
 

 1 

Environmental association identifies candidates 
for tolerance to low temperature and drought 

 

Li Lei1, Ana M. Poets1, Chaochih Liu1, Skylar R. Wyant1, Paul J. Hoffman1, Corey K. Carter1, 

Richard M. Trantow1, Brian G. Shaw1, Xin Li1, Gary J. Muehlbauer1,2, Fumiaki Katagiri2, Peter 

L. Morrell1* 

 
1Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 
2Department of Plant and Microbial Biology, Microbial and Plant Genomics Institute, University 
of Minnesota, St. Paul, Minnesota 55108 
 
*Correspondence 
 
Peter L. Morrell,  
Department of Plant and Microbial Biology, Microbial and Plant Genomics Institute, University 
of Minnesota, St. Paul, Minnesota 55108 
Email: pmorrell@umn.edu 

 
 
 
 

 
 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2019. ; https://doi.org/10.1101/405399doi: bioRxiv preprint 

https://doi.org/10.1101/405399
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 2 

 

Abstract 
Barley (Hordeum vulgare ssp. vulgare) is cultivated from the equator to the Arctic Circle. The 

wild progenitor species, Hordeum vulgare ssp. spontaneum, occupies a relatively narrow 

latitudinal range (~30 - 40˚ N) primarily at low elevation (< 1,500 m). Adaptation to the range of 

cultivation has occurred over ~8,000 years. The genetic basis of this adaptation is amenable to 

study through environmental association. Using genotyping from 7,864 SNPs in 803 barley 

landraces, we performed mixed model association analysis relative to bioclimatic variables and 

analysis of allele frequency differentiation across multiple partitions of the data. Using 

resequencing data from a subset of these landraces, we tested for linkage disequilibrium (LD) 

between SNPs queried in genotyping and SNPs in neighboring loci. Six loci previously reported 

to contribute to adaptive differences in flowering time and abiotic stress in barley and six loci 

previously identified in other plant species were identified in our analyses. In many cases, 

patterns of LD are consistent with the causative variant occurring in the immediate vicinity of the 

queried SNP. The identification of barley orthologs to well characterized genes may provide new 

understanding of the nature of adaptive variation and could permit a more targeted use of 

potentially adaptive variants in barley breeding and germplasm improvement. 
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Introduction 
 Cultivated species typically undergo adaptation to very distinct climates as they are 

disseminated from their region of origin (Gaut et al., 2018). These bouts of adaptation are most 

extreme for widely cultivated species such as barley and wheat, which are grown from the 

equator to the Arctic Circle. 

 Loci that contribute to adaptive phenotypes have typically been identified using top-down 

approaches (Ross-Ibarra et al., 2007). A phenotype is measured and quantitative trait locus 

(QTL) mapping or association (also known as linkage disequilibrium or LD) mapping is used to 

identify genetic variants correlated with the phenotype. Bottom-up approaches that identify 

genetic evidence of local adaptation or genomic signatures of selection have rarely been used to 

move from initial analysis to fully characterized genes (Morrell et al., 2012) (for an exception, 

(see Comadran et al., 2012)).  

 Genes identified in top-down approaches, by definition, contribute to measurable trait 

variation, but additional evidence is required to determine if loci identified have played a role in 

adaptation (Kantar et al., 2017; Ross-Ibarra et al., 2007). For example, the loss of inflorescence 

shattering in Asian rice was mapped to two loci (Konishi et al., 2006; Li et al., 2006). Only one 

locus, qSH1, shows evidence of selection in both the japonica and indica subspecies of rice, 

suggesting that only qSH1 played a direct role in domestication of both subspecies (Zhang et al., 

2009). 

 Wild barley (Hordeum vulgare ssp. spontaneum), the progenitor of cultivated barley 

(Hordeum vulgare ssp. vulgare), occurs primarily within a limited latitudinal range of 30 - 40˚ N 

(Harlan and Zohary, 1966). The geographic range of wild barley is bisected by the Zagros 

Mountains, with peaks of 4,400 m, but wild barley is largely limited to sites at < 1,500 m 

(Zohary et al., 2012). 

 Barley was domesticated from its wild progenitor ~10,000 - 12,000 years ago. 

Domestication occurred at least twice (Morrell and Clegg, 2007) and involved genetic 

contributions from across the geographic range of wild barley (Poets et al., 2015b). The 

dissemination of cultivated barley beyond the initial centers of origin began ~2,000 years after 

domestication (Willcox, 2002). Barley landraces and modern cultivars are the result of pre-
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historic adaptation to growing conditions in Eurasia, North Africa, and much more recently, to 

Australia and the New World. In Eurasia, the process occurred as humans adopted an 

agropastoral lifestyle and spread from the Fertile Crescent into a variety of geographic regions. 

This included cultivation in regions with cooler and more mesic climates in Europe (Pinhasi et 

al., 2005) as well as drier climates in North Africa and Central Asia (Harris and Gosden, 1996). 

Barley is frequently produced at high elevations in East Africa, Asia, and Europe and remains 

among the most important crops in Nepal and Tibet, where it is grown at elevations up to 4,700 

m.  

 The adaptation of cereals such as barley and wheat to northern latitudes or dry climatic 

conditions involved changes in vernalization requirements (Yan et al., 2006; Dawson et al., 

2015), growth habit (Turner et al., 2005; Zakhrabekova et al., 2012; Dawson et al., 2015), and 

flowering time (Comadran et al., 2012; Dawson et al., 2015). Wild species adapted to 

Mediterranean climates typically grow over winter and flower in the spring. This is known as a 

winter growth habit. Under cultivation, winter annuals such as barley and wheat have been 

adapted to colder climates through spring planting, known as spring growth habit. Spring 

planting can make cultivation possible at higher latitudes but also increases exposure to frost and 

freezing conditions (Visioni et al., 2013).  

  The genetic basis of vernalization and flowering time adaptation in barley has been 

explored extensively and multiple genes have been cloned (see Hansson et al., 2018). There are 

also numerous mapping studies and a smaller number of functional studies that have identified 

regions of the genome associated with cold tolerance in barley (Francia et al., 2004; Hayes et al., 

1993; Reinheimer et al., 2004; Skinner et al., 2006; Tondelli et al., 2006; Visioni et al., 2013). 

Among genes involved in cold tolerance, only the CBF gene cluster has been extensively 

characterized (Knox et al., 2010), as collecting cold tolerance phenotypes that go beyond “winter 

survival” is challenging (Visioni et al., 2013). Drought tolerance in barley has also been 

extensively explored, but the genetic basis of tolerance remains poorly characterized (Honsdorf 

et al., 2014). 

 Approaches for the identification of genetic variants contributing to environmental 

adaptation must discriminate between the effects of selection and neutral evolutionary processes 

(Rellstab et al., 2015). Demographic effects acting on populations impact the entire genome, 

whereas selection alters allele frequencies at individual loci (Cavalli-Sforza, 1966). Lewontin 
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and Krakauer (1973) proposed an approach to identify variants subject to differential selection 

between populations based on allele frequency differences, measured by F-statistics. F-statistic-

based comparisons suffer from several weaknesses, including a high expected variance in FST 

values (Nei and Maruyama, 1975) and the often arbitrary nature of the partitioning of 

populations (Lotterhos and Whitlock, 2014). If informative population partitions are defined, FST 

measures can identify loci subject to strong differential selection (Beaumont and Balding, 2004). 

Another approach used to identify the genetic basis of environmental adaptation is mixed-

model association analysis. This approach explicitly controls for population structure and 

treats bioclimatic variables, such as average temperatures and rainfall, as “phenotypes” (Eckert et 

al., 2010; Yoder et al., 2014; Rellstab et al., 2015). 

