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Abstract 

Using human hepatocellular carcinoma (HCC) tissue samples stained with seven immune 

markers including one nuclear counterstain, we compared and evaluated the use of a new 

dimensionality reduction technique called Uniform Manifold Approximation and Projection 

(UMAP), as an alternative to t-Distributed Stochastic Neighbor Embedding (t-SNE) in 

analysing multiplex-immunofluorescence (mIF) derived single-cell data. We adopted an 

unsupervised clustering algorithm called FlowSOM to identify eight major cell types present 

in human HCC tissues. UMAP and t-SNE were ran independently on the dataset to qualitatively 

compare the distribution of clustered cell types in both reduced dimensions. Our comparison 

shows that UMAP is superior in runtime. Both techniques provide similar arrangements of cell 

clusters, with the key difference being UMAP’s extensive characteristic branching. Most 

interestingly, UMAP’s branching was able to highlight biological lineages, especially in 

identifying potential hybrid tumour cells (HTC). Survival analysis shows patients with higher 
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proportion of HTC have a worse prognosis (p-value = 0.019). We conclude that both techniques 

are similar in their visualisation capabilities, but UMAP has a clear advantage over t-SNE in 

runtime, making it highly plausible to employ UMAP as an alternative to t-SNE in mIF data 

analysis. 

Introduction 

Since the advent of immunotherapy, analyses of the tissue immune microenvironment have 

become a critical bridge between cancer research and patient care. Tumour infiltrating 

lymphocytes (TILs) are highly heterogeneous at the single-cell level; consequently, single-cell 

analytical techniques such as flow/mass cytometry and single-cell RNA-sequencing (scRNA-

seq) are essential to study the immune microenvironment. New single-cell flow cytometry 

techniques, such as the BD FACSymphony™ 1 system has greatly increased the number of 

immunological parameters that can be measured per cell, from 10 to 27. Mass cytometry can 

simultaneously measure more than 40 markers per cell while single-cell RNA-seq reports the 

entire transcriptome of individual cells.  Despite these advances, location information for 

individual cells is lost. By contrast, immunohistochemical techniques capture spatial 

information for individual cells, but only a few markers can be measured at one time.  

Immunohistochemical technologies are also advancing, with the latest multiplex-

immunofluorescence (mIF) system able to measure seven markers, and Imaging Mass 

Cytometry systems (incorporating high-parameter CyTOF® technology with imaging 

capability) able to process up to 37 biomarkers simultaneously. 

Dimensionality reduction is critical for all of these single-cell technologies to reduce the 

number of variables (dimensions) under consideration in the samples. Dimensionality 

reduction techniques include Principal Component Analysis (PCA), ISOMAP2, diffusion map 

3 and t-distributed stochastic neighbour embedding (t-SNE) 4, which have been established to 
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visualize single-cell data. Among these methods, t-SNE is relatively well-studied and the most 

commonly used. In 2018, McInnes and Healy published a new dimensionality reduction 

method known as uniform manifold approximation and projection (UMAP) 5. UMAP is 

effective for mass cytometry and single-cell RNA-seq data6, and the researchers state that it 

has a shorter running time and better preservation of the global structure of the data than tSNE 

5. 

Here, we compared the utility of UMAP with tSNE on mIF data. To evaluate the biological 

relevance of UMAP as a dimensionality reduction tool for mIF data, we adopted the FlowSOM 

unsupervised clustering method 7 to identify eight major cell types present in human 

hepatocellular carcinoma (HCC) tissues. We used UMAP and t-SNE independently on the 

same mIF dataset to qualitatively compare the distributions of the FlowSOM-identified cell 

types produced by both dimensionality reduction tools. 

Lastly, we built an integrated R package called “Harmony” for an automated analysis pipeline 

of mIF data. This pipeline includes data pre-processing, dimensionality reduction using t-SNE 

and UMAP, clustering analysis and visualization of the spatial distribution of the various cell 

types. 

