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Abstract 
 

Background and aim: Most patients with pancreatic cancer present with advanced disease and die 

within the first year after diagnosis. Predictive biomarkers that signal the presence of pancreatic 

cancer in an early stage are desperately needed. We aimed to identify new and validate previously 

found plasma metabolomic biomarkers associated with early stages of pancreatic cancer. 

Methods:   The low incidence rate complicates prospective biomarker studies. Here, we took 

advantage of the availability of biobanked samples from five large population cohorts (HUNT2, 

HUNT3, FINRISK, Estonian biobank, Rotterdam Study) and identified prediagnostic blood samples 

from individuals who were to receive a diagnosis of pancreatic cancer between one month and 

seventeen years after blood sampling, and compared these with age- and gender-matched controls 

from the same cohorts. We applied 1H-NMR-based metabolomics on the Nightingale platform on 

these samples and applied logistic regression to assess the predictive value of individual metabolite 

concentrations, with gender, age, body mass index, smoking status, type 2 diabetes mellitus status, 

fasting status, and cohort as covariates. 

Results: After quality assessment, we retained 356 cases and 887 controls. We identified two 

interesting hits, glutamine (p=0.011) and histidine (p=0.012), and obtained Westfall-Young family-

wise error rate adjusted p-values of 0.43 for both. Stratification in quintiles showed a 1.5x elevated 

risk for the lowest 20% of glutamine and a 2.2x increased risk for the lowest 20% of histidine. 

Stratification by time to diagnosis (<2 years, 2-5 years, >5 years) suggested glutamine to be involved 

in an earlier process, tapering out closer to onset, and histidine in a process closer to the actual 

onset. Lasso-penalized logistic regression showed a slight improvement of the area under the 

Receiver Operator Curves when including glutamine and histidine in the model. Finally, our data did 

not support the earlier identified branched-chain amino acids as potential biomarkers for pancreatic 

cancer in several American cohorts.  
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Conclusion: While identifying glutamine and histidine as early biomarkers of potential biological 

interest, our results imply that a study at this scale does not yield metabolomic biomarkers with 

sufficient predictive value to be clinically useful per se as prognostic biomarkers.   
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Introduction 

Pancreatic cancer is one of the most lethal cancers worldwide and increasingly common(1-

3). Most patients present with advanced and thus incurable disease and die within a year of the 

initial diagnosis(3,4). There is an imminent need to identify these patients earlier in the disease 

process, as patients with resectable, non-metastatic cancer can potentially be cured. For many 

cancers it takes several years for a local malignant lesion to progress to fully metastasized disease, 

and pancreatic cancer is no exception(5). Thus, there should be a window of opportunity for timely 

detection and intervention. Unfortunately, for early, presymptomatic pancreatic cancer currently no 

specific biomarkers are available. The identification of predictive biomarkers is complicated by the 

low incidence rate of the disease, estimated at 7-12 cases per 100,000 adult person years in the 

Western European population(6,7).    

It is well known that the development and progression of pancreatic cancer are associated 

with alterations in systemic metabolism. Patients may present with glucose intolerance, anorexia 

and severe weight loss(3,8). In line with this, circulating metabolites have been proposed as a 

potentially useful screening tool in pancreatic cancer(9-16). The study by Mayers et al.(11) stood out 

from other metabolomic biomarker studies, as they analyzed blood samples taken two to more than 

ten years prior to diagnosis. They found an elevation of circulating branched-chain amino acids as an 

early event in the development of pancreatic cancer(11). 

Considering these preliminary predictive metabolomics biomarkers as promising, we set out 

to replicate these findings independently in five large European population cohorts and find 

additional biomarkers, using a different platform, proton nuclear magnetic resonance (1H-NMR) 

instead of liquid chromatography followed by mass spectrometry (LC-MS).  
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Methods 

Study Population 

Our study population consisted of pancreatic cancer cases and controls, drawn from five 

national European cohorts, collaborating in the Biobanking and BioMolecular resources Research 

Infrastructure Large Population Cohorts (BBMRI-LPC; www.bbmri-lpc-biobanks.eu) and the cross-

infrastructure project CORBEL (www.corbel-project.eu): the Estonian Genome Center of the 

University of Tartu study (EGCUT), the FINRISK Study (FR), the Nord-Trøndelag health study (HUNT2 

and HUNT3), and the Rotterdam Study (RS).  

EGCUT is a volunteer-based sample of the Estonian resident adult population aged 18 years 

and above, started in 1999 and currently has close to 52,000 participants(17). 

FINRISK was initiated in 1972 and includes a collection of cross-sectional surveys in the adult 

(25 to 74-year-old) permanent residents of selected geographical areas of Finland. Altogether, 

FINRISK had nine cross sectional surveys performed every fifth year by the National Institute for 

Health and Welfare, including a total of 101,451 invitees(18). Participants in this study were selected 

from the FINRISK1997, 2002 and 2007 surveys. There are no re-examinations except for occasional 

persons who were selected to more than one independent survey by chance. Follow-up is carried 

out through record linkages to national administrative registers (such as the Causes of Death 

Register and Cancer Register), by using a unique personal identity code(19).  

