and non-spatial expectations            

regarding target identity occur when targets are presented in isolation, but become additive when              

presented with a concurrent distractor ​(Kingstone 1992)​. Therefore, it is unclear whether an expected              

value operation would hold when covert attention is required to arbitrate the competition between              

sensory signals.  

The second hypothesis we tested is the additive hypothesis, an idea given tentative support              

by Stankevich and Geng ​(2014)​. They asked participants to detect as quickly and accurately as               

possible a simple target that could appear on the left or right within a coloured placeholder. In their                  

experiment, placeholder colour indicated the magnitude of response-contingent rewards, as it does in             

the experiment we report here. However, they provided no explicit spatial cues as to target location.                

Instead, across blocks and without instruction, the probability of the target appearing on one side               

versus the other was varied. Greater performance benefits were observed when the target appeared              

in the more probable location and when that location corresponded to a high versus low value                

placeholder. Critically, these benefits were additive which suggests that incentive value and spatial             

certainty acted independently to influence visual selection, according to additive-factors logic           

(Sternberg 1998)​. However, in their experiment, spatial-certainty was built up over many trials,             

allowing predictions about target location to be generated well before each trial began and certainly in                

advance of location-specific incentive information. This may explain why incentive information           

provided an additive “top-up” effect. Such effects might not occur when location-specific incentive             

information is available first and spatial certainty cues providing task relevant information are             

presented subsequently, as in the Stanisor et al. (2013) study. Therefore, it remains unknown how               

two different endogenous cues (incentive and spatial) might be combined in humans when they are               

available only via new sensory information as each trial unfolds.  

We also considered a third hypothesis, which we refer to here as the mixed operations               

hypothesis. Perhaps the selective attention system maintains independence of incentive value and            
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spatial certainty biases when these predictions are orthogonal, as is the case when experimental              

designs ensure that variables are unconfounded. Yet, there may be limits to the additive nature of                

these influences, after which a non-additive relationship emerges, given that the same mechanism is              

influenced by both information sources. If this were the case, the influence might be additive until the                 

system is sufficiently stressed, after which an expected value operation may be revealed.  

The central aim of the two experiments reported here was to directly compare predictions              

made by these three hypotheses, using data from behavioural experiments on humans that combined              

the methods of relevant previous studies. In Experiment 1, we specifically tested conditions where              

spatial-certainty approached maximum, densely sampling probabilities between .8 and 1. We           

reasoned that if incentive value and spatial certainty were combined serially and additively, then              

additivity should be maintained across all levels of spatial certainty (​additive hypothesis​). In contrast,              

if the two influences were integrated in some way, then this relationship should either be non-additive                

across all levels of spatial certainty (​expected value hypothesis​) or become non-additive as spatial              

certainty nears maximum, i.e., as the spatial cue becomes close to 100 % valid (​mixed operations                

hypothesis​). We reasoned this might occur because as the computation of spatial certainty becomes              

trivial, the mechanism using both information sources could have left-over resources to implement the              

influence of incentives. To anticipate, we find that the influence of incentive value and spatial certainty                

remains additive across all tested levels of spatial certainty, arguing against the expected value and               

mixed operations hypotheses. 

In Experiment 2, we tested whether the reward structure of the task could influence the               

combination of spatial certainty and incentive biases. Previous studies show that learning can direct              

the sampling of sensory information to optimise reward accrual ​(Drugowitsch et al. 2015; Kiani and               

Shadlen 2009; Serences 2008)​. We reasoned that if an expected value computation is available to               

direct visual selection, then reward conditions that favour this operation should yield a non-additive              

influence of incentive and spatial certainty on performance. Given that expected value computations             

are multiplicative, they should produce super-additive effects when both incentive values and spatial             

certainty are high, and sub-additive effects when incentive value and spatial certainty are low. As RTs                

to targets appearing at specific spatial locations should scale inversely with the expected value for               
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that location, RTs driven by an expected value operation should be faster than those driven by an                 

additive operation when spatial certainty and incentive value are high, and should be slower than an                

additive operation when both spatial certainty and incentive value are low. Therefore, reward             

conditions that preferentially reward fast RTs on high incentive/certainty trials, and that minimize             

costs incurred for slow RTs on low incentive/certainty trials should favour an expected value              

operation over an additive operation (see Figure 1d). To effect these reward conditions, in Experiment               

2, participants completed the same task as in Experiment 1 (albeit sampling fewer levels of spatial                

certainty), with an added condition wherein reward value exponentially decayed after target onset.             

Again, and contrary to the expected value and mixed operation hypotheses, incentive value and              

spatial certainty additively combined to drive visual selection biases. Collectively the results favour             

the additive hypothesis, suggesting that incentive value and spatial certainty act independently to             

influence visual selection.  

 

Experiment 1  

Method 

 
All the task and analysis code, and data from the current study are available online . The trial                 

1

sequence of the spatial-orienting task ​(Posner 1980) used to assess the combined influence of spatial               

certainty and location specific incentive cues, and the key manipulations for Experiments 1 and 2, are                

shown in Figure 1.  