 Here, we present allele frequency (FST) outlier and mixed-model association analyses 

applied to a geographically diverse collection of barley landraces genotyped with the barley 9K 

Illumina Infinium iSelect Custom Genotyping BeadChip (Comadran et al., 2012) to identify loci 

potentially involved in cold and drought tolerance. For the FST  outlier analysis, we focus on 

partitions of the sample that distinguish unique growth conditions. These include latitude, 

elevation, and spring versus winter growth habit. To identify the factors that contribute most to 

allele frequency differentiation, we also calculated FST for a longitudinal comparison, a contrast 

reported in previous studies (Morrell and Clegg, 2007; Poets et al., 2015b; Saisho and 

Purugganan, 2007). We address the following questions: 1) Which of the comparisons explains 

the largest portion of allele frequency differentiation?, 2) How many previously reported cold 

temperature and drought tolerance-related loci show evidence of contributing to climatic 

adaptation?, 3) Do barley orthologs for genes associated with adaptive phenotypes show 

evidence of contribution to environmental adaptation in our sample?, 4) Given the LD expected 

in a self-fertilizing species, how frequently are SNPs identified in our analyses in the proximity 

of potentially causative loci? For this final question, we make use of exome capture resequencing 

from a sample of 62 landraces drawn from the larger panel. This permits a direct estimate of LD 

between SNPs identified in our broader panel of accessions and variants in a window 

surrounding each locus. 

 We identified a total of six barley genes previously reported to be involved in either cold 

or drought tolerance, or in flowering time. Furthermore, our analyses identified six additional 

barley orthologs of genes characterized as contributing to these traits in other plant species. A 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2019. ; https://doi.org/10.1101/405399doi: bioRxiv preprint 

https://doi.org/10.1101/405399
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 6 

slight relaxation of the empirical cutoff for outlier FST values identified an additional four 

characterized barley genes and six orthologs from other plants. Considering both allele frequency 

outlier and bioclimatic association analyses, we identified 282 barley genes not previously 

reported to be associated with environmental adaptation. Comparisons of LD between SNPs in 

genotyping and resequencing suggest that roughly a quarter of the genes we identified on the 

basis of SNP genotyping are strong candidates for association due to the relatively low gene 

density in barley. 

Materials and methods 

Plant materials 

 We use 803 accessions of barley identified as landraces based on passport data from a 

core collection within the United States Department of Agriculture, National Small Grain 

Collection (Muñoz-Amatriaín et al., 2014). The 803 individuals were collected from Europe, 

Asia, and North Africa. These cover the range of barley cultivation in human pre-history (Pinhasi 

et al., 2005; Poets et al., 2015b; Willcox, 2002). Barley growth habits describe planting times. 

Spring growth habit is most common, and constitutes 617 (76.8%) accessions of our sample. The 

balance of the sample includes: 142 (17.7%) winter accessions, 16 (2.0%) facultative accessions 

that can be planted for spring or winter growth, and 28 accessions (3.5%) of unknown growth 

habit. Barley can also be divided into the ancestral two-row inflorescence type and the more 

dense six-row type. Our sample includes 542 (67.5%) accessions of six-row barley, 219 (37.3%) 

two-row accessions, with the balance of 42 accessions of unknown row type. The reported 

geographic coordinates for each accession were manually confirmed to identify potentially 

inaccurate locations, and landraces with highly doubtful locations were filtered out (Table S1). 

The elevations of collection locations were inferred from the NASA Shuttle Radar Topographic 

Mission (SRTM) 90 m data (http://www.cgiar-csi.org/) on Oct 7, 2015 using the getData 

function from R package ‘raster’ (Hijmans et al., 2016). 

Genotyping data 

 All samples were genotyped using the 7,864 SNPs on the 9K Illumina Infinium iSelect 

Custom Genotyping BeadChip (Comadran et al., 2012) genotyping platform (henceforth referred 
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to as 9K SNPs). The SNPs are distributed across the seven chromosomes of the diploid barley 

genome. Because of the relatively large size of the barley genome, the SNP panel includes ~ 1 

SNP per 648 kb in the 5.1 Gb genome (Consortium, 2012). For more details on the SNP 

discovery panel see the description in Comadran et al. (2012; 2015b). Cultivated barley is 99% 

self-fertilizing (Bothmer, 1992; Wagner and Allard, 1991), and thus the number of unique 

chromosomes sampled is roughly equal to sample size. The genotyped dataset was filtered for 

monomorphic SNPs and SNPs with > 20% missingness (Supplemental dataset 1). We culled 

SNPs in complete LD for comparative analyses, maintaining the SNPs with lower missingness 

(Supplemental dataset 2). 

Estimating crossover relative to physical distance 

 We identified the physical position of 9K SNPs relative to the barley reference genome 

(Mascher et al., 2017) (Supplemental dataset 3; Methods S1). The crossover rate in cM/Mb was 

estimated using SNP physical positions relative to genetic map positions (Muñoz-Amatriaín et 

al., 2011). A Python script for this calculation and an R script for Locally Weighted Scatterplot 

Smoothing (LOESS)(Kono et al., 2018) are included in the project repository 

https://github.com/MorrellLAB/Env_Assoc.  

Sample differentiation 

 We estimated the degree of differentiation among individuals by principal components 

analysis (PCA). PCA was performed using the SmartPCA program from the EIGENSOFT 

package (Patterson et al., 2006) with SNP data converted from VCF using PLINK 1.90 (Chang et 

al., 2015). 

Exome resequencing data  

 We generated exome resequencing from 62 landrace accessions from a randomly chosen 

subset of landraces in the core collection.This includes 37 six-row spring and 25 two-row spring 

accessions (Table S2). DNA was extracted from leaf tissue collected from a single plant using a 

standard 2X CTAB isolation protocol (Saghai-Maroof et al., 1984). The exome resequencing 

was performed using the NimbleGen exome capture design for barley (Mascher et al., 2017) 

followed by Illumina 125 bp paired-end resequencing at the University of Kansas Medical 
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Center Genome Sequencing Facility, Kansas City, KS. The data were processed using publicly 

available software integrated with bash scripts in the ‘sequence_handling’ workflow (PJ et al., 

2018). Details are in Methods S1. Variant calling is similar to that reported by Kono et al. 

(2016), with parameters specified in Methods S1.  

Heterozygosity, SNP diversity, and SNP annotation 

 Observed heterozygosity was calculated by PLINK 1.90 with the flag ‘--het’. The R 

package ape (Paradis et al., 2004) was used to calculate average percent pairwise difference 

(Manhattan distance) between accessions. SNPs in coding and noncoding sequences and in 

amino acid changing positions within genes were identified using ANNOVAR (Wang et al., 

2010) with gene models provided by Mascher et al. (2017) (Supplemental dataset 4). 

Bioclimatic and geographic variables  

 “WorldClim” bioclimatic data at a resolution of 2.5 minutes were downloaded on 07 Oct 

2015 using the getData ‘raster’ R function (Hijmans et al., 2016) in the R statistical language (R 

Core Team, 2017). The latitude, longitude, elevation, and BIO1 to BIO19 values of the 

collection locations for each landrace are given in the phenotype data file (Supplemental data 5). 

Environmental variables can be divided into three categories, geographic factors, temperature, 

and precipitation. The latitude, longitude, and elevation were classified as geographic factors, 

BIO1 to BIO11 were classified as temperature, and BIO12 to 19 were classified as precipitation. 

To identify the relationship among the 22 variables given our sample locations, we performed 

independent components (ICs) analysis using the icaimax function from ‘ica’ R package (Bell 

and Sejnowski, 1995). ICs are conceptually similar to principal component summaries of data; 

however, we found that using the top three ICs appears to capture the cold temperature trend 

better than using the top three PCs (Table S3). Details of IC interpretation and comparison to 

Bioclim variables are reported in Methods S1. 

Environmental association mapping 

 To identify associations between genotypes and environmental variables, we used a 

mixed linear model (Zhang et al., 2010) implemented in the Genome Association and Prediction 

Integrated Tool (GAPIT) R package (Lipka et al., 2012). We used the genotyping data to infer 
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the population structure by principal component analysis within GAPIT, and used the first three 

principal components to control for structure in the mixed linear model. Estimated pairwise 

distance among samples did not identify individuals with close kinship (95% of comparisons had 

pairwise distance > 0.43 based on the Manhattan distance between accessions) (Figure S1), and 

thus kinship was not included in the mixed model. We excluded SNPs with minor allele 

frequency (MAF) ≤ 0.01 from association analysis. We applied the Benjamini-Hochberg false 

discovery rate (FDR) correction. We report both adjusted p-values and FDR with an FDR 

threshold ≤0.25. 