HUNT includes repeated surveys of a large population-based cohort in Norway.  Data from 

116,044 individuals aged 20 years and older from HUNT2 (1995-1997, n=65,237) and HUNT3 (2006-

2008, n=50,807) were used in this study. Individuals who participated in both HUNT2 and HUNT3 

were only included as part of HUNT3. Similar to FINRISK, follow-up is carried out through record 

linkages to national administrative registers (such as the Causes of Death Register and Cancer 

Register), by using a unique personal identity code(20). 
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The RS is an ongoing, population-based cohort study in a suburban area of Rotterdam, the 

Netherlands. It was initiated in 1989 and has enrolled 14,926 individuals of 45 years and older since 

then. Follow-up is carried out continuously(21,22).  

All participants of the respective cohorts provided a written informed consent. The present 

study was approved by the local ethics committee of each study.  

 

Selection of cases and controls 

We included incident pancreatic cancer cases, confirmed by pathology, and diagnosed after 

blood collection. Cases were identified through national cancer registries and through independent 

review of medical records. For diagnosis of pancreatic cancer, we used the ICD-10 C25.0 code. 

Deaths were ascertained through the national registries. We excluded cases that lived more than 5 

years after diagnosis, to avoid false positive diagnoses(23-25). 

For each case, we selected two (in RS one, in EGCUT four) random controls, matching on 

cohort, gender, age (± 2 years), and time of blood collection. Controls were those who were alive, 

without a diagnosis of pancreatic cancer at time of the case’s diagnosis date.  

 

Ascertainment of other covariates 

The following covariate data were obtained from questionnaires and physical examination before 

blood collection: body mass index (BMI; kg/m²), smoking status (current/former/never), type 2 

diabetes mellitus (T2DM) status, and fasting status (<4h/4-8h/>8h).  

 

Metabolite profiling and quality control 

Metabolites were quantified from EDTA-plasma (EGCUT) or serum (HUNT2, HUNT3, FR, RS) 

samples using a high-throughput 1H-NMR metabolomics platform (Nightingale Health, Helsinki, 

Finland; https://nightingalehealth.com/). This platform provides simultaneous quantification of 147 

individual metabolites and 79 metabolite ratios, e.g. routine lipids, lipoprotein subclass profiling with 
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lipid concentrations within 14 subclasses, esterified fatty acid composition, and various low-

molecular metabolites including amino acids, ketone bodies, and gluconeogenesis-related 

metabolites in molar concentration units. Details of the experimentation and applications of the 

platform have been described previously(26).  

Metabolite measures that failed quality control (in particular for glutamine, pyruvate, 

glycerol, hydroxybutyrate, and acetate) were excluded from the analysis on a per-individual basis. 

One metabolite measure (glycerol) with >10% missing values was excluded entirely, resulting in a 

final number of 146 metabolite measures and 79 ratios. Outliers (>5 SD) were removed in 

concordance with previous research in this field(27).  

 

Statistical analysis 

 Differences in baseline characteristics between cases and controls were assessed for each 

cohort separately using Student’s t-tests and ANOVAs.   

Metabolite measurements were raised by one to allow log-transformation. Thereafter all 

metabolite values were log-transformed and scaled to obtain unit standard deviation for each 

cohort. They were included as continuous variables in logistics regression models and adjusted for 

matching factors (gender and age, minimally adjusted model). In our main model on the pooled data 

from all the cohorts, we additionally adjusted for BMI, smoking status, T2DM status, fasting status, 

and cohort. P-values were corrected for multiple testing using Westfall and Young’s family-wise error 

rate, an appropriate method given the strong correlations between the measurements of the 

different metabolites(28). To provide estimates of effect magnitude, significant metabolites were 

again examined in logistic regression models after categorization in quintiles. Quintiles were 

generated based on the metabolite values in controls only.  Results were presented as odds ratios 

(ORs) and 95% confidence intervals (CIs).  

As an alternative for the pooling of the data from the different cohorts, we also performed a 

logistic regression per cohort (with gender, age, BMI, smoking status, T2DM, and fasting status as 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 15, 2019. ; https://doi.org/10.1101/543686doi: bioRxiv preprint 

https://doi.org/10.1101/543686
http://creativecommons.org/licenses/by-nd/4.0/


covariates) and a subsequent meta-analysis.  The obtained estimates for the metabolite measures 

and their standard errors were used in a random effects meta-analysis using the R-package meta 

4.9.2(29). A random effects model was chosen to account for possible heterogeneity due to 

differences in disease assessment, sample processing, and sample collection between cohorts. 

Heterogeneity was assessed using the I²-statistic and by visual inspection of forest plots. P-values 

from the meta-analysis were corrected for multiple-testing using Bonferroni-Holm.  

  

Lasso regression to evaluate additive effect of metabolomics biomarkers on top of clinical predictors 

To select biomarkers with predictive value, we applied a 5-fold cross-validated penalized 

lasso regression with the penalized package version 0.9-51(30). The clinical covariates (gender, age, 

BMI, smoking status, T2DM status, fasting status, and cohort) were not penalized and thus always 

present in the model. We performed a stratified analysis, including all controls but only cases who 

developed pancreatic cancer within 2 years or within 5 years after blood sampling or including all 

cases. For the variable selection, the data were split randomly into a dataset for variable selection 

(70% of the data; with 35% for training and 35% for cross-validation) and a dataset for performance 

testing (30% of the data). We compared the performance of the null model (with only the clinical 

covariates) with the model that included the selected metabolites using an ordinary least squares 

regression model. The performance of the different model was assessed by evaluating the area 

under the receiver operator curve (AUC). 