1  ​https://github.com/kel-github/attention-value-certainty 
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Figure 1: Study method. ​Task procedure and feedback conditions for Experiment 1 and Experiment 2. ​a. Trial                 
structure: Participants monitored two different coloured circular placeholders (incentive cues). Colour indicated            
the magnitude of a performance-contingent reward for correct target (“H” or “N”) identification, should the target                
subsequently appear within that placeholder. Then, one of two central bars darkened, indicating the more likely                
target location (left, right). ​b. Reward feedback structure: After response + 250 ms, performance feedback and                
response-contingent rewards were presented as shown. In Experiment 2, reward feedback was either             
independent of response time (fixed) or decremented exponentially after target onset until response (decaying).              
c. Spatial certainty was parametrically manipulated across blocks by increasing the information gained (in bits)               
from the spatial cue. ​d. Logic of the decaying reward condition in Experiment 2. Figure shows reward value                  
available as a function of time from target onset. As both expected value and mixed operations computations                 
involve a multiplicative weighting of spatial certainty and incentive value, responses should be super-additive or               
sub-additive depending on the spatial certainty/incentive value combination. As response times should reflect             
the inverse of this weighting, responses should be faster in a high certainty/high incentive scenario than                
responses based on an additive operation, and slower in a low certainty/low incentive scenario than an additive                 
operation. Applying an exponential decay function to the incentive value at target onset means that the extra                 
rewards accrued by being faster towards high incentive value cues (change in the high (5000) value on the                  
y-axis, while moving leftward on the x-axis) would outweigh the losses accrued from being slower towards low                 
incentive value cues (change in the low (100) value on the y-axis, while moving rightward on the x-axis).                  
Therefore, any operation that favours this response pattern would accrue greater total rewards than an additive                
operation, and therefore may emerge under such reward conditions. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 14, 2019. ; https://doi.org/10.1101/188045doi: bioRxiv preprint 

https://doi.org/10.1101/188045
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

Participants 

As larger samples protect against spurious findings ​(Button et al. 2013; Lorca-Puls et al.              

2018)​, we opted to double the sample size of previous work correlating human performance with               

expected-value (N=10) ​(Milstein and Dorris 2007)​, and recruit a minimum of 20 participants. We              

calculated the stopping rule for data collection as the number of weeks where testing at maximum                

capacity would bring us to at least the minimum sample size (6 weeks with 4 people per week,                  

allowing recruitment of >20 participants in order to protect against drop outs). Participants were              

recruited if they were aged 18 years or over and reported normal or corrected-to-normal vision, with                

no history of psychiatric or neurological illness, injury, or disorder. Participants earned either course              

credit or payment (£7 per session), and any additional rewards accrued during the session (~£10). All                

procedures were approved by the University of Birmingham Human Research Ethics Committee. A             

total of 23 participants were recruited. Of these, 1 was excluded due to technical failure and a second                  

due to experimenter error. The remaining 21 participants (19 female, 18 right-handed, mean age =               

20.3, sd 4.5) completed all the procedures.  

 

Apparatus 

Experiments 1 and 2 ​All experimental procedures took place in a room with a single testing                

station, under conditions of low ambient light. All tasks were programmed in Matlab (Mathworks,              

Natick, MA, 2013a), using the Psychophysics Toolbox extension ​(Brainard 1997; Pelli 1997)​. The             

tasks were run on a Stone SOFREP-144 computer with a 23-inch Asus VG278HE monitor (1920 x                

1080 pixels, 60-Hz refresh) viewed from 57 cm.  

 

Stimuli 

Two white [RGB: 200, 200, 200] vertical lines (0.5 ​० ​w x 1 ​० h) were presented in the centre of                    

the screen. A darkening of one of the lines [50, 50, 50] served as the endogenous spatial cue. Two                   

coloured discs (2.2° deg in diameter), one in purple [87, 75, 80], the other in orange [120, 86, 1]                   

(matched for luminance) served as value cues. They were aligned along the horizontal meridian and               
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positioned 4.5 ​० from the centre. Targets (‘H’ or ‘N’) and distractors [‘Z’ or ‘K’] were presented in light                  

grey [90, 90, 90] Helvetica font, encompassed 1 ​० , and were centred on the disc’s centre. Feedback                

was presented in green [0, 255, 0] for high reward values, amber [255, 191, 0] for low reward values,                   

and red [255, 0, 0] for errors. All stimuli were presented on a grey [RGB: 118, 118, 118] background. 

 

Procedure 

As shown in in Figure 1, each trial began with the simultaneous presentation of both incentive                

value cues and two centrally presented vertical lines. After a pseudo-randomly chosen duration of              

400-500 ms, the left or right fixation line darkened for 300 ms. After a further 100 ms, the target and                    

distractor were presented for 100 ms (target identity was equiprobable for each incentive value x               

spatial certainty x cue validity condition). Participants pressed with the ‘v’ or ‘g’ key on a standard                 

keyboard to indicate the target identity. After 500 ms, feedback was presented for 750 ms; either the                 

central fixation was replaced with the high reward value, the low reward value, an error signal (fixation                 

lines turned red), or the fixation remained the same (no reward). Rewards were awarded on 80% of                 

correct trials to prevent feedback signals becoming redundant. The high and low incentive value cue               

locations and the target location were equally likely to be on the left or right; all conditions (cue value                   

location, target location, and target identity) were fully crossed within each session. Colour/value             

pairings (e.g. purple = 50 points/orange = 1 point) as well as target-response mappings were               

counterbalanced across participants. 