FST estimation 

 To compare allele frequency differentiation in partitions of the data we calculated F-

statistics (Wright, 1949) for individual SNPs using the measure of Weir and Cockerham (1984) 

as implemented in the R package ‘HierFstat’ (de Meeûs and Goudet, 2007). The FST analysis 

considered five partitions of the data, which were elevation, high latitude, low latitude, longitude, 

and growth habit.  

 The elevation comparison used a threshold of 3,000 m to delineate high elevation 

accessions. This includes accessions from the European Alps, the Caucasus, Himalayan, Hindu 

Kush Mountain regions, and the Ethiopian Plateau. Since wild barley typically grows below 

1,500 m (Zohary et al., 2012), we also compared the allele frequency at three elevations: below 

1,500 m, 1,500m - 3,000m, above 3,000 m.  

 We compared allele frequencies at two latitudinal ranges: (1) within the wild range of the 

species (30˚ N – 40˚ N) versus landraces at latitudes higher than 40˚ N (high latitude), and (2) 

within the wild range of the species (30˚ N – 40˚ N) versus landraces at latitudes lower than 30˚ 

N (low latitude). High latitude includes the northern extent of the range of wild barley and 

extends across Eurasia from the Central Iberian Peninsula to the Northern Japanese Archipelago. 

Low latitude includes the southern extent of the range of wild barley. For landraces, this extends 

from northwestern Africa to just south of the Japanese Archipelago. We also compared low and 

high latitude versus the wild range in a single comparison.  

 For a longitudinal comparison, we divided the sample at 48˚ E, roughly through the 

Zagros Mountains, which coincides with the major axis of population structure in wild barley 
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(Fang et al., 2014). The final comparison was spring versus winter growth habit, with assignment 

based on USDA passport information. 

 To account for differences in sample size among partitions of the data (Table S4) (Bhatia 

et al., 2013), we used resampling with equalized sample numbers and 10 iterations without 

replacement. FST estimates for each SNP were averaged across 10 iterations and outliers were 

identified at the 99th percentile of the distribution. To calculate the p-value for each FST value 

we performed 1,000 permutations. The details can be found in Methods S1.  

Identification of previously reported loci related to cold, drought 

tolerance, and flowering time 

 A literature search was used to identify genes previously reported to contribute to plant 

flowering time and cold or drought tolerance. Google Scholar searches were performed with the 

terms “cold OR freezing OR drought tolerance” or “flowering time” and “plant” or “barley” 

(Table S5-7). For each publication with these key words in the title or abstract, we looked for 

evidence that individual genes reported to contribute to flowering time, cold, or drought 

tolerance. The protein-coding sequence (CDS) of identified genes were used as the query or 

subject in BLASTN against the barley high-confidence CDS in May 2016 on the IPK Barley 

BLAST Server (Mascher et al., 2017). Barley genes and their interval information were extracted 

if the combined “Score,” “Identity,” “Percentage,” and “Expectation” produced the overall 

highest ranking and the “Query length” was >100 bp. In the event of identical scores, all highest 

ranked hits were extracted. 

 The BEDOPS ‘closest-features’ function (Neph et al., 2012) was used to compare the 

locations of SNPs and gene intervals. Specifically, if the SNPs were located in the gene interval 

or 10 kb up- or downstream of the closest genes, we considered those SNPs as identifying the 

closest gene. 

LD around SNPs  

 For each 9K SNP identified in environmental association analysis or among FST outliers, 

we calculated LD with surrounding SNPs called from exome capture resequencing data. We 

focused on 200 kb windows, 100 kb upstream and downstream of the queried SNP. When the 

queried SNP was also genotyped by exome capture, this SNP was used for the LD analysis. If 
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the queried SNP was not present in exome capture, we extracted the SNPs called from exome-

capture sequencing data surrounding the physical position of the queried SNP. Then we 

performed the LD analysis using the proximate SNP with a MAF similar to the queried SNP. We 

filtered out SNPs using a MAF threshold of 1% for all of the SNPs called from the exome-

capture resequencing data. For LD analysis, filtering of variants could be anti-conservative, thus 

for this analysis we removed SNPs with ≥ 50% missing data. We used the R package 

‘LDheatmap’ (Shin et al., 2006) to calculate r2 (Lewontin, 1988). 

Inference of ancestral state 

 The ancestral state for each SNP from both 9K (Supplemental data 6) and resequencing 

datasets (Supplemental data 7) was inferred using whole genome resequencing data from 

Hordeum murinum ssp. glaucum (Kono et al., 2018) with the programs ANGSD and ANGSD-

wrapper (Korneliussen et al., 2014; Durvasula et al., 2016;). We chose H. murinum ssp. glaucum 

for ancestral state inference because phylogenetic analyses have placed this diploid species in a 

clade relatively close to H. vulgare (Jakob et al., 2004). Previous comparison of Sanger and 

exome capture resequencing from the most closely related species, H. bulbosum, identified 

substantial shared polymorphism, resulting in ambiguous ancestral states (Morrell et al., 2013). 

Methods are detailed in Kono et al. (2018). Both minor and derived allele frequencies were 

calculated using a Python script. 

Haplotype analysis for individual genes 

 To assess evidence for functional diversity in the immediate vicinity of SNPs identified 

in our analysis, we examined haplotype-level diversity in loci that flanked associations. We used 

exome capture resequencing from the panel described above. Overlapping SNP genotyping was 

extracted from SNP calls in a variant call format (VCF) file using ‘vcf-intersect‘ from vcflib 

(https://github.com/vcflib/vcflib). Missing genotypes were imputed using PHASE (Stephens et 

al., 2001; Stephens and Scheet, 2005); PLINK 1.9 (Chang et al., 2015) was used to convert the 

VCF format into PHASE format. Homozygotes were treated as haploid and heterozygotes were 

treated as diploid samples for haplotype identification. 
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Results 

Summary of genotyping and resequencing data 

 After quality filtering of the genotyping and resequencing data and exclusion of landrace 

accessions without discrete locality information, our SNP genotyping dataset includes 5,800 

SNPs in 784 accessions (Figure S2; Table S1; Supplemental dataset 2). Quality filtering of 

genotyping data resulted in the removal of 352 SNPs with > 20% missingness. A map of our 

sampled accessions is shown in Figure S3. The exome resequencing includes 482,714 SNPs in 

62 samples (Figure S2; Table S2; Supplemental dataset 8). The site frequency spectrum for SNPs 

in both panels is shown in Figure S4. Average inbreeding coefficients estimated from SNP 

genotyping data and exome resequencing data are 0.996 (±0.025) and 0.981 (±0.008) 

respectively. 

Environmental association and FST outliers 

 We performed independent component analysis on the 19 bioclimatic variables to 

identify the subset of climate variables that best summarizes the range of environments occupied 

by barley landraces (Supplemental dataset 9). We identified 32 SNPs with FDR ≤ 0.25 in 

environmental association with the first three ICs. Loosening FDR to ≤ 0.3 or ≤ 0.4 identified an 

additional 45 SNPs, or 77 in total. The ICs constitute a somewhat extreme summary of the 

bioclimatic variables, as the first three ICs included only eight bioclimatic variables (Table S3). 

The eight variables are not closely correlated to other bioclimatic variables (Figure S5). Limiting 

the analysis to ICs potentially excludes some of the bioclimatic signal associated with the 

remaining variables. Thus we also examined each of the bioclimatic and geographic variables 

independently. The environmental association with bioclimatic and geographic variables and 

three ICs identified 155 SNPs in significant associations (with FDR ≤ 0.25 ) (Figure S6; Table 

S8).  

 For both elevation and latitude, we calculated a single FST value with the samples divided 

into three groups (Table S4; Table S9; Figure S7). We also calculated an FST for low and middle 

elevations relative to high elevation (Table S4; Table S9; Figure S7). While FST values for 

pairwise comparisons including many barley genes previously associated with adaptive 

phenotypes (see below), the single FST values fail to identify these candidate loci.Thus we 
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focused reporting of outlier results on the two level comparisons (Supplemental dataset 10). FST 

comparisons for elevation, latitude, and growth habit identified 203 outliers (using FST values in 

the upper 2.5% as the threshold) as the threshold) (Figure 1; Figure S6; Table S10). Considering 

both the environmental association and FST comparisons, we identified a total of 349 unique 

SNPs putatively associated with environmental adaptation in our genotyping panel (Figure S6). 