 

General 

Analyses were performed using the software packages meta 4.9-2, Penalized 0.9-51, 

Globaltest 5.24.0, InformationValue 1.2.3, ROCR 1.0-7, RColorBrewer 1.1-2, and ggplot2 3.0.0 for R 

Version 3.2.3.  
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Results 

Study population and measurements 

Cross-checking of the individuals in the five population cohorts included in this study with 

the national cancer registries enabled us to identify 444 prediagnostic samples from subjects who 

received diagnosis of pancreatic cancer between 1 month and 17 years after blood sampling (median 

4.68 years). We subsequently selected 1,012 gender- and age-matched controls from the same 

cohorts (Figure 1). Baseline characteristics for all cohorts are shown in Table 1. Although baseline 

characteristics differed significantly between cohorts (in particular for gender, BMI, T2DM, and 

fasting status), cases and controls did not differ in these characteristics within a cohort. We reliably 

quantified 146 blood metabolites and 79 metabolite ratios. Figure 1 shows the number of 

participants remaining after quality control and after assessment of the completeness of phenotype 

information in the different analyses performed.  

 

Single-metabolite logistic regression 

To identify metabolite biomarkers potentially associated with future pancreatic cancer 

diagnosis, we performed a separate logistic regression for each metabolite measured. In our primary 

model, we adjusted for the following covariates: gender, age, BMI, smoking status, T2DM status, 

fasting status, and cohort. The results of our top metabolites are presented in Table 2. Full data are 

provided in the Supplementary Table 1.  Two metabolites demonstrated lower blood levels in cases 

than in controls and nominal significance: glutamine (p=0.012) and histidine (p=0.011). They were 

not significant after adjustment for multiple testing (Westfall-Young family-wise error rate adjusted 

p-value 0.43 for both metabolites). A closer inspection of the levels of glutamine and histidine, 

revealed that the differences were consistently observed across cohorts (Figure 2A,E), except for 

glutamine in RS and histidine in FR. Glutamine levels were lower in both non-diabetics and diabetics,   

whereas lower histidine levels were mainly observed in pancreatic cancer that were also diagnosed 

with T2DM (Figure 2B). Histidine levels were lower in individuals who developed pancreatic cancer 
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within 2 years after blood sampling, whereas glutamine levels were decreased longer before 

diagnosis (Figure 2C,G). Histidine levels were lower in both fasting and non-fasting individuals 

(Figure 2H), whereas the effect of fasting status on glutamine levels is difficult to ascertain given the 

differences between cohorts in fasting status (Figure 2D).  The branched chain amino acids, leucine, 

valine, and isoleucine, reported earlier by Mayers et al.(11), were not different between cases and 

controls (unadjusted p-values of 0.75, 0.94, and 0.61, respectively). 

The results above were recapitulated in a minimally adjusted model, only corrected for 

gender and age (Supplementary Table 2). Glutamine and histidine were still among the top hits, 

with p-values of 0.0063 and 0.00045 (not adjusted for multiple testing), respectively. 

To further address potential cohort differences, we performed a meta-analysis on the beta 

coefficients from the logistic regression models that were applied per cohort. The results are 

summarized in Table 3 and provided in full in Supplementary Table 3. The results from the meta-

analysis corroborated our findings on the pooled data, with lower glutamine levels seen for all 

cohorts (unadjusted p-value 0.0040), but most prominently in HUNT3 (Figure 3A), and lower 

histidine levels mostly in HUNT3 and EGCUT (unadjusted p-value 0.0022) (Figure 3B, with similar 

trends in other cohorts and evidence for significant heterogeneity between cohorts). The meta-

analysis provided some evidence for the involvement of omega-3 fatty acids (FAw3, including 

docosahexaenoic acid (DHA)) and high density lipoproteins (HDL).     

To provide a better understanding of the risks associated with lower glutamine or histidine 

levels, we stratified the cohorts in quintiles based on the glutamine or histidine levels in controls. 

Individuals within the lowest 20% of glutamine levels ran a 1.5 times elevated risk of pancreatic 

cancer and individuals within the lowest 20% of histidine levels ran a 2.2 times elevated risk of 

pancreatic cancer (Table 4). 
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Lasso regression  

Lasso regression was used to evaluate the additional predictive effect of metabolomics 

biomarkers over clinical predictors. The performance of a reference (null) model, in which only the 

clinical covariates were used for prediction, was compared with an alternative model, in which 

metabolites selected by the lasso regression were added to the model. The cases were stratified 

according to the time until diagnosis (up to 2 years, up to 5 years and all cases without temporal 

constraint). In the model with cases up to 2 years until diagnosis, the lasso regression selected 

medium very low-density lipoprotein (VLDL), total unsaturated fatty acids and saturated fatty acids 

to be included in the model (Table 5), but it did not affect the performance on the 30% of the data 

that were unseen during the selection of the metabolites. In the model with cases up to 5 years until 

diagnosis, the lasso regression model selected small VLDL and glutamine (consistent with the 

prominent decrease of glutamine levels in cases between 2 and 5 years before diagnosis) (Table 5). 