Across blocks, the likelihood of cue validity was varied to be either .6 valid/.4 invalid, .8/.2,                

.9/.1, .92/.08, .94/.06, resulting in information gains (spatial-certainty) of .029, .29, .53, .6 and .86 bits.                

Each block contained 100 trials. At each of 4 sessions, participants completed 4 blocks for each level                 

of spatial certainty. Participants took between 4 days and 1.5 weeks to complete the experiment               

(block order was pseudo-randomised for each session). Target-value contingencies were split equally            

within each set of valid and invalid trials for each cue-likelihood condition. 

Participants were explicitly instructed how many points were available should the target            

appear in the location of the high and low value incentive value cues (50 vs 1 point), and were                   

instructed that the cues signified that points were available most of the time, but not all of the time.                   
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They were also instructed that the darkened line was a clue for where the target could appear. They                  

were requested to keep their eyes at fixation, and to respond as accurately and as quickly as possible                  

to the target. Participants were also informed that their points would be exchanged for cash at the end                  

of the session (1000 = £1). At the start of the first session, participants practiced until they achieved at                   

least 16/20 correct responses.      

 

Statistical Approach 

Data pre-processing 

All data was analysed using the R programming language (v3.3.2) ​(R Core Team 2013)​, and               

R Studio (v1.0.44) ​(RStudio Team 2016)​. RT data were rejected if they were greater than +/- 2.5 s.d.                  

from the mean for that participant in that condition. As participants were not explicitly informed when                

there was a change in spatial-certainty, we assumed that trials immediately subsequent to changes in               

spatial-certainty would be contaminated by learning effects. To remove the contaminated trials for             

each participant, we collapsed the data across spatial certainty blocks, and ordered the data              

according to trial number. We then fit piecewise linear regressions to find the break point that                

minimized the mean square error (MSE). Trials occurring prior to the breakpoint were removed (mean               

= 12.3, sd 8.0). However, when we performed the analyses without removing these trials, the pattern                

of results was the same.  

Model specification and selection  

The aim of the study was to compare whether an additive model remained the best model,                

given the data, even under conditions where an additive relationship could be expected to break               

down. The key aim of each analysis was to determine whether a model that included an interaction                 

term between incentive value and spatial certainty was more probable, given the data, than one that                

only included main effects (i.e., an additive model). To quantify evidence, we used a Bayesian               

approach that provides the advantage of offering the ability to quantify evidence against a specific               

model, which is not possible using null hypothesis significance testing approaches ​(Wagenmakers            

2007; Nickerson 2000)​. Additionally, Bayesian approaches protect against the problem of model            

complexity: although more complex models may predict with high likelihood a greater range of values,               
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if these predictions are uninformative, this will result in a more diffuse marginal likelihood distribution               

when integrating across prior distributions for the parameters, thereby penalising the resulting model             

evidence. First, we fit all possible linear mixed models, with the regressors being (a) incentive value                

of the target location, (b) cue validity, and (c) spatial certainty offered by the cue. Spatial certainty was                  

computed in line with Prinzmetal et al ​(Prinzmetal et al. 2015)​. Specifically, Shannon’s ​(Shannon              

1948) measure of entropy (H) measures the amount of uncertainty in a probability distribution and is                

at maximum when the cue is completely unpredictable with regard to the target location. Therefore,               

spatial certainty gained by an informative cue can be calculated as: 

patial certainty HS =  no information − Hcue          ​(1)  

when ​H​ is defined in the standard manner: 

   H =  − ∑
 

i
p log pi 2 i (2) 

  

and ​p​i ​is the probability that the target appears at location ​i​, given the cue. For example, with 2                   

locations, and a cue that is .8/.2 valid/invalid: 

( .8 log  .8 )  .2 log .2 ) ≈.72Hcue =  −  2 − ( 2  

 
As ​H​no information ​is 1 (corresponding to complete uncertainty, i.e. .5/.5), then the information gained by                

the cue is 1 - .72 .28 bits.≈   

After fitting all possible models to the RT and accuracy data obtained in each experiment, we                

computed Bayes Factors (BFs) to quantify evidence for each linear mixed effects model against the               

null model (intercept plus random effects of participant) using the Bayes Factor package ​(Morey,              

Rouder, and Jamil 2014)​, and implementing the default Jeffreys-Zeller-Siow (JZS) prior on slope             

estimates ​(Liang, Paulo, and Molina 2008)​. We then identified the six best performing models. We               

report the BF of the winning model relative to the null model, and the BF ratios between the best                   

model and the next five best models, to demonstrate the strength of evidence in favour of the winning                  

model. We follow the guidelines of Kass and Rafferty ​(Kass and Raftery 1995) when interpreting the                

strength of evidence. This was typically sufficient to determine whether the evidence favoured a              

model that included only main effects, or an incentive value x spatial certainty interaction. However, in                
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the one case where this was not sufficient (accuracy measures of Experiment 2), further targeted               

comparisons were also made. All BFs are reported along with the proportional error of the estimate.                

For readers interested in confirming that an null hypothesis significance testing (NHST) approach             

yields the same conclusions, please refer to the online repository for this study. 

 

Results 

We adapted a spatial-orienting task ​(Posner 1980) to test whether the influence of spatial              

certainty and incentive value remains additive under conditions that approach maximal certainty (see             

Figure 1). In Experiment 1, for both the RT and accuracy data, we find strong evidence is in favour of                    

an additive influence of incentive value and spatial certainty, thereby providing support for the additive               

hypothesis, against the expected value and mixed operations hypotheses. 