 Environmental associations and FST outliers shared nine SNPs in 11 annotated genes. The 

only characterized gene found in both analyses is HvPhyC in barley. For details regarding 

overlapping results see Table S11.  

Previously reported loci associated with environmental 

adaptation  

 Changes in flowering time and drought or cold tolerance are putatively adaptive traits for 

a cultivated species that has experienced a dramatic expansion in latitudinal range. Our results 

found four of the 57 genes previously identified in barley as associated with flowering time, two 

of the 33 genes associated with cold tolerance, and none of the 13 genes associated with drought 

tolerance (Table 1; Table 3) with the FST threshold set at top 1%. However, we found six genes 

previously identified in barley as associated with flowering time, four genes associated with cold 

tolerance, and none of the 13 genes associated with drought tolerance (Table 1), among the 2.5% 

of FST values.  

 The seven loci found associated with flowering time (using FST values in the upper 2.5% 

of FST values) include four loci identified as FST outliers. HvPhyC (Nishida et al., 2013) and 

HvPpdH1 (Jones et al., 2008; Turner et al., 2005) occur among the upper 1% of FST values 

(Table 2; Table 3). HvELF3 (Esp1L/eam8) (Boden et al., 2014) and HvPpd-H2 (HvFT3) (Casao 

et al., 2011) are included at the more liberal threshold of FST values in the upper 2.5% (Table 2). 

Environmental association identified two additional flowering time loci, HvPRR1 (HvTOC1) 

(Ford et al., 2016) and HvVrn-H1 (HvAP1) (Cockram et al., 2007), among the 155 outliers at 

FDR of 0.25 (Table 2).  

 We also identified four loci previously reported as contributing to cold adaptation in 

barley, using FST values in the upper 2.5% (Table 3). This includes HvCbf4B (Stockinger et al., 

2007) and HvICE2 (Skinner et al., 2006) as FST outliers for the low latitude, elevation and 

growth habit comparisons at the top 1% threshold (Table 2). The upper 2.5% threshold for FST  
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includes two additional characterized loci, HvDhn8 (Choi et al., 1999) and HvSS1 (Barrero-

Sicilia et al., 2011) (Table 2).  

 A further six loci identified as FST outliers in the top 1% of values or in environmental 

associations in our barley panel had been previously associated with loci contributing to 

flowering time or cold or drought tolerance in other plant species (Table 2). This includes one 

flowering time-related locus characterized in Arabidopsis thaliana, AtCOP1 (Xu et al., 2016), 

which was identified as an FST outlier in the top 1% threshold. Two loci (TaWCI16 and 

OsiSAP8) related to cold tolerance were also identified. TaWCI16 firstly was characterized in 

wheat and involved in freezing tolerance (Sasaki et al., 2013). The locus was identified in 

environmental association with “minimum temperature of coldest month (BIO6).” OsiSAP8 is 

the rice (Oryza sativa) locus, which has been associated with cold, drought, and salt stress 

response (Kanneganti and Gupta, 2008). OsiSAP8 was identified by a SNP in the upper 1% of 

FST values. While no previously identified drought tolerance loci from barley were detected in 

our analysis, we find evidence of contributions from three loci previously characterized in three 

other plant species as associated with drought tolerance (Table 2). One of these genes was 

identified on the basis of environmental association while the other eight involved FST 

comparisons; only two of the SNPs were included in the upper 1%. In the top 2.5% of values, we 

found an additional six genes previously characterized in two other plant species as associated 

with drought tolerance (see Table 2 for details). The identification of multiple characterized loci 

between upper 2.5% and 1% of FST is indicative of the trade-off between false discovery and 

false negative rate in empirical scans for adaptive variation (see for example Teshima et al., 

2006) 

 

Relative differentiation among partitions of the sample 

 Comparison of average FST values provide a means of determining the factors that 

contribute most to differentiation in barley landraces. Average FST was highest for the longitude 

comparison with mean genome-wide FST = 0.123 (± 0.13) (Table S9; Supplemental data 10). A 

primary partitioning of barley populations by longitude, reported as eastern and western 

populations, has been reported previously (Morrell and Clegg, 2007; Poets et al., 2015b; Saisho 

and Purugganan, 2007). The second highest average FST was for elevation at 0.089 (± 0.10) 
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(Table S9; Supplemental data 10). The three-level comparison of FST from 0 - 1,500 m, 1,501 - 

3,000 m, and >3,000 m resulted in a slightly lower average FST = 0.0826 (± 0.0745) (Table S9; 

Figure S7; Supplemental data 10). A three-level comparison of latitude with comparisons above 

and below the range of wild barley (see Materials & Methods for details) was similar to elevation 

with average FST = 0.087 (±0.082) (Table S9; Figure S7; Supplemental data 10). Pairwise 

comparisons of the wild range to high latitude, wild to low latitude, and plant growth habit as 

either spring or winter barley resulted in much lower average FST values (Table S9).  

FST outliers from geographic patterns and growth habit   

 We focused on comparisons most directly linked to climatic differentiation in FST 

outliers. We obtained results from the two-level comparisons for high and low latitude, elevation, 

and growth habit. The upper 1% of FST values from each comparison yielded 55 outlier SNPs for 

a total of 203 SNPs (Figure 1; Figure S6; Table S10). The comparisons tend to identify unique 

SNPs. There is overlap of four SNPs in the low and high latitude comparisons and seven SNPs 

between elevation and growth habit, but other overlaps were not detected (Figure S8). Winter 

barleys are less frequently grown at higher latitudes and elevations due to harsh winter weather 

conditions, and indeed winter barleys from these locations are relatively uncommon in the 

sample, thus constraining the comparisons (Table S1). The elevation comparison identified the 

largest number of previously characterized loci including HvPhyC, HvICE2, and OSiSAP8 

(Figure 1).  

 SNPs with the most extreme FST values for elevation, growth habit, and latitude 

comparisons formed very distinctive geographic patterns. Each comparison with the highest FST 

values occurred with SNPs that fall within genes that are annotated, but uncharacterized. The 

highest FST from the high latitude comparison occurred at SNP 12_30191 with FST = 0.484 (p-

value = 0). The ancestral allele dominates within the wild barley geographic range for this SNP, 

whereas the derived allele is more prevalent in higher latitude regions (Figure 2a; Supplemental 

data 6; Supplemental data 10). The highest FST from the low latitude comparison is for the SNP 

SCRI_RS_153793 with FST = 0.504 (p-value = 0). The ancestral state for the SNP predominates 

within the geographic range of wild barley and higher latitudes, whereas the derived allele is 

more prevalent in lower latitudes (Figure S9a; Supplemental data 6; Supplemental data 10). The 

highest FST  between samples from elevation comparison is for SNP 12_20648 with FST  = 0.594 
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(p-value = 0). This SNP’s ancestral allele occurs at high elevations, such as the Himalaya 

Mountains, while the derived allele tends to occur at lower elevation (Figure 2b; Supplemental 

data 6; Supplemental data 10). The highest FST  between samples from the growth habit 

comparison was for SNP SCRI_RS_134850 with FST  = 0.390 (p-value = 0) (Figure S9b; 

Supplemental data 6; Supplemental data 10). The SNP SCRI_RS_134850 is significantly 

negatively correlated with the growth habit with rho = -0.367 (p-value < 2.2 x 10-16, Spearman 

ranking correlation) thus the SNP is predictive of growth habit. The ancestral SNP state is C, and 

the derived state is T. The CC genotype is observed in 60.5% of winter barley while TT is 

observed in 88.2% of spring barley  (Figure S9b; Supplemental data 6; Supplemental data 10).  

Environmental association to bioclimatic variables  

 We identified 155 unique SNPs significantly associated with at least one environmental 

factor with the threshold of FDR < 0.25 (Figure S6; Table S8). All of the p-values and 

Benjamini-Hochberg FDR-values were reported in Supplemental data 9.    

