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Abstract

Maps of infection risk are a vital tool for the elimination of malaria. Routine surveillance data of malaria case
counts, often aggregated over administrative regions, is becoming more widely available and can better mea-
sure low malaria risk than prevalence surveys. However, aggregation of case counts over large, heterogeneous
areas means that these data are often underpowered for learning relationships between the environment and
malaria risk. A model that combines point surveys and aggregated surveillance data could have the bene-
fits of both but must be able to account for the fact that these two data types are different malariometric
units. Here, we train multiple machine learning models on point surveys and then combine the predictions
from these with a geostatistical disaggregation model that uses routine surveillance data. We find that, in
tests using data from Colombia and Madagascar, using a disaggregation regression model to combine predic-
tions from machine learning models trained on point surveys improves model accuracy relative to using the
environmental covariates directly.
Keywords: Spatial statistics; Ensemble; Stacking; Epidemiology.

1. Introduction
High-resolution maps of malaria risk are vital for elimination but mapping malaria in low burden countries
presents new challenges as traditional mapping of prevalence from cluster-level surveys (Gething et al.,
2011; Bhatt et al., 2017; Gething et al., 2012; Bhatt et al., 2015) is often not effective because, firstly, so
few individuals are infected that most surveys will detect zero cases, and secondly, because of the lack of
nationally representative prevalence surveys in low burden countries (Sturrock et al., 2016, 2014). Routine
surveillance data of malaria case counts, often aggregated over administrative regions defined by geographic
polygons, is becoming more reliable and more widely available (Sturrock et al., 2016) and recent work has
focussed on methods for estimating high-resolution malaria risk from these data (Sturrock et al., 2014; Wilson
and Wakefield, 2017; Law et al., 2018; Taylor et al., 2017; Li et al., 2012). However, the aggregation of cases
over space means that the data may be relatively uninformative, especially if the case counts are aggregated
over large or heterogeneous areas, because it is unclear where within the polygon, and in which environments,
the cases occurred. This data is therefore often under-powered for fitting flexible, non-linear models as is
required for accurate malaria maps (Bhatt et al., 2017, 2015). A model that combines point surveys and
aggregated surveillance data, and therefore leverages the strength of both, has great potential.
One approach for combining these data is to use prevalence point-surveys to train a suite of machine learning
models, and then use predictions from these models as covariates in a model trained on polygon-level incidence
data. This process of stacking models has proven effective in many realms however typical stacking uses a
single dataset on a consistent scale (Sill et al., 2009; Bhatt et al., 2017). Here we propose training the level
zero machine learning models on point-level, binomial prevalence data and stacking these models with a
polygon-level, Poisson incidence model.
2. Methodology
We used two data sources that reflect Plasmodium falciparum malaria transmission; point-prevalence surveys
and polygon-level, aggregated incidence data. We selected Colombia and Madagascar as case examples as
they both have fairly complete, publicly available, surveillance data at a finer geographical resolution than
admin 1. The prevalence survey data were extracted from the Malaria Atlas Project prevalence survey
database using only data from 1990 onwards (Bhatt et al., 2015; Guerra et al., 2007). For Colombia we used
all points from South America (n = 522) while for Madagascar we used only Malagasy data (n = 1505). We
chose these geographic regions based on a trade-off between wanting a large sample size but wanting data
from geographically similar areas. The prevalence points were then standardised to an age range of 2–10 using
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the model from (Smith et al., 2007). The polygon incidence data were collected from government reports
and standardised using methods defined in Cibulskis et al. (2011). This standardisation step accounts for
missed cases due to lack of treatment seeking, missing case reports, and cases that sought medical attention
outside the public health systems (Battle et al., 2016). For reports where cases were not reported at the
species level, national estimates of the ratio between P. falciparum and P. vivax cases were used to calculate
P. falciparum only cases. To minimise temporal effects we selected, for each country, one year of surveillance
data. We used annual surveillance data from 2015 for Colombia (952 municipalities) and data from 2013 for
Madagascar (110 districts) as these years had the most data in each case.
We considered an initial suite of environmental and anthropological covariates, at a resolution of approxi-
mately 5×5 kilometres that included the annual mean and log standard deviation of land surface temperature,
enhanced vegetation index, malaria parasite temperature suitability index, elevation, tasseled cap brightness,
tasseled cap wetness, log accessibility to cities, log night lights and proportion of urban land cover (Weiss
et al., 2015). Tasseled cap brightness and urban land cover were subsequently removed as they were highly
correlated with other variables. The covariates were standardised to have a mean of zero and a standard
deviation of one. These covariates were used for both the machine learning models and the polygon-level
models. Raster surfaces of population for the years 2005, 2010 and 2015, were created using data from
WorldPop (Tatem, 2017) and from GPWv4 (NASA, 2018) where WorldPop did not have values. Population
rasters for the remaining years were created by linear interpolation.
For each country we fitted five models via caret (Kuhn et al., 2017): elastic net (Zou and Hastie, 2012), Ran-
dom Forest (Wright and Ziegler, 2015), projection pursuit regression (Friedman and Stuetzle, 1981), neural
networks (Venables and Ripley, 2002) and boosted regression trees (Ridgeway et al., 2017). Our response
variable was prevalence and we weighted the data by sample size (i.e. the number of people tested for malaria
in each survey. For each model we ran five-fold cross-validation to select hyperparameters using random
search for Random Forest and boosted regression trees and grid search for the other models. Predictions
from these models were then made across Colombia and Madagascar respectively. These predictions were
finally inverse logit transformed so that they are on the linear predictor scale of the top level model.
The top level model was a disaggregation regression model (Sturrock et al., 2014; Wilson and Wakefield,
2017; Law et al., 2018; Taylor et al., 2017; Li et al., 2012). This model is defined by a likelihood at the level
of the polygon with covariates and a spatial random field at the pixel-level. Values at the polygon-level are
given the subscript a while pixel level values are indexed with b.
The polygon case count data, ya is given a Poisson likelihood