RT 

Group mean RT data (dots) and winning model fit (lines) are presented in Figure 2a. Against                

the expected value and mixed operations hypotheses, the preferred model included only main effects              

of each factor (incentive value, spatial certainty, and cue validity), and a spatial certainty x cue validity                 

interaction term (BF = 1.74E+58, ± .87 %, see Figure 2B). The main effect of incentive value was to                   

speed RT by approximately 50 ms ± .3 (SE) for high versus low incentives. Spatial certainty served to                  

increase the effect of cue validity; the difference between valid and invalid trials increased by               

approximately 90 ms ± 29 (SE) across levels of certainty. Importantly, there was positive evidence               

that this model was preferred over the next best model (BF = 3.8, ± 1.45%), which was identical to the                    

winning model except that it also included an incentive value x spatial certainty interaction term.               

Therefore, the evidence favours a model that does not include an interaction between incentive value               

and spatial certainty. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 14, 2019. ; https://doi.org/10.1101/188045doi: bioRxiv preprint 

https://paperpile.com/c/iQ9Vbn/5mctF
https://doi.org/10.1101/188045
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

Figure 2: Results from Experiment 1. ​a. ​Observed group mean RTs in ms for targets appearing in high (dark                   
circles) or low (light circles) value placeholders plotted as a function of spatial certainty (x-axis) for valid and                  
invalid spatial cues (panels). Vertical lines indicate ± 1 within-subject s.e. Lines represent fit of the winning                 
model. The winning RT model (shown on the right of panel b) did not involve any interaction of incentive value                    
(iv) and spatial certainty (sc) supporting an additive hypothesis, although it did indicate an interaction of sc and                  
validity (v). ​b. ​BFs for the probability of the winning RT model (P[Win]: (v * sc) + AME) relative to the 5 next best                        
models (Alternative, P[Alt], models, y-axis). The larger the BF value, the stronger evidence for the winning                
model. Any values lower than 1 (dotted line) support P[Alt]. BF values over 3 (dashed line) constitute strong                  
evidence for the winning model. Dark bars indicate P[Alt] contains only an additive influence of incentive value;                 
light bars indicate P[Alt] involves a multiplicative influence of incentive value and either spatial certainty or                
validity. The Alt RT models were as follows: 1) ~v + iv, 2) ~AME, 3) ~(v * sc) + (sc * iv) + AME, 4) ~(v * sc) + (v                              
* iv) + AME, 5) ~(v * sc) + (v * iv) + (sc * iv) + AME. ​c. ​Observed group mean ​accuracy plotted as in panel a.                            
The winning model (shown on the right of panel d) involved only a main effect of incentive value and a main                     
effect of cue validity, again supporting the additive hypothesis. ​d. BFs for the probability of the winning accuracy                  
model (P[Win]: iv + v). Alt models: 1) ~AME, 2) ~(v * sc) + AME, 3) ~(v * iv) + v + iv, 4) ~(sc * iv) + AME, 5) ~(v *                                
sc) + (iv * sc) + AME. RT = response-time, BF = Bayes Factor, v = cue-validity, sc = spatial certainty, iv =                       
incentive value, AME = all main effects. 
 
 

Accuracy 

Accuracy data do not support the possibility that effects were due to a speed accuracy               

trade-off (see Figure 2c). The preferred model for these data, relative to the null model included only                 

main effects of incentive value and cue validity (BF = 8.83E+47, ± .56 %, relative to the null model,                   

Figure 2d). The probability of an accurate response on invalid trials was .16 ± .02 (SE) lower than on                   
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valid trials, and was .05 ± .02 (SE) less for targets appearing in low versus high incentive value cues.                   

Compared to the preferred model, evidence for the next best model, which additionally included a               

main effect of spatial certainty, was weak (BF = 2.57 ± .68 %), implying that we cannot rule out an                    

influence of spatial certainty on the accuracy data. The evidence in favour of the preferred model was                 

more positive relative to the third best model, which, akin to the RT data, included a cue validity x                   

spatial certainty interaction (BF = 3.19 ± .78 %). Crucially for the additive hypothesis, there is strong                 

evidence that the model that includes main effects of incentive value and cue validity is preferred to                 

any model that allows these factors to interact (see Figure 2d), therefore any models with an incentive                 

value x spatial certainty interaction were a poorer account for the data than the winning model.                

Therefore, although we did not reliably detect an influence of spatial certainty on the accuracy data,                

these results corroborate the notion that incentive value confers an additive influence on visual              

selection. 

 

Discussion 

Experiment 1 shows that models posing an additive influence of incentive value and spatial              

certainty outperform those allowing an interaction between the two. This goes against both the              

expected value and the mixed operations hypotheses and suggests that visual selection mechanisms             

do not integrate incentive value and spatial certainty, even when approaching the limits of certainty.               

Nevertheless, the second-best model to account for the RT data included an interaction between              

spatial certainty and incentive value, suggesting that this interaction is not entirely implausible.             

Perhaps additive effects would fail to provide the best description of the data if another form of                 

appropriate pressure is applied to visual selection. Previous studies show that learning can direct the               

sampling of sensory information to optimise reward accrual ​(Drugowitsch et al. 2015; Kiani and              

Shadlen 2009; Serences 2008)​. Therefore, a reward structure that favours an expected value             

operation may be sufficient to modulate the additive influence of incentive value and spatial certainty.               