Methods & Materials 

Patients and tumours 

A total of 165 archived formalin-fixed, paraffin-embedded (FFPE) HCC specimens from 

patients diagnosed between May 1997 and July 2007 at the Department of Anatomical 

Pathology, Division of Pathology, Singapore General Hospital, were analysed (Figure 1). All 

samples were obtained before patients underwent chemotherapy or radiotherapy (Table 1), and 

clinicopathological parameters, including patient age, tumour size, histologic growth pattern, 
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grade and subtype, lymphovascular invasion and lymph node status were collected. The patient 

age ranged from 15-88 years (median, 64 years) while length of follow-up ranged from 1-159 

months (mean, 57 months; median, 44 months); recurrence and death occurred in 32 (19%) 

and 58 (35%) of these patients, respectively. Tumours were typed, staged and graded according 

to the World Health Organization, American Society of Clinical Oncology-College of 

American Pathologists (ASCO-CAP) guidelines 8. Ishak Fibrosis Score 9, 10, which was 

documented in the pathological diagnostic reports, was used to evaluate the fibrosis status of 

the non-neoplastic liver. More information regarding patient demographics is displayed in 

Table 1. The Centralized Institutional Review Board of SingHealth provided ethical approval 

for the use of patient materials in this study (CIRB ref: 2009/907/B). 

Tissue microarray (TMA) construction 

Tumour (where >50% of the sample area was tumour tissue) and adjacent normal liver regions 

for TMA construction were selected by pathological assessment. For each sample, two or three 

representative tumour cores of 1 mm diameter were transferred from donor FFPE tissue blocks 

to recipient TMA blocks using an MTA-1 Manual Tissue Arrayer (Beecher Instruments, Inc., 

Sun Prairie, WI, USA). TMAs were constructed as previously described 11. 

Quantitative Multiplex immunofluorescence (QmIF) 

Quantitative multiplex immunofluorescence (QmIF) was performed using an Opal Multiplex 

Immunohistochemistry (IHC) kit (PerkinElmer, Inc., Waltham, MA, USA) as previously 

described 12-22, on FFPE tissue sections processed according to the standard IHC protocol 

described above. The slides were first incubated with primary antibodies against CD3, CD8, 

CD103, Glypican, Ecadherin and PD-1 and the nuclei were counterstained with DAPI (Table 

2), before incubation with fluorophore-conjugated tyramide signal amplification buffer 

(PerkinElmer, Inc., Waltham, MA, USA). Images were captured under a Vectra 3 pathology 
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imaging system microscope (PerkinElmer, Inc.) and analysed using inForm software (version 

2.4.1; PerkinElmer, Inc.) 23-25. mIF returned a total of 112 measurements for each cell in the 

HCC samples, based on the mean, minimum, maximum and standard deviation of the seven 

markers in the cell membrane, cytoplasm, nucleus and entire cell (refer to supplementary Table 

1). 

FlowSOM Unsupervised Clustering 

Two samples containing ~20,000 cells were randomly chosen for comparison (patient A and 

B). These data were inputted into “Harmony” for the automated analytical pipeline. “Harmony” 

will first identify the cell types present in the two samples using FlowSOM, which uses an 

unsupervised clustering method based on self-organising maps (SOM) 7 and is typically used 

to analyse flow and/or mass cytometry data. FlowSOM was applied to raw untransformed data 

extracted from IF images using inForm software. The average marker expression in each 

FlowSOM cluster was visualized as a heatmap, from which an experienced pathologist 

assigned each FlowSOM cluster a biologically meaningful cell type (Figure 2). The annotated 

cell types were then overlaid on the t-SNE or UMAP reduced dimensions.  

Dimensionality Reduction 

UMAP and t-SNE were run independently using “Harmony” on the same dataset to 

qualitatively compare the distribution of clustered cell types in both dimensionality reduction 

tools. t-SNE was run using Rtsne, allowing it to be integrated into one seamless pipeline with 

FlowSOM. t-SNE was run without prior principal component analysis (pca = FALSE) due to 

the low number of biomarkers used (n= 7 biomarkers), and the perplexity levels were varied in 

multiples of 10 to identify the best visualisation. All remaining parameters were run using the 

default options. UMAP was run using a python script (https://github.com/lmcinnes/umap) but 

was integrated as part of “Harmony” R Package using the “Reticulate” library in R. Minimum 
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distance of 0.3 was set for UMAP. The number of nearest-neighbours parameter, a parameter 

in UMAP equivalent to the perplexity parameter in t-SNE, varied from two to 20 until the best 

visualisation was obtained. All other parameters were run using the default options. All 

visualisations were plotted using R. 

Survival Analysis 

Overall survival curves were estimated by the Kaplan-Meier method and compared using log-

rank (Mantel-Cox) test. A p-value less than 0.05 was considered statistically significant. 