 We found 81 SNPs associated with precipitation (variables BIO12 to BIO19) and 51 with 

temperature (all variables from BIO1 to BIO11) for individual environmental variables (Figure 

S6). We also identified 47 SNPs associated with geographic variables (latitude, longitude, and 

elevation), and 32 associated with independent components (top three independent components 

calculated from BIO1 to BIO19 values after standardization for each BIO variable, called ICs) 

(Figure S6). Another finding includes 47 cases where individual SNPs were associated with 

more than one environmental variable (Figure S10). But more generally, as with the FST 

comparisons, the environmental variables tend to associate with unique sets of SNPs (Figure 

S10). The largest proportion of unique SNPs were found for precipitation (33.55%), followed by 

geographic variables (18.71%), temperature variables (18.06%), and then ICs (1.29%) (Figure 

S10). The aggregated independent components generally did not identify novel variants. 

 

Minor allele frequency of identified SNPs 

 The SNPs identified by environmental association and FST have higher MAF than the 

average MAF across the full SNP data set (0.262 with standard deviation of ± 0.140). SNPs with 

significant environmental associations have an average MAF = 0.251 (with standard deviation of 
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± 0.137). The FST outliers have an average MAF = 0.330 (± 0.101). While MAF limits the 

potential to associate genotype to phenotype for association analysis; the relatively large sample 

represented here does not suffer from the major limitation of detection. The high MAF contrasts 

with expectations that adaptive variants for less frequently occupied habitats, such as high 

elevation sites of cultivation, should be relatively uncommon (average MAF = 0.240 (± 0.091) of 

outliers from elevation comparison). A relatively low MAF might be expected under models 

where adaptive variants in a particular environment exhibit antagonistic pleiotropy, and thus 

confer lower fitness away from habitats in which they are adaptive(Tiffin and Ross-Ibarra, 

2014). 

 

SNP density and LD near focal SNPs 

 As previously reported, SNP density is highest on chromosome arms and lower in 

pericentromeric regions (Mascher et al., 2017; Muñoz‐Amatriaín et al., 2015). This trend is 

particularly evident for 9K SNPs (Figure 3b; and Figure S2), and is broadly consistent with 

lower SNP density in genomic regions with lower observed rates of crossover (Muñoz-Amatriaín 

et al., 2011). Exome capture density is also lower in pericentromeric regions, such that 51,567 

SNPs are detected in 1.560 Gb in pericentromere regions (33 SNPs/Mb) versus 431,147 SNPs in 

3.02 Gb (143 SNPs/Mb) on chromosome arms. 

 We compared LD at queried SNPs to the surrounding region for 358 SNPs identified by 

environmental association analysis or as FST outliers. We observed 89.3% of these SNPs in 

exome capture resequencing. The remaining 10.7% of the queried SNPs were replaced by 

proximal SNPs with similar MAF. The replaced SNPs had an average MAF of 0.035 (±0.005), 

and were on average 32.9 kb (± 31.5 kb) away from the physical position of the queried SNPs 

(Figure S11). LD for 123 (34.4%) of these with an r2 > 0.45 (90th percentile) were limited to 

SNPs within the same gene (Figure S12a & b; Table 5). Detectable LD with flanking loci is 

limited in pericentromeric regions because the locus tested is often the only annotated gene 

within the 200 kb window (Figure 3c). For an additional 212 (59.2%) SNPs, LD extends well 

beyond the locus where the initial association was identified (Figure S12 c & d). For 23 SNPs 

(6.4%) there was  either no LD with the focal SNPs or no SNPs identified in the 200kb window 

around the focal SNP (Table 4). These results indicate that the potential to identify individual 
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loci that contribute to adaptive phenotypes is impacted by recombination rate variation and gene 

density across the genome (Figure 3b, Figure S2). 

Putative structural variation 

 An examination of FST outliers prior to LD filtering identified 15 SNPs with FST of ~0.40 

for the elevation comparisons. All occur on chromosome 5H at 663.25 cM based on the 

consensus genetic map(Muñoz-Amatriaín et al., 2011). These SNPs span a physical distance of 

133.7 Mb (Table S12). The minor allele frequencies of these SNPs are very similar (0.354 - 

0.361) as expected based on FST values, with minor alleles occurring in the same individuals in 

almost all cases. All 15 SNPs are in nearly complete LD. The region that contains the SNPs is 

between 131.2 Mb and 265.0 Mb of chromosome 5H, and overlaps with a region identified as a 

putative chromosomal inversion in wild barley (Fang et al., 2014). The SNPs that Fang et al. 

(2014) associated with the putative inversion occur between 126.7 Mb and 305.5 Mb. Evidence 

for an inversion in wild barley was based on elevated FST values, extended LD, and enrichment 

for environmental associations. Fang et al. (2014) reported a similar pattern on chromosome 2H 

in wild barley at positions that correspond to 267.3 Mb to 508.7 Mb. We found less evidence of 

allele frequency differentiation on 2H than in wild barley; observing two SNPs which span ~494 

Kb with FST = 0.33 in our sample of landraces (Table S12). 

Haplotype analysis at individual genes 

 Environmental association results identified a SNP, SCRI_RS_137464, significantly 

associated with mean “temperature of wettest quarter(BIO8)” (p-value = 8.56 x 10-4), which is in 

the HvPRR1/HvTOC1 gene (Figure 4a). TOC1 is an important component of the circadian 

clock in Arabidopsis. It conveys crucial function in the integration of light signals to control 

circadian and morphogenic responses, which is closely related to flowering time (Más et al., 

2003). HvPRR1/HvTOC1 is the ortholog of TOC1 in Arabidopsis thaliana, and has a high 

level of sequence similarity and conservation of diurnal and circadian expression patterns when 

compared to TOC1 in Arabidopsis (Campoli et al., 2012). Exome capture resequencing data 

identified 48 SNPs including SCRI_RS_137464 in HvPRR1/HvTOC1. Five SNPs at the locus 

annotate as nonsynonymous SNPs and are the most obvious candidates to contribute to 

functional variation. Four of these are in the last exon of the gene (Figure 4b & c). Five SNPs 
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within HvPRR1/HvTOC1 have relative strong LD with SCRI_RS_137464 (r2 >0.45) (Figure 4 

a &b). Resequencing identified 20 haplotypes with no obvious geographic pattern (Figure 4c). 

 Environmental association of both “temperature of coldest month (BIO6)” and ”mean 

temperature of the coldest quarter (BIO11)” identified an association on chromosome 3H with 

SNP 11_10380 (p-value = 4.95x10-4). The SNP is in the barley gene HORVU3Hr1G030150.1, 

which is an ortholog of the wheat gene WCI16 (Wheat Cold Induced 16) (Sasaki et al., 2013) 

(Figure S13). The derived alleles for genotyped SNPs at this locus are much more common in 

landrace barley than in wild lines. In previous published wild barley genotyping data(Fang et al., 

2014) showed the minor allele at 11_10380 occurs in four accessions with geographic 

provenance information. Those accessions occur at an average of 1460 m - near the upper end of 

the elevational range for wild barley. Estimated derived allele frequencies differ considerably in 

wild barley and landraces, at 0.0072 and 0.13 respectively. The 200kb window surrounding the 

SNP contains one gene in addition to HvWCI16 (Figure S13a). TaWCI16 encodes a putative 

transcription factor involved in stomata development. It represents a novel class of late 

embryogenesis abundant (LEA) proteins in response to cellular dehydration and is involved in 

freezing tolerance (Sasaki et al., 2013). TaWCI16 was shown to improve freezing and cold 

temperature tolerance in wheat when transformed into Arabidopsis thaliana (Sasaki et al., 2013). 

There were six SNPs identified using exome capture sequencing from 61 landraces which 

includes 11_10380. Three of six SNPs, including 11_10380, are in noncoding sequence (Figure 

S13b). Of the three SNPs observed in coding regions, one is a nonsynonymous change at 

nucleotide position 119. This changes from valine to leucine which have similar properties. 

There is no evidence of LD between this SNP and others within a 200 Kb window (Figure S13a). 

Exome capture resequencing identified eight haplotypes, with three of the five being relatively 

common. Seven haplotypes predominate at lower elevation and lower latitude, with two of those 

occurring most frequently.(Figure S13c). 