The aim of Experiment 2 was to provide this test. 
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Experiment 2  

Experiment 2 sought to test whether a reward contingency optimised for an expected value              

operation could induce a non-additive influence of incentive value and spatial certainty. This was              

achieved by comparing two reward conditions: a decay condition and a fixed condition (the latter as                

used in Experiment 1). In the decay condition, the reward magnitude decremented exponentially after              

target onset so that faster responses could accrue greater rewards. In this condition, performance              

based on a multiplicative influence of incentive value and spatial certainty would gain higher reward               

values than performance motivated by an additive operation. Furthermore, the gains would outweigh             

the losses that an expected value operation would yield for low value locations (relative to an additive                 

operation, see Figure 1d). If the expected value or mixed operations hypotheses are correct, then we                

would expect to see a non-additive influence in the decay reward condition, in contrast to an additive                 

influence in the fixed reward condition. 

Overall and once again, evidence supports the additive hypothesis and is against the             

expected value or mixed operations hypothesis. 

 
Method 

Participants 

We calculated the stopping rule for data collection as the number of weeks where testing at                

maximum capacity would bring us over the minimal sample size (3 weeks with 10 people per week).                 

Of the 28 participants recruited, 1 was excluded due to technical difficulties with the eyetracker. A                

second participant was excluded as they did not meet the criterion required to terminate the practice.                

The remaining 26 (mean age = 19.5 years, sd = 1.03, 24 F, 26 right-handed) completed all the study                   

procedures. Two of these participants had also completed Experiment 1. 

 

Apparatus 

In addition to that used for Experiment 1, an EyelinkⓇ 1000 desktop-mounted eye-tracker (SR              

Research Ltd., Ottawa, Ontario, Canada) recorded movements of the left eye with a sampling              

frequency of 500 Hz. This was used to ensure that eye movement were not contributing to results,                 
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even though participants were clearly instructed not to move their eyes (replicating instructions used              

in Experiment 1 that were not, however, verified for compliance).  

Stimuli 

The stimuli were the same as in Experiment 1, except that the value cues were presented at                 

5.7 ​० . This change was made to match the exact layout used in previous work ​(Stankevich and Geng                 

2014)​.  

 

Procedure 

The procedure was the same as Experiment 1 with the following exceptions. Participants’             

eyes were monitored on every trial. If the participant’s eyes moved more than 50 pixels from the                 

fixation at cue-offset, text appeared to notify participants they had been “too-fast”. The trial was then                

terminated. Terminated trials accounted for ~3 % of all trials.  

Cue-values were increased from Experiment 1 to 5000 vs 100 points, so that participants              

could gain at least 1 point when a decay was applied to the low incentive value. In the decay                   

reward-condition, an exponential decay function (reward value = points*(​e​-4*RT​), RT = Response Time)             

was applied to each value at target onset. The monetary value of points was adjusted so that                 

participants received the same rate of cash payments as Experiment 1 (100,000 = £1). Participants               

were informed at the start of the decay blocks that the value available to them would begin to run out                    

upon appearance of the target.  

Participants completed 200 trials for each of four spatial certainty/reward contingency           

conditions (.29/fixed, .29/decay, .029/fixed, .029/decay; block order was counterbalanced across          

participants). We included only these two levels of spatial certainty as we wanted to avoid any                

possible floor or ceiling effects when testing the influence of reward condition. 

We also tested the separate hypothesis that individuals may mentally represent the high and              

low incentive placeholders differently in terms of their relative value, when their value can be obtained                

more reliably (i.e. in the fixed reward-condition, relative to the decay reward-condition), and that this               

may be expressed via physical placement on a linear space. Every 50 trials, participants were               

instructed to use a mouse to drag the two placeholders wherever they liked on a single line. However,                  
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we found no evidence that cue-likelihood influenced placement of the placeholders (p = .96), and this                

separate aspect of the study is discussed no further. Participants also completed a BIS/BAS              

questionnaire ​(Carver and White 1994) that was used to test a hypothesis for a separate study not                 

reported here.  

 

Statistical Approach 

We followed the same data cleaning procedures as Experiment 1. Again, piecewise linear             

functions were fit to the data to isolate the trials contaminated by spatial certainty learning effects.                

The number of trials removed from the start of each block were similar to Experiment 1 (mean = 14.7,                   

sd 8.5). 

We also used the same model comparison approach, with the exception that we added the               

reward condition term to the linear mixed effects models that were fit to the data.  

 

Results 

RT 

RT data (Figure 3a) show that the influence of incentive value is additive with cue validity,                

even under conditions where it is suboptimal for reward accrual, i.e. in the decay reward condition. If                 

the additive relationship between incentive value and spatial certainty is modulated by reward             

potential, then we would expect to find an interaction between these two factors in the decay reward                 

condition. First, we identified the most likely model given the data. The winning model included main                

effects of cue validity, incentive value, and reward condition (BF = 2.18E+67 ± .69 %, relative to null                  

model), but did not include an influence of spatial certainty (although see accuracy data). There was                

good evidence that this was the best model for the data, as it was positively preferred to the next best                    

model, which included an additional incentive value x cue validity interaction term (BF = 4.65 ± 2.43                 

%, see Figure 4a). As spatial certainty was found to interact with cue validity in Experiment 1, we                  

tested the evidence for the winning model against one that also included a spatial certainty x cue                 

validity interaction term. Again, there was positive evidence that the winning model provided a better               

fit to the data (BF = 8.97 ± 1.79%). Therefore, the RT data reflect additive influences of incentive                  
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value (RTs were approximately 21 ms ± 17 (SE) slower to low cue-values relative to high                

cue-values), cue validity (RTs were on average 33 ms ± 12 (SE) slower on invalid trials relative to                  

valid trials), and reward condition (RTs were approximately 54 ms ± 17 (SE) faster in the decay                 

reward-condition than the fixed reward-condition), without a detectable influence of spatial certainty.            