ya ∼ Pois(iapopa)

where ia is the estimated polygon incidence rate and popa is the observed polygon population-at-risk. This
polygon-level likelihood is linked to the pixel level prevalence

ia =

∑
(ibpopb)∑

popb

ib = p2i(pb)

where p2i is from a model that was published previously (Cameron et al., 2015) which defines a function

p2i : f(P ) = 2.616P − 3.596P 2 + 1.594P 3.

The fact that the model passes through prevalence space ensures that the predictions from the machine
learning models can be appropriately scaled. The linear predictor of the model is related to prevalence by a
typical logit link function and includes an intercept, β0, covariates, X with regression parameters β, a spatial,
Gaussian, random field, u(s, ρ, σu), and an iid random effect, vj(σv).

pb = logit−1 (β0 + βX + u(s, ρ, σu) + vj(σv))

The Gaussian spatial effect has a Matérn covariance function and two hyperparameters: ρ, the nominal range
(beyond which correlation is < 0.1) and σu, the marginal standard deviation. The iid random effect models
both missing covariates and extra-Poisson sampling error.
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Finally, we complete the model by setting priors on the parameters β0, β, ρ and σu and σv. We assigned
ρ and σu a joint penalised complexity prior (Fuglstad et al., 2018) such that P (ρ < 1) = 0.00001 and
P (σu > 1) = 0.00001. This prior encoded our a priori preference for a simpler, smoother random field. We
set this prior such that the random field could explain most of the range of the data if required.
We assigned σv a penalised complexity prior (Simpson et al., 2017) such that P (σv > 0.05) = 0.0000001. This
was based on a comparison of the variance of Poisson random variables, with rates given by the number of
polygon-level cases observed, and an independently derived upper and lower bound for the case counts using
the approach defined in (Cibulskis et al., 2011). We found that an iid effect with a standard deviation of
0.05 would be able to account for the discrepancy between the assumed Poisson error and the independently
derived error. Finally, we set regularising priors on the regression coefficients βi ∼ Norm(0, 0.4). The models
were implemented and fitted using Template Model Builder (Kristensen et al., 2016) in R (R Core Team,
2018).
We compared the performance of the models with three sets of covariates, X. Firstly, we used the environ-
mental and anthropogenic covariates, centered and standardised. Secondly, we used the predictions from the
machine learning models. Finally we combined these two sets of covariates.
To compare the three models we used two cross-validation schemes. In the first, polygon incidence data was
randomly split into six cross-validation folds. In the second, polygon incidence data was split spatially into
three folds (via k-means clustering on the polygon centroids). This spatial cross-validation scheme is testing
the models’ ability to make predictions far from data where the spatial random field is not informative. Our
primary performance metric was correlation between observed and predicted data.
3. Results
Figure 1 shows the model performance under random and spatial cross-validation for both Madagascar
and Colombia. The poor model performance in Colombia under spatial cross-validation indicates that the
covariates alone cannot explain malaria incidence in this area. For all other models that use the machine
learning predictions as covariates, correlations between observed and predicted data of 0.54 – 0.76 were
achieved (Table 1). Input data and mapped out-of-sample predictions of the best performing model, in
Colombia, are shown in in Figure 2.