The performance of the alternative model increased slightly for both the training (AUC = 0.72 vs 0.71 

for the null model, Figure 4A) and the validation set (AUC=0.64 vs 0.62 for the null model, Figure 

4B). In the model with all cases included, more metabolites were selected (Table 5), but the 

performance of the model including the metabolites on both training and validation set (AUC of 0.68 

and 0.62, respectively) was worse than for the model with cases up to 5 years.  
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Discussion 

 

Pancreatic cancer is usually diagnosed in an advanced stage of the disease, resulting in a 

poor prognosis. Most pancreatic cancer biomarker studies executed until today(9,10,13-16) 

collected samples at the time of diagnosis or even later, and therefore have limited clinical utility. 

However, they may provide insight in the pathophysiology of the disease. The setup of our study 

allowed for the identification of prospective biomarkers, and made efficient use of the large scale 

biobanking infrastructure in Europe (BBMRI-LPC program).  

We identified two of these potentially, prognostic biomarkers, glutamine and histidine, while 

noting that the clinical utility of these biomarkers is currently low. They did not reach significance 

after multiple testing correction was taken into account and it is therefore possible that these hits 

are false positives. The increased risk of pancreatic cancer associated with low levels of glutamine 

and histidine was only 1.5 - 2.2-fold and do not add much in terms of predictive potential to well-

known risk factors for pancreatic cancer such as age, smoking and T2DM. However, also earlier 

studies provided evidence for alterations in glutamine and histidine in pancreatic cancer (10,15,16) 

suggesting that these may indeed be associated with pancreatic cancer-associated changes in 

metabolism. In the largest study by Fukutake et al.(15) (N=360 vs 8372), histidine was found 

particularly low in patients with resectable disease stage 0-IIB. This group of patients in a relatively 

early state of the disease is likely most similar to our group of individuals whom were diagnosed in 

less than two years after blood sampling and had the lowest histidine levels of all cases. Also in other 

cancer-related studies, negative correlations between histidine levels and cancer incidence and/or 

cancer-associated mortality were observed(31-33). Remarkably, a recent report demonstrated also 

lower efficacy of cancer treatment in individuals with low histidine levels, and suggested histidine 

supplementation to enhance the efficacy of methotrexate treatment in leukemia(34). 

One of the reasons why changes in metabolites like glutamine and histidine are difficult to 

detect is that the concentrations of these metabolites are relatively high, and that local events like a 
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pancreatic tumor, contribute only little to the overall pool of these metabolites. Other metabolites 

may be more specific to the metabolism in the pancreas and may show more prominent changes. 

This type of metabolites require broader metabolomic screening than the Nightingale platform 

provides. While having superior robustness and throughput and low cost, the range of metabolites 

measured on the Nightingale platform is limited to amino acids, other polar metabolites, and a large 

range of lipid and lipoprotein classes. Our study calls for the use of complementary biomarker 

platforms on these samples, and suggests to limit the sampling to within 5 years before diagnosis 

and not beyond.  

Our study was not able to replicate the findings from the single study with a design and 

sample size comparable to ours(11). This study identified the branched chain amino acids valine, 

leucine, and isoleucine as potential prognostic biomarkers for pancreatic cancer. We did not find any 

difference between cases and controls for these amino acids nor were our top metabolites identified 

in this earlier study. This may be a reflection of the limited power of both studies for the discovery of 

small changes observed for these metabolites. However, we did not even observe trends in the same 

directions. Differences in the measurement platforms (1H-NMR vs. LC-MS) may play a role, but the 

different amino acids can robustly be measured by both. It is equally plausible that the differences 

are due to differences in the studied populations or confounding factors, which were not or were 

incompletely corrected for in the statistical model, such as nutrition. 

In conclusion, our study lends initial support to the existence of metabolic alterations in 

early pancreatic cancer development, highlighting glutamine and histidine as metabolites of interest, 

but also underscores the challenges to find robust, prognostic biomarkers for rare disorders. To 

address this, larger studies are needed, including more metabolites with lower concentrations, 

and/or integrated studies at multiple -omics levels.     

 

 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 15, 2019. ; https://doi.org/10.1101/543686doi: bioRxiv preprint 

https://doi.org/10.1101/543686
http://creativecommons.org/licenses/by-nd/4.0/


Acknowledgements: Tony Wilkes and Abdelhak Chahid (Leiden University) are gratefully 

acknowledged for their contribution to the analysis presented in the manuscript. Annika Wolin is 

thanked for her contribution to the FINRISK sample selection. We would like to thank Peter Würtz 

(Nightingale) for very useful comments on the study. This work was carried out on the Dutch 

national e-infrastructure with the support of SURF Cooperative.  

The Nord-Trøndelag Health Study (The HUNT Study) is a collaboration between HUNT Research 

Centre (Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology 

NTNU), Trøndelag County Council, Central Norway Regional Health Authority, and the Norwegian 

Institute of Public Health. 