Collectively, the results show that even when an additive operation is disadvantageous, an additive              

model is still a better account of the data.  

 

 
 
Figure 3: RT and Accuracy for Experiment 2. ​a. Observed group mean RTs in ms for targets appearing in high                    
(dark circles) or low (light circles) value placeholders plotted as a function of spatial certainty (x-axis) for valid                  
and invalid spatial cues (panels) for each reward condition. Vertical lines indicate ± 1 within-subject SE. Lines                 
represent fit of the winning model. The winning model involved main effects of incentive value, cue validity, and                  
reward condition. ​b. Group mean accuracy plotted as in panel a. The winning model (solid lines) was ~(cue                  
validity x spatial certainty) + AME. RT = response-time. Acc = accuracy 
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Accuracy 

Interestingly, and in contrast to the RT data, accuracy scores showed an influence of spatial               

certainty. However, and importantly for the central question, the models that best accounted for              

accuracy data did not show an incentive value x spatial certainty interaction (see Figure 3b/4b). 

Selecting which model ​per se ​best accounts for the accuracy data was less simple, as               

evidence for a single winning model was not conclusive. Consistent with the RT data in Experiment 1,                 

the best model contained a cue-validity x spatial certainty interaction, and main effects of incentive               

value, spatial certainty and cue validity. Differences in accuracy between valid and invalid trials grew               

larger as spatial certainty increased (approximately by .15 ± .07 (SE)). Furthermore, accuracy             

performance was slightly higher when targets appeared in high relative to low incentive value              

placeholders (by approximately .0003, ± .0001 (SE)). Accuracy was also higher for the fixed relative               

to the decay reward condition (.05, ± .008 (SE)). However, evidence in favour of this model was                 

weak, relative to the next best model, which dropped the main effect of incentive value (BF = 1.56, ±                   

0.75 %). Given this, and to address the key theoretical question, we directly tested whether incentive                

value interacted with spatial certainty by comparing the winning model to those that additionally              

included either an incentive value x spatial certainty x reward condition interaction or an incentive               

value x spatial certainty x cue-validity x reward condition interaction. Against the expected value and               

mixed operations hypotheses, evidence for the winning model relative to these two was positive (BFs               

= 4.62 ± 0.93 %, BFs = 3.9 ± 0.93 %). Collectively, the data support the additive model. 
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Figure 4: ​Results of the Bayes Factor Analysis for Experiment 2​. ​a. ​BFs for the probability of the winning RT                    
model (P[Win]: v + rc + iv), relative to the 5 next best models (Alternative, P[Alt], models, y-axis). The larger the                     
BF value, the stronger evidence for the winning model. Any values lower than 1 (dotted line) support P[Alt]. BF                   
values over 3 (dashed line) constitute strong evidence for the winning model. Dark bars indicate P[Alt] contains                 
only an additive influence of incentive value; light bars indicate P[Alt] involves a multiplicative influence of                
incentive value and either spatial certainty or validity. The Alt RT models were as follows:  
1) ~(rc x iv) + v + iv + rc, 2) ~AME, 3) ~(rc x v) + iv + v + rc, 4) ~(v x sc) + AME, 5) (v x iv) + v + iv + rc. ​b. BFs                                        
for the probability of the winning accuracy model (P[Win]: (v*sc) + AME. Alt models: 1) ~(rc * v * sc) + rc + v +                         
sc, 2) ~AME, 3) ~rc + v + sc, 4) ~(v * sc) + (v * iv) + AME, 5) ~(rc * sc) + (v * sc) + AME, 6) ~(v * sc) + (rc * sc *                                      
iv) + AME, 7) ~(v * sc) + (rc * v * sc * iv) + AME. ​BF = Bayes Factor. valid = cue-validity, sc = spatial certainty, iv                             
= incentive value, rc = reward condition, AME = all main effects​. 
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General Discussion 

Over two experiments we tested whether the additive hypothesis would outperform the            

expected value and mixed operations accounts, even under conditions expected to challenge the             

optimality of additivity. In Experiment 1, we hypothesised that if incentive value and spatial certainty               

influence a common underlying mechanism, then conditions wherein spatial certainty is trivial to             

compute (i.e., very high certainty) might best reveal ​non-additive effects because these conditions             

should be minimally taxing to central resources and thus be more likely to enable an influence of                 

incentive value on visual selection. We created this condition by using very high spatial certainty cues                

and then pitted incentive value and spatial certainty against each other in a spatial-orienting task,               

where endogenous cues signalled the likely location of upcoming letter targets. Interestingly, an             

additive influence of incentive value and spatial certainty was observed, even under conditions of very               

high certainty. Spatial certainty increased the size of the cueing-effect (i.e. the difference in              

performance between invalidly and validly cued trials), whereas incentive value had a comparable             

influence on both valid and invalid trial types.  