 Environmental association analysis suggested that the SNP SCRI_RS_235243 

significantly (p-value= 3.62x10-4) associated with “precipitation of driest months (BIO14)” hit 

the barley gene HORVU1Hr1G008120.1. This is an ortholog that produces dehydroascorbate 

reductase (DHAR; EC 1.8.5.1) in Arabidopsis thaliana and bread wheat. It is one of two 

important enzymes functioning in the regeneration of ascorbate (AsA) which plays a role in 

protection against oxidative stress (Eltayeb et al., 2006; Osipova et al., 2011). The 200 Kb 
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window surrounding the genotyped SNP SCRI_RS_235243 contains four genes in additional to 

DHAR, which includes two with exome capture sequence coverage (Figure S14a). Previous 

results suggest that over expression of DHAR can protect plants against drought, salt, and 

polyethylene glycol-induced stress in tobacco and bread wheat (Eltayeb et al., 2006; Osipova et 

al., 2011). Resequencing identified 53 SNPs in our panel, including SCRI_RS_235243. This 

encompassed 28 SNPs in noncoding regions, 14 synonymous, and 11 nonsynonymous (Figure 

S14 b & c). SCRI_RS_235243 is one of nine nonsynonymous SNPs in the first exon of the 

DHAR gene (Figure S14 b & c). Six SNPs are in high LD with SCRI_RS_235243 (r2 > 0.45), all 

are noncoding variants within DHAR (Figure S14b & c). The derived variant at 

SCRI_RS_235243 occur within two haplotypes (Figure S14c) that occur in high latitude regions. 

 A putative causative variant is not immediately apparent for all three of the loci 

described. However, as the loci HvPRR1/HvTOC1 and DHAR demonstrate, barley landraces are 

frequently segregating for an abundance of potentially functional variants.   

Discussion 
 Comparative analysis in a geographically broad collection of Old World barley landraces 

allowed us to detect environmental associations to bioclimatic variables and identified allele 

frequency differentiation at six loci with prior evidence of contribution to climatic adaption in 

barley (Table 1; Table 2). This includes well characterized loci that contribute to flowering time, 

cold or drought adaptation in barley including HvCbf4B (Stockinger et al., 2007), HvICE2 

(Skinner et al., 2006), PhyC (Nishida et al., 2013), HvPpd-H1 (HvPRR37) (Jones et al., 2008; 

Turner et al., 2005), and HvVrn-H1 (HvAP1) (Cockram et al., 2007). All of these loci have been 

shown to alter phenotypes that are potentially associated with adaptation across the very broad 

geographic range of cultivation.  

Orthologs that potentially played an adaptive role 

 We found six loci identified as FST outliers or in environmental associations that had 

previously been identified as contributing to flowering time, cold or drought stress in other plant 

species (Table 2). This includes one flowering time-related locus characterized in Arabidopsis 

thaliana, AtCOP1 (Xu et al., 2016), which was identified as photomorphogenic repressors and 

regulates flowering time(Lau and Deng, 2012). Two loci related to cold tolerance were 
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identified. This included wheat locus TaWCI16 involved in freezing tolerance (Sasaki et al., 

2013) and the rice (Oryza sativa) locus OsiSAP8 which has been associated with cold, drought, 

and salt stress response (Kanneganti and Gupta, 2008). TaWCI16 was induced during cold 

acclimation in winter wheat (Sasaki et al., 2013). OsiSAP8 can be induced by multiple-stresses 

including heat, cold, salt, desiccation, submergence, wounding, heavy metals, and the stress 

hormone abscisic acid (Kanneganti and Gupta, 2008). For drought tolerance, we identified nine 

orthologs characterized in five other plant species (Table 2). For example, over-expression of the 

wheat expansin gene TaEXPA2 improved seed production and drought tolerance in transgenic 

tobacco plants (Chen et al., 2016). 

Why did previously identified genes go undetected in our study? 

 The genetic basis of flowering time in barley has been explored extensively and multiple 

genes have been cloned (see Hansson et al., 2018). However, relatively few cold or drought 

tolerance-related genes have been characterized or cloned (Honsdorf et al., 2014; Visioni et al., 

2013). Based on the literature search, we identified 57 flowering time and 33 cold tolerance-

related genes in barley (Table S5; Table S6). Our analyses found ~10% of flowering time and 

~12% of cold tolerance-related genes (Table 1). We did not identify any of the 13 previously 

reported drought tolerance-related genes (Table 1).  

 Why were more previously identified genes not detected? Not every gene was genotyped 

by the 9K SNPs and many genes genotyped are represented by a single SNP or a small number 

of SNPs (Table 1). Those SNPs have average MAF of 0.30 (±0.11). As in standard association 

mapping, the SNPs genotyped need to occur in LD with a causative variant (Balding, 2006); 

even SNPs in close physical proximity can occur on alternate haplotypes and have limited LD 

(Nordborg and Tavaré, 2002). For flowering time, 29 of 57 genes were genotyped by at least one 

SNP. Nine genes were genotyped by two or more SNPs (Table 1). All but one of these genes, 

HvVrn-H3/HvFT1, was found in our analysis (Table S13). All nine of these genes have been 

identified in previous geographic comparisons in barley (Muñoz-Amatriaín et al., 2014; Russell 

et al., 2016). Among genes identified by multiple SNPs is HvPpd-H1/HvPRR37, a key regulator 

of flowering (Jones et al., 2008; Turner et al., 2005). This gene was genotyped by eight SNPs, 

and with five SNPs identified as outliers in our comparisons. Previous studies have identified the 

HvCEN and HvVrn-H2/HvZCCT-Ha/b/c genes associated with flowering time as allele 
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frequency outliers (Muñoz-Amatriaín et al., 2014; Russell et al., 2016). HvCEN was not 

genotyped by any SNP in our panel. HvVrn-H2 was genotyped by a single SNP with an FST = 

0.143 in the elevation comparison, at the 75th percentile in this comparison and thus below the 

99th percentile threshold. In summary, genes identified through top-down approaches are 

generally identified in our comparison if they are represented by a sufficient number of SNPs 

(Table S13). Genes can contribute to trait variation without having played a role in previous 

rounds of adaptation (Kantar et al., 2017; Ross-Ibarra et al., 2007). However, given current SNP 

densities, it is premature to conclude that any of the absent loci did not contribute to adaptation 

in barley. 

Comparison to previous studies 

 Three of the loci we identified as contributing to adaptive differentiation in Old World 

landraces were previously reported as FST outliers. They contribute to geographic differentiation 

in barley breeding populations in in North America (Poets et al., 2015a). This included HvCbf4B, 

HvPpd-H1, and HvVrn-H1. HvCbf4 . They were also found as an FST outlier and in association 

with temperature adaptation in comparisons of wild barley populations in the Old World (Fang et 

al., 2014).  

 We focused on SNP comparisons, but also found evidence that a large chromosomal 

inversion has contributed to elevational adaptation in barley. On chromosome 5H, 15 SNPs have 

FST of ~0.40 in the elevation comparison. All occur at the consensus genetic map position of 

663.25 cM. Fang et al. (2014) characterized the region as a putative chromosomal inversion that 

differs in frequency between the eastern and western portions of the geographic range of wild 

barley. Recent studies have identified putative chromosomal inversions that contribute to 

elevation and temperature gradients in teosinte and maize (Fang et al., 2012; Hufford et al., 

2012; Pyhäjärvi et al., 2013), rainfall regime and annual versus perennial growth habit in 

Mimulus guttattus (Sweigart and Willis, 2003; Lowry and Willis, 2010), and temperature and 

precipitation differences in wild barley (Fang et al., 2014). In a close parallel to our results, an 

inversion on maize chromosome 3 appears to contribute to adaptation of teosinte, which occurs 

at relatively low elevation to highland cultivation (Wang et al., 2017).  
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Advantages of study design and future prospects 

 SNP density is a limitation in our study. With ~40,000 annotated genes in the barley 

genome (Mascher et al., 2017), roughly one in six genes was directly genotyped. For roughly one 

quarter of SNPs, there is limited LD with nearby loci (Figure 3; Figure S12). In regions of the 

genome with high crossover rates and higher gene density, LD can be limited beyond the locus 

containing the genotyped SNP (Figure 3c and Figure S2). In regions with limited crossover, gene 

density is also low (Figure 3b and Figure S2). LD would typically have to extend hundreds of 

kilobases between genotyped SNPs (Figure S12) and a causative variant at another locus to 

create an association. High MAF of genotyped variants may also contribute to limited LD. 