Table 1: Pearson correlations between observed and predicted values.

Cross-validation scheme Country Covariates ML Covs + ML

Random Colombia 0.45 0.55 0.54
Random Madagascar 0.70 0.76 0.75
Spatial Colombia 0.05 0.18 0.10
Spatial Madagascar 0.22 0.63 0.61

The model using only machine learning predictions as covariates was the best performing model in both
countries and both cross-validation schemes (Table 1). As expected, models performed better in the random
cross-validation scheme than the spatial cross-validation scheme. The difference between the covariate only
model and the machine learning predictions only model was greater in the spatial cross-validation scheme
than in the random cross-validation. The improvement in performance between the worst and best models
was always smaller than the difference between the random and spatial cross-validation schemes.
Predictive performance of machine learning models was similar, with Random Forest performing best in
Madagascar and neural networks, Random Forests and elastic net performing equally well in Colombia
(Table 2). The means (across folds) of the regression coefficients (i.e. the weights of the machine learning
models in the level zero model) from the polygon-level models that used only predictions from machine
learning models as covariates can also be seen in Table 2. The estimated regression parameters are similar
between the random and spatial cross-validation schemes. However, the best performing machine learning
models do not have the largest estimated regression coefficients as would be expected if prevalence and
incidence were completely correlated. Also of note is that some models were estimated to have a negative
relationship with incidence (conditional on the inclusion of predictions from other machine learning models).
5. Conclusions
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(a) Random cross-validation (b) Spatial cross-validation

Figure 1: Observed data against predictions for cross-validation hold-out samples on a square root
transformed scale. a) Six-fold random cross-validation. b) Three-fold spatial cross-validation with
folds indicated by colour.

Figure 2: Left: Observed data for Colombia (grey for zero incidence). Right: Out-of-sample predic-
tions for the random cross-validation, machine learning only model. For each cross-validation fold,
predictions are made for the held out data which are then combined to make a single surface.

Table 2: Machine learning model results and means of fitted parameters (i.e. model weights) across
cross-validation folds of the machine learning predictions only model.

Madagascar Colombia
Model ML RMSE Random CV β̄i Spatial CV β̄i ML RMSE Random CV β̄i Spatial CV β̄i
nnet 0.113 0.031 0.025 0.058 -0.250 -0.246
RF 0.100 0.337 0.350 0.058 0.782 0.742
gbm 0.109 0.450 0.402 0.066 0.835 0.775
enet 0.116 0.326 0.307 0.058 -0.563 -0.369
ppr 0.110 -0.233 -0.204 0.059 0.210 0.166
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Overall, our experiments suggest that using predictions from machine learning models trained on prevalence
points provides more accurate predictions than using environmental covariates when fitting disaggregation
models of malaria incidence. This increased performance comes despite the data being on different scales,
the data being measurements of different aspects of malaria transmission and despite the imperfect model
we have used to translate between the two scales. However, the reduced model accuracy in the spatial cross-
validation schemes, relative to the random cross-validation scheme, highlights that better spatial coverage of
data would improve predictions more than the improved model we have suggested.
Due to the low power of typical aggregated incidence datasets, previous analyses using disaggregation regres-
sion used a small number of covariates (Sturrock et al., 2014). However, as models such as Random Forest
and elastic net can robustly handle high dimensional data, future work could include many more covariates,
potentially increasing predictive performance.
While the approach presented here is related to stacking, it differs in that we have not constrained the
regression parameters to be positive nor included a sum-to-one constraint i.e. the result is not simply a
weighted average of the level zero model predictions. We did not include these constraints because the base
models and the meta model are trained on response data on different scales. However, future work could
examine whether using a positive constraint on the regression parameters improves performance.
Another area of potential improvement is varying the data used to train the base level learners. Here we
only used data from the region of interest. However, the global dataset is much larger than these subsets.
Training some base level models on local data and some on the global dataset and then combining predictions
from all these models has potential to further improve model performance.
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