In Experiment 2, we reasoned that if an expected value operation can bias visual selection,               

then a reward structure that favours a multiplicative weighting of incentive value and spatial certainty               

may reveal it. We applied an exponential decay function to incentive values at target onset; this                

ensured that if RTs were driven by a multiplicative weighting rather than an additive weighting, then                

reward gains accrued by faster RTs under high incentive value/certainty conditions would outweigh             

the losses incurred by the slower RTs under low incentive value/certainty conditions, relative to RTs               

predicted by an additive model. Although the influence of spatial certainty was manifest differently              

than in Experiment 1, i.e., by modulating accuracy, rather than RT, we observed that the effect of                 

incentive value remained additive to spatial certainty and to other experimental factors. Again, the              

findings support the additive hypothesis. 

What kind of mechanism or computation could result in a robust additive influence between              

incentive value and spatial certainty? In concert with recent theoretical and empirical developments             

suggesting that cognitive control processes are offset by subjective and computational costs of             

effortful control ​(Braver 2012; Yee and Braver 2018)​, we believe the current data can be interpreted                
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as reflecting trial by trial adaptations aimed at the conservation of effort. If we assume that the                 

maintenance of the task set, i.e., ​a priori ​preparedness to identify a data-limited target at two                

locations, requires energetic resources from the underlying selection mechanism, it is of benefit to the               

brain to predict conditions where effort can be relaxed, in order to conserve energy expenditure. For                

example, by learning the energetic range over which target identification mechanisms can be             

adjusted, to ensure good enough target detection, given the task parameters. Acoording to this view,               

a cost-benefit analysis could inform how much energy could be saved, given an acceptable              

decrement to accuracy and response time.  

Applied to current context, after the onset of the incentive value cues, selection mechanisms              

should maintain a steady level of task preparation favouring the high value location for example, by                

increasing the excitability of neuronal assemblies whose collective receptive fields correspond to            

detecting lines or edges at that location ​(Desimone and Duncan 1995; Roelfsema, Lamme, and              

Spekreijse 2000; Carrasco 2011; Schmitz and Duncan 2018)​, thereby biasing the system towards a              

stronger response to the upcoming stimulus ​(Buschman and Kastner 2015)​. This presumably allows             

for more rapid detection of the stimulus at that location, and a consequent reduction in the period                 

during which sensory evidence needs to be evaluated to identify the letter at that location.               

Concurrently, the excitability of neuronal assemblies directed towards encoding information from the            

low value location should be relaxed, as the cost of sometimes missing the target at that location,                 

given the energy needed to detect it, should become negligible. Similarly, upon spatial cue onset,               

preparation of such target detection mechanisms could be further relaxed for the unlikely location,              

proportionally to how unlikely that location is to possess a target. Importantly, this could be performed                

incrementally to the previous adjustment. This would ensure that the system is most ready to encode                

stronger representations of items with higher value and higher certainty, while sacrificing the             

representation strength of items imbued with lesser value and lesser certainty to minimize costs. This               

interpretation predicts that the degree to which incentive value or spatial certainty can influence              

performance is dependent upon the range over which preparatory processes can be titrated and still               

yield acceptable performances. For example, reducing the duration of data-limited target presentation            

should likewise reduce the influence of spatial certainty and value, as there will be a lower range                 
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within which the energetic effort expended on the cognitive operation can be titrated before              

performance starts dropping unacceptably. This would account for why, in Experiment 2, under a              

context with greater pressure on RT performance, we observed an influence of cue validity but not                

spatial certainty. Presumably it had become too costly to modulate RT performance by spatial              

certainty and meet the perceived demands of the task. 

The current findings shed further insights into the Stănişor et al.’s (2013) proposed unitary              

selection mechanism that biases competition between visual cortical representations of stimuli, in the             

presence of both incentive and explicit spatial cues. To recap they showed that overlapping clusters               

of V1 neurons were sensitive to both incentive value cues and 100 % informative explicit spatial cues.                 

The authors proposed that the explicit spatial cue served to reweight the relative value between the                

target and the distractor, and that this reweighting was instantiated by a unitary selection mechanism.               

It remained unknown whether the information offered by the spatial cue overwrote, or was integrated               

with the relative incentive value. The current study indicates that the spatial certainty offered by the                

explicit cue does not overwrite incentive value, as we revealed an additive relationship between the               

two. Furthermore, this additive influence shows that the spatial certainty derived from explicit cues is               

not entered into an expected value operation to reweight the relative value between the two items.                

Rather, an additive influence points to the repeated invocation of the selection mechanism, for              

example, maintaining or decreasing excitability for neuronal assemblies with receptor fields over the             

target area ​(Desimone and Duncan 1995; Roelfsema, Lamme, and Spekreijse 2000; Schmitz and             

Duncan 2018)​, on the basis of updates from separable information sources. However, as incentive              

value and spatial certainty have been added, rather than multiplied, this suggests that the two have                

been transformed into a common representational space, or unit, prior to influence on the visual               

selection mechanism.  