Common variants are typically older and have experienced more recombination, thus they can be 

closer to linkage equilibrium (Nordborg and Tavaré, 2002). 

 Our study benefits from largesample size. Russell et al. (2016) performed environmental 

association with 1,688,807 SNPs from exome capture resequencing in 137 cultivated samples. 

While the analysis identified 10 loci associated with flowering time, many other previously 

reported genes went undetected. This prompted the authors to suggest a lack of power owing to 

small sample size (Russell et al., 2016). Despite limited SNP density and the sampling of 

relatively common variants, our comparative analysis identified a number of previously 

identified barley loci and many plausible candidate loci from other plant species. Better coverage 

of barley gene space through exome capture or whole genome resequencing in a relatively deep 

panel of accessions would likely uncover a much more comprehensive set of variants 

contributing to environmental adaptation. This could contribute to targeted use of variants for 

adaptation to environmental and climatic conditions for barley breeding and germplasm 

improvement, with the potential to improve the understanding of loci that contribute to climatic 

adaptation in wheat and other cereals. 
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Tables and Figures 

Figures:  

 
Figure 1: FST for 9K SNPs in samples from comparisons of high latitude (a), low latitude (b), 

elevation (c), and growth habit (d).  

 

Figure 2: The geographic distribution of the SNPs with high FST. (a & c) The geographic 

distribution of allelic types of 9K SNP 12_30191 with highest FST = 0.4839. The FST was from 

the high latitude (HL) comparison. (b & d) The geographic distribution of allelic types of 9K 

SNP 12_11529 with highest FST value of 0.6493. The FST was from elevation (E) comparison. 

The color bar indicates the elevations in meters. The filled pink circles indicate the derived 

allele, while the blue open circles indicate the ancestral allele.  

 

Figure 3: (a) The genomic distribution of outlier SNPs identified according to the FST 

comparisons of elevation (below 3,000 m vs above 3,000 m), low latitude (below 30˚N vs 30-

40˚N), high latitude (30-40˚N vs above 40˚N), growth habit (winter vs spring) and association 

analysis of 21 bioclimatic variables, which are categorized into three classes (precipitation, 

temperature, and geographic variables) on chromosome 3H; (B) exome capture target density 

(dark blue line), cross over rate in cM/Mb (purple line), the genomic distribution of SNPs 
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identified in the 62 barley landraces (vertical light blue lines), and 9K  SNPs (red triangle) on 

chromosome 3H; (C) LD plots for SNPs significantly associated with at least one bioclimatic 

variables (bottom) on chromosome 3H. Each plot shows a 100 Kb window around the SNP. The 

vertical dotted lines in the upper panel indicate that those outlier SNPs are shared across different 

traits. For the LD plots, genotyped SNPs are at location 0, and positions upstream and 

downstream are listed as negative and positive values. The light blue bars are genes in 200 Kb 

windows surrounding the genotyped SNPs. The SNPs from the I to XII are: 11_20742, 

11_10380, SCRI_RS_173916, 12_20108, 11_10601, 12_31008, SCRI_RS_173717, 

SCRI_RS_6793, SCRI_RS_207408, 12_10210, SCRI_RS_192360, and 12_30960.  

 
Figure 4: (A) The linkage disequilibrium (LD) analysis of genotyped SNP SCRI_RS_137464 

significantly associated with “mean temperature of the wettest quarter (BIO8).” The blue bars 

indicate genes in the 200 Kb window surrounding SCRI_RS_137464, the red arrow indicates the 

HvPRR1/HvTOC1 (flowering time-related gene) that includes SNP SCRI_RS_137464 (B) The 

gene structure of HvPRR1/HvTOC1 and the functional annotation of SNPs in this gene. (C) 

Haplotype structures of HvPRR1/HvTOC1 based on the SNPs in this gene. L: low; H: high. 

 

Tables: 

 

Table 1: The number of barley genes detected with signals of adaptations and genotyped by 9K 

SNPs. The number in the parentheses is the fraction of total genes in that functional category that 

was genotyped or detected with signals of adaptation. 

 Total 
Genotyped by ≥1 

9K SNPs 
Genotyped by ≥2 

9K SNPs 
With signals of 

adaptation 
Flowering 

time 
57 29 (50.9%) 9 (15.8%) 6 (10.5%) 

Cold 
tolerance 

33 20 (60.6%) 9 (27.3%) 4 (12.1%) 

Drought 
tolerance 

13 7 (53.9%) 3 (23.1%) 0 (0%) 
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Table 2: Loci identified in environmental association or FST comparisons that are previously 

reported to contribute to flowering time, cold, and drought tolerance. Gene names are preceded 

by two letter prefix with the genus and specific epithet for the species where the gene was 

identified. This include, At - Arabidopsis thaliana, Ta - Triticum aestivum, Os - Oryza sativa, Br 

- Brassica napus, and Sod - Saccharum officinarum. The FST comparisons involve the following 

comparisons: E: elevation; LL: Low Latitude; GH: growth habit; HL: high latitude. The * 

indicates that the gene was identified at the 97.5% threshold but not the 99% threshold. 

 

 Barley Other plants 
Bioclimatic 
variables FST 

Cold 
tolerance 

 HvCBF4B  - LL 

*HvDhn8  - E 

 HvICE2              - E, GH 

 *HvSS1   -  E 

 OsiSAP8 - E 

 TaWCI 16 6 - 

Drought 
tolerance 

 *AtACBP2 - LL 

 *AtIRX14 - GH 

 *AtABF3 - HL 

 *AtAREB1 - HL 

 *AtERECTA - HL 

 *BrERF4 - GH 

 SodERF3 - HL 

 TaEXPA2 IC1 - 

 OsNAC52 - LL 

Flowering 
time 

 AtCOP1 - GH 

*HvELF3/Esp1L/eam8  - HL, GH 

HvPpd-H1/HvPRR37  - LL, HL 

*HvPpd-H2/HvFT3  - GH 

HvPhyC  7, 14,17, & IC2 E 

HvPRR1/HvTOC1  8 - 
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HvVrn-H1/HvAP1  3 - 

 
Note:  

1 = Annual mean temperature; 2 = Mean diurnal range (Mean of monthly (max temp - min 

temperature)); 3 = Isothermality (2/7) (* 100); 4 = Temperature seasonality (standard deviation 

*100); 5 = Max temperature of warmest month; 6 = Minimum temperature of coldest month; 7 = 

Temperature annual range (5 - 6); 8 = Mean temperature of wettest quarter; 9 = Mean 

temperature of driest quarter; 10 = Mean temperature of warmest quarter; 11 = Mean 

temperature of coldest quarter; 12 = Annual precipitation; 13 = Precipitation of wettest month; 

14 = Precipitation of driest month; 15 = Precipitation seasonality (Coefficient of variation); 16 = 

Precipitation of wettest quarter; 17 = Precipitation of driest quarter; 18 = Precipitation of 

warmest quarter; 19 = Precipitation of coldest quarter; IC = Independent component. 

 

 

Table 3: The number of SNPs identified by FST outlier approaches and number of previously 

reported genes they identify. For each comparison, 55 SNPs in total were identified as outliers. 

Flowering time genes had one across all categories. Drought tolerance had zero SNPs detected in 

all categories. HL: high latitude; LL: Low Latitude; E: elevation; GH: growth habit. 

 

 

 

 
Flowering time Cold tolerance 

SNPs SNPs Genes 

HL 5 1 1 

LL 4 2 2 

E 1 1 1 

GH 1 0 0 

 
 
Table 4: The number of SNPs significantly associated with climatic factors and known genes 

they hit. 
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 Categories Number Climatic factors 

Flowering time 
SNPs 3 3 ,7 ,8 ,14 , and 17 

Genes 3 - 

Cold tolerance 
SNPs 1 6 

Genes 1 - 

Drought tolerance 
SNPs 1 IC1 

Genes 1 - 

 

Note: Abbreviations for climatic factors are listed under Table 2. 

 

Table 5: Linkage disequilibrium for all SNPs associated with environmental variables or 

identified as FST outliers. 