The study has used data from the Cancer Registry of Norway. The interpretation and reporting of 

these data are the sole responsibility of the authors, and no endorsement by the Cancer Registry of 

Norway is intended nor should be inferred. 

 

Author contribution: MP, ENJ, KH, AM, CMvD, GJBvO and PACtH jointly designed the study. JF, JJG, 

PACtH, TH, NT, BHS, RR, CHJvE designed the analysis plan and statistical framework. JF, LSV, PACtH, 

AJ performed the analyses. MP, SM, ENJ, KH, KM, AM, CMvD, AI contributed samples. JF, LS, PACtH 

drafted the manuscript. All co-authors reviewed and edited the manuscript.  

 

References 

 
1. De Angelis R, Sant M, Coleman MP, Francisci S, Baili P, Pierannunzio D, Trama A, Visser O, 

Brenner H, Ardanaz E, Bielska-Lasota M, Engholm G, Nennecke A, Siesling S, Berrino F, 
Capocaccia R, Group E-W. Cancer survival in Europe 1999-2007 by country and age: results 
of EUROCARE--5-a population-based study. Lancet Oncol. 2014;15(1):23-34. 

2. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting 
cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas 
cancers in the United States. Cancer Res. 2014;74(11):2913-2921. 

3. Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet. 
2011;378(9791):607-620. 

4. Fest J, Ruiter R, van Rooij FJ, van der Geest LG, Lemmens VE, Ikram MA, Coebergh JW, 
Stricker BH, van Eijck CH. Underestimation of pancreatic cancer in the national cancer 
registry - Reconsidering the incidence and survival rates. Eur J Cancer. 2017;72:186-191. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 15, 2019. ; https://doi.org/10.1101/543686doi: bioRxiv preprint 

https://doi.org/10.1101/543686
http://creativecommons.org/licenses/by-nd/4.0/


5. Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, Kamiyama M, Hruban RH, Eshleman JR, 
Nowak MA, Velculescu VE, Kinzler KW, Vogelstein B, Iacobuzio-Donahue CA. Distant 
metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 
2010;467(7319):1114-1117. 

6. Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, Gavin A, Visser O, Bray F. 
Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major 
cancers in 2018. Eur J Cancer. 2018;103:356-387. 

7. Ilic M, Ilic I. Epidemiology of pancreatic cancer. World J Gastroenterol. 2016;22(44):9694-
9705. 

8. De Bruijn KM, Ruiter R, de Keyser CE, Hofman A, Stricker BH, van Eijck CH. Detection bias 
may be the main cause of increased cancer incidence among diabetics: results from the 
Rotterdam Study. Eur J Cancer. 2014;50(14):2449-2455. 

9. He X, Zhong J, Wang S, Zhou Y, Wang L, Zhang Y, Yuan Y. Serum metabolomics differentiating 
pancreatic cancer from new-onset diabetes. Oncotarget. 2017;8(17):29116-29124. 

10. Kobayashi T, Nishiumi S, Ikeda A, Yoshie T, Sakai A, Matsubara A, Izumi Y, Tsumura H, Tsuda 
M, Nishisaki H, Hayashi N, Kawano S, Fujiwara Y, Minami H, Takenawa T, Azuma T, Yoshida 
M. A novel serum metabolomics-based diagnostic approach to pancreatic cancer. Cancer 
Epidemiol Biomarkers Prev. 2013;22(4):571-579. 

11. Mayers JR, Wu C, Clish CB, Kraft P, Torrence ME, Fiske BP, Yuan C, Bao Y, Townsend MK, 
Tworoger SS, Davidson SM, Papagiannakopoulos T, Yang A, Dayton TL, Ogino S, Stampfer MJ, 
Giovannucci EL, Qian ZR, Rubinson DA, Ma J, Sesso HD, Gaziano JM, Cochrane BB, Liu S, 
Wactawski-Wende J, Manson JE, Pollak MN, Kimmelman AC, Souza A, Pierce K, Wang TJ, 
Gerszten RE, Fuchs CS, Vander Heiden MG, Wolpin BM. Elevation of circulating branched-
chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat 
Med. 2014;20(10):1193-1198. 

12. Mehta KY, Wu HJ, Menon SS, Fallah Y, Zhong X, Rizk N, Unger K, Mapstone M, Fiandaca MS, 
Federoff HJ, Cheema AK. Metabolomic biomarkers of pancreatic cancer: a meta-analysis 
study. Oncotarget. 2017;8(40):68899-68915. 

13. Xie G, Lu L, Qiu Y, Ni Q, Zhang W, Gao YT, Risch HA, Yu H, Jia W. Plasma metabolite 
biomarkers for the detection of pancreatic cancer. J Proteome Res. 2015;14(2):1195-1202. 

14. OuYang D, Xu J, Huang H, Chen Z. Metabolomic profiling of serum from human pancreatic 
cancer patients using 1H NMR spectroscopy and principal component analysis. Appl Biochem 
Biotechnol. 2011;165(1):148-154. 