Patients who are still alive at the last follow-up were censored. Cox proportional hazards 

regression model was used to relate risk factors, considered simultaneously, to overall survival 

time. The parameter estimates represent the change in the expected log of the hazard rate 

relative to a one-unit change in the risk factor, holding all other risk factors constant. Tests of 

hypothesis were used to assess whether there are statistically significant associations between 

risk factors and time to event. A p-value less than 0.05 was considered statistically significant. 

The parameter estimates were generated using R 3.5.0 and are shown with their p-values, their 

associated hazard rates along with their 95% confidence intervals. 

Results 

Dimensionality reduction and unsupervised clustering with core features 

We first conducted QmIF on tumour and normal hepatic tissue samples from two randomly 

selected patients (Figure 1). A sample of the patient’s tissue image is shown in Supplementary 

Figure 1. We then performed dimensionality reduction with both t-SNE and UMAP using only 

the mean intensities of the seven individual biomarkers in their respective cellular 

compartments for both patients (Table 3). Next, we applied FlowSOM to the original high-

dimensional data, which categorised the cells into eight major clusters (Figure 2) and displayed 
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the mean expression levels of the seven markers in each cluster in heatmaps (Figures 3a and 

3b). 

The major cell types could be classified into three groups (Figures 3a and 3b): tumour/epithelial 

cells, immune cells and stromal/other cells. The tumour/epithelial cell clusters were either 

Glypican+ or Glypican¯, and either Ecad+ or Ecad¯. Ecad+ intensity could be further 

subclassified as either strong or weak. Based on this marker expression pattern, a Glypican+ 

epithelium most likely represents tumour cells, and the Ecad intensity indicates the 

characteristics of the epithelium (i.e. whether tumour cells have maintained or lost Ecad 

expression). For the immune compartment, the immune cells were either CD3+ (T 

lymphocytes), CD8+ (cytotoxic T lymphocytes) or CD103+ (macrophages or natural killer 

cells). Combining this information with the PD1 intensity revealed further cellular 

characteristics, such as the exhaustive status of the T lymphocytes. Clusters with low intensity 

marker expression across all seven markers were labelled as stromal/other cell types as none 

of the seven biomarkers were specific to these other cell types. The resulting dataset was 

subsequently dimensionally reduced using UMAP and t-SNE (Figure 2). 

UMAP runtime is significantly shorter than t-SNE at high cell numbers. 

We varied the t-SNE perplexity and the UMAP number of nearest-neighbours to study the 

effects of these parameters on runtime. We also varied the cell numbers in the dataset in 

intervals of a thousand from 1,000 to 19,000 to observe the change in time taken by both UMAP 

and t-SNE (Figure 4a). Here, we found that t-SNE ran faster than UMAP with low cell numbers 

(1,000 – 2,000 cells), whereas UMAP ran faster with higher cell numbers (>2,000 cells). We 

thus consider that running large datasets with UMAP will be more efficient than t-SNE in terms 

of runtime. Moreover, at t-SNE perplexity of 70 (a normal value of perplexity used to compute 
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the visualisation), we observed that the UMAP runtime was an order of magnitude lower than 

t-SNE (Figure 4b). 

A new R pipeline, Fast Fourier Transform-accelerated Interpolation-based t-SNE (FIt-SNE), 

has been developed to reduce the runtime for t-SNE dimensionality reduction 26. When we 

applied FIt-SNE to our dataset with seven dimensions, however, we found that the original t-

SNE algorithm was faster, taking only 6.2 mins compared to FIt-SNE taking 10.0 mins. 

Similarly, when we used the 112 dimensions from our dataset (Supplementary Table 1), FIt-

SNE took 6.3 mins whereas the original t-SNE took only 4.5 mins. Although not effective on 

our data, FIt-SNE may be able to compute the visualisation with a reduced runtime when 

testing with higher dimensions (>112 parameters). 

t-SNE and UMAP produce similar cluster arrangements with comparable robustness and 

reproducibility. 

When visualizing the dimensionally reduced feature matrices, we observed that UMAP and t-

SNE produced similar cluster arrangements (Figure 5). In particular, the major morphological 

clusters (clusters 1 – 9; Figure 5) produced by t-SNE and UMAP shared similar shapes and 

locations. In addition, we found the arrangements of cell types within the clusters were 

congruent between both visualisations. For example, t-SNE and UMAP visualisations of 

Patient B both produced a distinctive wedge-shaped cluster 5, with CD3+ T lymphocytes lying 

strictly adjacent to PD1+ CD8+ T lymphocytes and stromal cells, but the PD1+ CD8+ T 

lymphocytes not in contact with the stromal cells (Figure 5c and 5d).  Additionally, both UMAP 

and t-SNE clustered tumour and normal hepatic cells from the two patients into different 

clusters (Figure 6). These data show that both methods can pick up differences in biomarker 

levels that permit clustering of tumour and normal cells to different groups. This is unlikely to 
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be due to batch effect as this clear segregation of tumour cells from normal cells was evident 

for both patients. 