 LD within a gene Extended LD No LD Missing* 

FST 61 132 10 0 

Association 62 80 7 6 

 

Note: * indicates that there are no SNPs in the 200kb window around the target SNP. 

 

Supplemental figures: 

 

Methods S1 

Figure S1: The distribution of the pairwise genetic distance (Manhattan distance) from 784 

barley landraces. 

 

Figure S2: Exome capture target density (dark blue line), crossover rate in cM/Mb (purple line), 

the genomic distribution of SNPs identified in 62 barley landraces (vertical light blue lines), and 

9K iSelect SNPs (red triangle) for seven chromosomes. Crossover rates were calculated using 9K 

SNPs. SNP genetic positions are based on the genetic map of Muñoz-Amatriaín et al. (2011). 
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Figure S3: Relationship of barley landrace accessions based on principal components. PC1 and 

PC2 are depicted relative to a map of the landrace distribution in Africa and Eurasia. 

 

Figure S4: The derived site frequency spectrum (SNPs with inferred ancestral state) for: (a) 

2,806 SNPs from the 9K iSelect genotyped in the 784 landraces and (b) 340,260 SNPs with 

exome-capture resequencing data in 62 landraces. Ancestral state was based on majority state 

from H. murinum spp. glaucum resequencing mapped to the Morex assembly. For all SNPs: (c) 

Minor allele frequency, for 6,152 SNPs from the 9K iSelect and (d) for 482,714 SNPs from 

exome-capture resequencing. 

 

Figure S5: The heat map of pairwise correlation coefficient (Pearson correlation) of 22 

environmental variables. 

 

Figure S6: The genomic distribution of outlier SNPs identified according to the FST comparisons 

of elevation (below 3,000 m versus above 3,000 m), low latitude (below 30˚N versus 30-

40˚N), high latitude (30-40˚N vs above 40˚N), growth habit (winter versus spring) and 

association analysis of 21 bioclimatic variables, which are categorized into three classes 

(precipitation, temperature, and geographic variables) and ICs. 

 

Figure S7: The distribution of ranked FST from two- and three-level comparisons of elevation and 

latitude. 

 

Figure S8: Venn diagram for the FST outliers from the comparisons of elevation, high and low 

latitude, and growth habit. 

 

Figure S9: The geographic distribution of the SNPs with high FST. (a) The geographic 

distribution of allelic types of 9K SNP SCRI_RS_153793 with highest FST = 0.505. The FST was 

from the low latitude (LL) comparison. (b) The geographic distribution of allelic types of 9K 

SCRI_RS_134850 with highest FST = 0.390. The FST was from growth habit (GH) comparison. 

The color bar indicates the elevations in meters. The filled pink circles indicate the derived 

allele, while the blue open circles indicate the ancestral allele.  
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Figure S10: Venn diagram for the candidate SNPs significant associated with three categories of 

environmental variables: precipitation, temperature, and geographic factors. 

 

Figure S11: The difference between the replaced SNPs and queried SNPs not in the exome-

capture data. (a) The minor allele frequency (MAF); (b) The physical distance. The replaced 

SNPs refer to those SNPs called based on the exome capture resequnecing data and with the 

similar MAF as the queried SNPs. But the queried SNPs are not in the exome capture 

resequnecing data. 

  

Figure S12: LD decay plot for 200 Kb window around the significant SNPs associated with 

environmental variables. The blue bars underneath the x-axis are the annotated genes in the 200 

Kb windows. The vertical dashed lines are candidate SNPlocations. The negative signs on the x-

axis refer to positions downstream of the candidate SNP. 

 

Figure S13: (a) The linkage disequilibrium (LD) analysis of candidate SNP SCRI_RS_137464 

significant associated with ”min temperature of coldest month (BIO6)” and ”mean temperature 

of the coldest quarter (BIO6 and 11)”. The blue bars indicate genes in the 200 Kb window 

surrounding 11_10380, the red arrow indicates the WCI 16 (cold tolerance-related gene) hit by 

11_10380, (b) The gene structure of WCI 16 and the functional annotation of SNPs in this gene. 

(c) Haplotype structures of WCI 16 based on the SNPs in this gene. L: low; H: high. 

 

Figure S14: (a) The linkage disequilibrium (LD) analysis of candidate SNP SCRI_RS_235243 

significantly associated with ”precipitation of driest months” (BIO14). The blue bars indicate 

genes in the 200 Kb window surrounding SCRI_RS_235243, the red arrow indicates the DHAR 

(drought tolerant-related gene) hit by SCRI_RS_235243, (b) The gene structure of DHAR and 

the functional annotation of SNPs in this gene. (c) Haplotype structures of DHAR based on the 

SNPs in this gene. L: low; H: high. 
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Supplemental tables: 
 

Table S1: 784 barley landraces after removing 19 accessions from the 803 Poets et al. 2015 

panel. 

Table S2: Details of the exome capture data from 62 landraces. 

Table S3: Summary statistics for top three independent components (IC) and principal 

components (PCs) calculated from 19 BIOs 

Table S4: The samples size for each partitions for FST comparisons 

Table S5: Known flowering time-related genes list. 

Table S6: Known cold tolerance-related genes list. 

Table S7: Known drought tolerance-related genes list. 

Table S8: The annotation of the 155 significant SNPs identified by environmental association. 

Table S9: The average and standard deviation of FST calculated by different comparisons 

Table S10: 203 FST outliers from elevation, high and low latitude, and growth habit comparisons. 

Table S11: The nine overlapping SNPs identified by FST outliers and association analysis 

approaches. 

Table S12: FST outliers from elevation comparison in a putative inverted region reported by Fang 

et al. 2014 without culling SNPs in strong LD.  

Table S13: Barley flowering time genes with signal of adaption, the numbers of SNPs genotyped 

those genes and the SNPs outlier by environmental association and FST outlier SNPs 

Supplemental datasets: 

 

Supplemental data 1: VCF file for the 6,152 SNPs without culling SNPs in complete LD. 

Supplemental data 2: Genotype matrix with 5,800 SNPs for environmental association  

Supplemental data 3: The physical positions of 9K SNPs. 

Supplemental data 4: The annotations for SNPs called from exome capture resequencing data 

from 62 landraces. 

Supplemental data 5: Phenotype matrix with 25 geographic and climatic variables for 

environmental association. 

Supplemental data 6: Inferred ancestral status for each 9K SNP. 
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Supplemental data 7: Inferred ancestral status for each exome resequencing SNP from 62 

landraces. 

Supplemental data 8: VCF file for SNPs called from exome-capture resequencing data from 62 

landraces 

Supplemental data 9: All p-values and Benjamini-Hochberg FDR-values from the environmental 

associations for 25 variables. 

Supplemental data 10: All p-values and FST from elevation, low and high latitude, longitude, and 

growth habit. 
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LD decay for SNPs around SNP:  SCRI_RS_173916 

( chr3H : 208364495 bp )
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Original significant SNP: SCRI_RS_173717 
LD decay for SNPs around SNP:  chr3H_375957945 

( chr3H : 375957945 bp )
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Original significant SNP: 12_20108 
LD decay for SNPs around SNP:  12_20108 

( chr3H : 446060694 bp )
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Original significant SNP: SCRI_RS_6793 
LD decay for SNPs around SNP:  SCRI_RS_6793 

( chr3H : 485951280 bp )
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Original significant SNP: SCRI_RS_207408 
LD decay for SNPs around SNP:  SCRI_RS_207408 

( chr3H : 559146297 bp )
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Original significant SNP: SCRI_RS_146347 
LD decay for SNPs around SNP:  SCRI_RS_146347 

( chr3H : 582491515 bp )
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Original significant SNP: 11_10821 
LD decay for SNPs around SNP:  11_10821 

( chr3H : 633085996 bp )
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Original significant SNP: 12_30960 
LD decay for SNPs around SNP:  12_30960 

( chr3H : 679786090 bp )
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Original significant SNP: SCRI_RS_137464 
LD decay for SNPs around SNP:  SCRI_RS_137464 

( chr6H : 374867096 bp )
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Hap1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G . . . . . . . . T . . . . . . . . 5 - 3 2 3 - 2 -
Hap2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G . . . . . . . . . . . . . . . . . 1 - 1 - 1 - - -
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