15. Fukutake N, Ueno M, Hiraoka N, Shimada K, Shiraishi K, Saruki N, Ito T, Yamakado M, Ono N, 
Imaizumi A, Kikuchi S, Yamamoto H, Katayama K. A Novel Multivariate Index for Pancreatic 
Cancer Detection Based On the Plasma Free Amino Acid Profile. PLoS One. 
2015;10(7):e0132223. 

16. Zhang L, Jin H, Guo X, Yang Z, Zhao L, Tang S, Mo P, Wu K, Nie Y, Pan Y, Fan D. Distinguishing 
pancreatic cancer from chronic pancreatitis and healthy individuals by (1)H nuclear magnetic 
resonance-based metabonomic profiles. Clin Biochem. 2012;45(13-14):1064-1069. 

17. Leitsalu L, Haller T, Esko T, Tammesoo ML, Alavere H, Snieder H, Perola M, Ng PC, Magi R, 
Milani L, Fischer K, Metspalu A. Cohort Profile: Estonian Biobank of the Estonian Genome 
Center, University of Tartu. Int J Epidemiol. 2015;44(4):1137-1147. 

18. Pajunen P, Vartiainen E, Mannisto S, Jousilahti P, Laatikainen T, Peltonen M. Intra-individual 
changes in body weight in population-based cohorts during four decades: the Finnish 
FINRISK study. Eur J Public Health. 2012;22(1):107-112. 

19. Borodulin K, Tolonen H, Jousilahti P, Jula A, Juolevi A, Koskinen S, Kuulasmaa K, Laatikainen 
T, Mannisto S, Peltonen M, Perola M, Puska P, Salomaa V, Sundvall J, Virtanen SM, 
Vartiainen E. Cohort Profile: The National FINRISK Study. Int J Epidemiol. 2017. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 15, 2019. ; https://doi.org/10.1101/543686doi: bioRxiv preprint 

https://doi.org/10.1101/543686
http://creativecommons.org/licenses/by-nd/4.0/


20. Krokstad S, Langhammer A, Hveem K, Holmen TL, Midthjell K, Stene TR, Bratberg G, 
Heggland J, Holmen J. Cohort Profile: the HUNT Study, Norway. Int J Epidemiol. 
2013;42(4):968-977. 

21. Hofman A, Grobbee DE, de Jong PT, van den Ouweland FA. Determinants of disease and 
disability in the elderly: the Rotterdam Elderly Study. Eur J Epidemiol. 1991;7(4):403-422. 

22. Ikram MA, Brusselle GGO, Murad SD, van Duijn CM, Franco OH, Goedegebure A, Klaver CCW, 
Nijsten TEC, Peeters RP, Stricker BH, Tiemeier H, Uitterlinden AG, Vernooij MW, Hofman A. 
The Rotterdam Study: 2018 update on objectives, design and main results. Eur J Epidemiol. 
2017;32(9):807-850. 

23. Bernards N, Creemers GJ, Huysentruyt CJ, de Hingh IH, van der Schelling GP, de Bruine AP, 
Lemmens VE. The relevance of pathological verification in suspected pancreatic cancer. 
Cancer Epidemiol. 2015;39(2):250-255. 

24. Carpelan-Holmstrom M, Nordling S, Pukkala E, Sankila R, Luttges J, Kloppel G, Haglund C. 
Does anyone survive pancreatic ductal adenocarcinoma? A nationwide study re-evaluating 
the data of the Finnish Cancer Registry. Gut. 2005;54(3):385-387. 

25. Lepage C, Capocaccia R, Hackl M, Lemmens V, Molina E, Pierannunzio D, Sant M, Trama A, 
Faivre J, Group E-W. Survival in patients with primary liver cancer, gallbladder and 
extrahepatic biliary tract cancer and pancreatic cancer in Europe 1999-2007: Results of 
EUROCARE-5. Eur J Cancer. 2015;51(15):2169-2178. 

26. Soininen P, Kangas AJ, Wurtz P, Suna T, Ala-Korpela M. Quantitative serum nuclear magnetic 
resonance metabolomics in cardiovascular epidemiology and genetics. Circ Cardiovasc 
Genet. 2015;8(1):192-206. 

27. Goek ON, Doring A, Gieger C, Heier M, Koenig W, Prehn C, Romisch-Margl W, Wang-Sattler 
R, Illig T, Suhre K, Sekula P, Zhai G, Adamski J, Kottgen A, Meisinger C. Serum metabolite 
concentrations and decreased GFR in the general population. Am J Kidney Dis. 
2012;60(2):197-206. 

28. Westfall PH, Young SS. Resampling-Based Multiple Testing: Examples and Methods for p-
Value Adjustment. New York: John Wiley & Sons Inc. 

29. Schwarzer G, Carpenter JR, Rücker G. Meta-Analysis with R. Switzerland: Springer 
International Publishing. 

30. Goeman JJ. L1 penalized estimation in the Cox proportional hazards model. Biometrical 
Journal. 2010;52:-14. 

31. Bi X, Henry CJ. Plasma-free amino acid profiles are predictors of cancer and diabetes 
development. Nutr Diabetes. 2017;7(3):e249. 