An additive influence of incentive value on visual selection was also observed by Stankevich              

and Geng (2014), when value was pitted against the varying probability that a target would appear on                 

one side versus the other, in the absence of explicit spatial cues. Interestingly, what our results show                 

is that even when explicit information is available on each trial regarding the likely location of an                 

upcoming target, the influence on visual selection is independent to that provided by incentive value               
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information. Following the line of reasoning above, this suggests that the information offered by              

explicit cues may be encoded into the same representational space, or units, as incentive value, just                

as occurs for non-cued spatial information that has been acquired over multiple exposures. This              

suggestion is supported by the observation that explicit and non-cued spatial knowledge also share              

an additive influence on visual selection ​(Geng and Behrmann 2005)​. Thus these studies suggest that               

regardless of how associations are signalled (i.e. explicitly or non-explicitly), the information offered             

by them are converted into a common representational space, or unit, to be summed over to exert                 

control over visual selection. 

A visual comparison of the current data and the data from Stankevich and Geng (2014) also                

yields some interesting points of difference concerning the influence of spatial certainty in the              

presence or absence of explicit spatial cues. With the current explicit cues, we observe RTs that are                 

comparable across spatial certainty conditions for valid cues, whereas RTs on invalid trials increase              

as spatial certainty decreases. In contrast, Stankevich and Geng (2014) observed decreasing RTs             

towards more likely locations, and stable RTs towards less likely locations. Moreover, we observe a               

large main effect of the spatial cue, even in low certainty conditions, whereas Stankevich and Geng                

(2014) found small RT differences between valid and invalid locations when uncertainty was high (i.e.               

in a p = .6/.4 condition). Therefore, our results suggest that the explicit spatial cue we used resulted in                   

preparation towards the cued location that did not vary with the certainty offered by the cue, coupled                 

with a relaxation of preparation towards the invalid location that scaled with certainty. In contrast,               

non-explicit spatial knowledge appears to cause a strengthening of preparation towards the more             

likely location, with no concomitant relaxation towards the unlikely location. This suggests that spatial              

certainty influences visual selection differently dependent on how it is learned. This may reflect a               

contextual selection of the most salient behaviour as a baseline response. For example, a long               

history of arrows serving as useful directional cues could motivate a strong response to the directional                

stimulus, against which other useful behaviours can be adapted. In contrast, the absence of any               

explicit cues could result in a conservative preparation towards possible locations that is adapted or               

strengthened with exposure to spatial contingencies, relative to improbable locations. In either case, it              
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appears that visual selection behaviours adapt to environmental information in relation to the most              

contextually relevant baseline behaviour.  

The current finding of additivity across learned-associations also accords with computational           

(Itti and Koch 2001) and neurophysiological ​(Deco and Rolls 2005) models of visual selection.              

Although these previous models are aimed at understanding distinct properties of selective-attention,            

one convergent principle is that additivity across feature dimensions can predict a range of              

visual-selection phenomena. The current work suggests that additivity also applies to the various             

associations made between physical stimuli and their consequent outcomes. When the current            

findings are interpreted within a feature additivity framework, they suggest that at a computational              

level, the visual system makes use of learned associations in the same way as it uses diverse                 

stimulus feature information. Perhaps what unites feature dimensions and learned associations is that             

they jointly account for unique variance in the visual scene that is relevant for the current task-set.                 

Thus, visual selection mechanisms could make use of an additive weighting of components derived              

from a dimension reduction of incoming sensory data combined with associated internal data. This              

suggests that activity from neurons responding to features is combined with the activity from neurons               

responding to associations for normalisation into a common space. 

Our results are in apparent contradiction to previous work showing that saccadic onset             

latencies correlated with expected-value ​(Milstein and Dorris 2007)​. There are at least two possible              

reasons for this difference. First, the predictions made by the additive and expected value hypotheses               

are similar, so it may be that the additive hypothesis can still provide a better model for the saccadic                   

onset times observed by Milstein and Dorris ​(2007)​, and that either the additive or expected value                

model would perform better than one based on incentive value or spatial certainty alone (as was the                 

comparison made by ​(Milstein and Dorris 2007)​. A good first test would be to apply the current                 

analysis to their saccadic response time data to directly pit the additive and expected value models in                 

this context. Second, it may be that expected value computations are leveraged to influence visual               

selection, but that the computations are specific to single explicit cues in the environment. If a single                 

cue, such as an arrow, were systematically varied to signal different potential reward outcomes with               
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varying degrees of certainty, then perhaps a multiplicative relationship between incentive value and             

certainty could be observed. Future experiments should disambiguate between these possibilities. 

Conclusions  

Over two experiments, we sought to arbitrate between competing theories for how learned             

associations pertaining to incentive value and spatial certainty combine to influence visual selection.             

Specifically, we asked whether this influence was additive (​additive hypothesis​), multiplicative           

(​expected value hypothesis​) or both (​mixed operations hypothesis​). We tested these hypotheses by             

pitting incentive values and spatial certainties against one another in a spatial cueing task under               

conditions expected to challenge the optimality of an additive operation. The data from two              

experiments support the notion that visual selection mechanisms show independent sensitivity to            

incentive value and spatial certainty information, and that both information sources are converted to a               

common representational space, or unit, in order to influence visual selection. We interpret our results               

as suggesting that the mechanism leveraging visual selection dynamically leverages distinct           

information sources to reflexively conserve effort within a range that allows acceptable performance             

given the task parameters. We also interpret our results in accordance with computational models of               

visual-selection and suggest that the visual system treats learned associations comparably to            

physical features when prioritising information processing.  
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