32. Gu Y, Chen T, Fu S, Sun X, Wang L, Wang J, Lu Y, Ding S, Ruan G, Teng L, Wang M. 
Perioperative dynamics and significance of amino acid profiles in patients with cancer. J 
Transl Med. 2015;13:35. 

33. Miyagi Y, Higashiyama M, Gochi A, Akaike M, Ishikawa T, Miura T, Saruki N, Bando E, Kimura 
H, Imamura F, Moriyama M, Ikeda I, Chiba A, Oshita F, Imaizumi A, Yamamoto H, Miyano H, 
Horimoto K, Tochikubo O, Mitsushima T, Yamakado M, Okamoto N. Plasma free amino acid 
profiling of five types of cancer patients and its application for early detection. PLoS One. 
2011;6(9):e24143. 

34. Kanarek N, Keys HR, Cantor JR, Lewis CA, Chan SH, Kunchok T, Abu-Remaileh M, Freinkman 
E, Schweitzer LD, Sabatini DM. Histidine catabolism is a major determinant of methotrexate 
sensitivity. Nature. 2018;559(7715):632-636. 

  

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 15, 2019. ; https://doi.org/10.1101/543686doi: bioRxiv preprint 

https://doi.org/10.1101/543686
http://creativecommons.org/licenses/by-nd/4.0/


Figure Legends 

 

Figure 1. Schematic overview of the sample set used for data-analysis and the different data-analysis 

approaches performed in the current study. Footnotes: aAny individual containing missing values in 

metabolomics measurements or phenotypically information were assumed to be missing at random, 

and removed from the dataset. bAny individual containing missing values in phenotypically 

information were removed from the dataset.  Abbreviation: PC - pancreatic cancer. 

 

Figure 2. Concentrations (logarithmic scale) of glutamine (panel A-D) and histidine (panel E-H) in the 

blood circulation in controls and cases, i.e. those individuals who developed pancreatic cancer within 

a time window after blood sampling. A,E: Distribution of the concentrations of controls (light blue) 

and cases (dark blue) in the different cohorts analyzed (EGCUT, FR, HUNT2, HUNT3, RS). B,F: 

Distribution of concentrations in non-diabetics (light blue) and individuals diagnosed with T2DM 

(dark blue). C,G: Distribution of concentrations in controls and cases sampled within 2 years before 

diagnosis, between 2-5 years before diagnosis, and more than 5 years before diagnosis. D,H: 

Distribution of concentrations in non-fasting individuals (light blue), individuals who had a meal 

between 4 and 8 hours before blood draw (dark blue) and fasting individuals (green, last meal was 

more than 8 hours before blood draw). Box plots reflect the distribution of the concentrations in 

individual samples: the middle quartiles (25-75% of the data points are in the boxes), the horizontal 

band the median value, the lower whiskers represent the data points up to 1.5*the interquartile 

range (IQR) below the 25%, the upper whiskers represent the data points up to 1.5*IQR above the 

75%; the data points outside these ranges are plotted as individual data points.    

 

Figure 3. Forest plots from random-effects meta-analysis across different cohorts for glutamine 

(panel A) and histidine (panel B). The meta-analysis was performed on the beta coefficients and 

standard deviations from the logistic regressions run for each cohort separately. In the logistic 
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regression, pancreatic cancer status was modeled as a function of log-transformed and standardized 

metabolite concentration, gender, age, BMI, smoking status, T2DM and fasting status. Shown are the 

estimated effect size, the standard error on this estimate, the estimated odds ratio and the 

confidence interval on this ratio, the weight of the individual cohort on the calculation of the final 

estimate, the heterogeneity measure (modeling differences between cohorts), and the unadjusted 

and Bonferroni-Holm corrected p-values for the respective metabolite.  

 

Figure 4. Receiver operator curves for classification of pancreatic cancer cases (sampled up to 5 

years before diagnosis) and controls for training (70% of all individuals, panel A) and performance 

testing (30% of all individuals unseen during the variable selection, panel B) set. In red, the null 

model in which only the clinical covariates (gender, age, BMI, smoking status, T2DM, and fasting 

status) were included in the regression. In blue, the alternative model where the metabolites 

selected by the lasso regression were included in addition to the clinical covariates. The receiver 

operating curve AUCs are indicated, as well as the specificity (1 - false positive rate) at 70% 

sensitivity.    
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Table 1: Baseline characteristics of samples 
 

 
 
Table 2: Top hits from logistic regression analysis1) 

 
1) Logistic regression with single metabolite measure, BMI, smoking status, T2DM status, 

fasting status, and cohort as covariates. Explanation of the abbreviations of the metabolites. 
His: histidine; Gln: glutamine; DHA.FA: ratio of docosahexaenoic acid to all fatty acids; 
FAw3.FA: ratio of omega-3 fatty acids to total acids; M.HDL.P: concentration of medium HDL 
particles; M.HDL.L: total lipids in medium-sized HDL particles; DHA: docosahexaenoic acid; 
M.HDL.PL: phospholipids in medium-sized HDL particles 

 
Table 3: Top hits from meta-analysis1) 

 
 

1) Meta-analysis across the five cohorts of logistic regression results with single metabolite 
measure, BMI, smoking status, T2DM status, and fasting status as covariates. B is effect size; 
CI is confidence interval; P-value is Holm-Bonferroni adjusted p-value. I2 is the statistic used 
for heterogeneity between cohorts. Explanation of the abbreviations of the metabolites. 
Gln: glutamine; DHA.FA: ratio of docosahexaenoic acid to total fatty acids; M.HDL.PL: 
phospholipids in medium-sized HDL particles; M.HDL.P: concentration of medium-sized HDL 
particles; M.HDL.L: total lipids in medium-sized HDL particles; FAw3.FA: ratio of omega-3 
fatty acids to total acids; His: histidine; M.HDL.FC: free cholesterol in medium-sized HDL 

HUNT2 HUNT3 EGCUT FR RS
Total, n (%) (n=590) (n=194) (n=227) (n=272) (n=173)
Cases, n (%) 158 (26.8%) 64 (33%) 76 (33.5%) 57 (21%) 89 (51.4%)
Controls, n (%) 432 (73.2%) 130 (67%) 151 (66.5%) 215 (79%) 84 (48.6%)
Female, n (%) 300 (50.8%) 113 (58.2%) 132 (58.1%) 104 (38.2%) 99 (57.2%)
Age (years), mean (SD) 65.4 ± 11.2 69.5 ±  9.4 63.3 ± 10.5 59.8 ± 8.8 71.3 ± 8.9

BMI (kg/m2), mean (SD) 27.0 ± 3.8 27.4 ±  4.1 28.7 ± 5.5 27.6 ± 4.2 27.4 ± 4.1

T2DM, n (%) 29 (4.9%) 18 (9.3%) 65 (28.6%) 27 (9.9%) 14 (8.1%)
Fasted, n (%)  
0=<4h, 1= 4h-8h,
2= >8h

0 = 497 (84.2%)
1 = 75 (12.7%) 
2 = 12 (2%)

0 = 143 (73.7%)
1 = 27 (13.9%)
2 = 11 (5.7%)

0 = 132 (58.1%)
1 = 31 (13.7%)
2 = 21 (9.3%)

0 = 8 (2.9%) 
1 = 209 (76.8%)
2 = 54 (19.85%)

0 = 47 (27.2%) 
1 = 1 (0.6%)
2 = 113 (65.3%)

Values are number counts (percentages) or mean ± standard deviation. BMI = Body mass index, T2DM = Diabetes mellitus type 2.  
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particles; M.HDL.C: total cholesterol in medium-sized HDL particles; M.HDL.CE: cholesterol 
esters in medium-sized HDL particles; DHA: docosahexaenoic acid. 

 
 

Table 4: Odds ratios for developing pancreatic cancer in different glutamine (top) and histidine 
(bottom) strata 
 

 
 
 
Table 5: Variables selected by the lasso regression1,2) 

 
1) The results of the cross-validated Lasso-penalized logistic regression for full dataset. For 

each regression the penalty parameter (λ) and the selected covariates (separated by 
commas) are given. For every model where metabolites were selected, the significance of 
the presence of all the selected metabolites in the model compared to the model without 
presence of metabolites is tested in a global test, and its p-value is given here. Note that the 
p-value is only for the metabolites, not for the clinical covariates. 

2) Abbreviations of metabolites mentioned: M.VLDL.FC_.: free cholesterol to total lipids ratio in 
medium VLDL; UnSat: estimated degree of unsaturation; SFA.FA: ratio of saturated fatty 
acids to total fatty acids; S.VLDL.FC_.: free cholesterol to total lipids ratio in small VLDL; Gln: 
glutamine; XL.VLDL.TG: triglycerides in extra large VLDL particles; XL.HDL.TG: triglycerides in 
very large HDL; M.HDL.PL: phospholipids in medium-sized HDL; XXL.VLDL.PL_.: phospholipids 
to total lipids ratio in chylomicrons and extremely large VLDL; XXL.VLDL.CE_.: cholesterol 
esters to total lipids ratio in chylomicrons and extremely large VLDL ; 
L.VLDL.PL_.phospholipids to total lipids ratio in large VLDL ; L.VLDL.FC_.: free cholesterol to 
total lipids ratio in large VLDL ; M.LDL.TG_.: triglycerides to total lipids ratio in medium LDL; 
XL.HDL.CE_.: cholesterol ester to total lipids ratio in very large HDL; XL.HDL.FC_.: free 
cholesterol to total lipids ratio in very large HDL; L.HDL.FC_.: free cholesterol to total lipids 
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ratio in large HDL; FreeC: free cholesterol; SM: sphingomyelins; LA: linoleic acid; DHA.FA: 
ratio of docosahexaenoic acid to total fatty acids; LA.FA: ratio of linoleic acid to total fatty 
acids; Glc: glucose; Cit: citrate; Ala: alanine; Gln: glutamine; His: histidine; Val: valine; Phe: 
phenylalanine; AcAce: acetoacetate; bOHBut: 3-hydroxybutyrate; Crea: creatinine   

 
  

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 15, 2019. ; https://doi.org/10.1101/543686doi: bioRxiv preprint 

https://doi.org/10.1101/543686
http://creativecommons.org/licenses/by-nd/4.0/


Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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