We did identify morphological variations in the visualisations between the two techniques, 

with differences in the shape and point densities (Figure 5). Notably, the UMAP visualisations 

had signature branching characteristics, with continuous and “curvy” point plots. These point 

plots were more continuous than those produced by t-SNE, tending to form connections 

between clusters and cell types in the visualisations (Figure 5b and 5d). For example, UMAP 

preserved the cell lineage of the PD1+ CD8+ T cells in Patient B cluster 9 by forming a 

connection between cluster 5 and the Ecad¯ epithelium cells in cluster 6; these connections 

were not produced by t-SNE. These cells in cluster 9 may either be immune cells that have lost 

their immune markers on cell surfaces, or tumour cells that have just started to express immune 

markers.  

Furthermore, using additional secondary features (n=112), based on the mean, maximum, 

minimum and standard deviation of marker intensities measured at the nucleus, cytoplasm, cell 

membrane and entire cell created a t-SNE plot with virtually the same morphology as the 

UMAP visualisation (Figure 7). 

We next randomly selected 90% of cells from Patient B to test the robustness and 

reproducibility of UMAP and t-SNE (Figures 8a and 8b). On a qualitative basis, both methods 

showed consistent clustering and cell-type arrangements. Most interestingly, the connection 

between the PD1+ CD8+ T cells and the Ecad¯ epithelium cells was re-produced in each UMAP 

plot. However, it was also noted that relative physical locations of individual clusters varied 

across all the plots, especially the purple clusters. 

Potential in identifying hybrid tumour cells and their association to patient prognosis 
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A recent study showed that tumour cells express immune markers to evade detection by the 

body’s immune system28. Our UMAP visualizations also detected cells with tumour-immune 

hybrid phenotypes as shown by the bridging between the PD1+ CD8+ T cells and the Ecad¯ 

epithelium cells (cluster 9 of Figure 5d). If this is true, then UMAP should be superior to t-

SNE when showing cell lineages. To identify the bridging cells shown in cluster 9, heatmaps 

of the various biomarkers were visualized on UMAP plots (Figure 9). It is observed that these 

cells are PD1+, CD8+, Glypican+ and CD103+ (Figure 9). These cells expressed both tumour 

and immune markers. Cut-off values provided by pathologists of 1.4, 20, 5.4, 5.0 and 4.0 were 

used for CD103+, CD8+, PD1+, Ecad+ and Glypican+ respectively. The percentages of these 

suspected hybrid tumour cells were calculated in all 119 biopsies in our dataset. Subsequently, 

Kaplan-Meyer survival curves were constructed, showing that biopsies with a higher 

proportion of these suspected hybrid cells had a poorer prognosis than those who had a lower 

proportion of these cells (p-value = 0.019) (Figure 10) by using a cut-off between “High” and 

“Low” proportion of hybrid cells equal to 1.7%. Among the 119 biopsies included and with a 

median follow-up of 73 months (4-160), 5-year overall survival was 39.5%, 95% CI = 

[22.3;70.0] in High hybrid cell proportion and 57.7%, 95% CI = [45.1;67.9] in Low hybrid cell 

proportion. Median OS was 42.7 months, 95% CI = [16.7; not reached] in High hybrid cell 

proportion and 117.1 months, 95% CI = [54.1; not reached] in Low hybrid values (Figure 10). 

There is a positive association between the tumour size and overall survival time and between 

hybrid cell proportion and overall survival time (i.e. there is increased risk of death for higher 

tumour size and for higher hybrid cell proportions) (Table 4). We may infer with 95% 

confidence that the death rate from High hybrid cell proportion is approximately 2 times, and 

at least 1.13 times, the risk from Low hybrid cell proportion, holding tumour size constant 

(Table 5). Similarly, there is an 8% increase in the expected hazard relative to a one cm increase 

in tumour size, holding hybrid cell proportion constant (Table 5). By taking four risk factors 
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including tumour stage, hybrid cell proportion, tumour size and patient age together, the 

multiple regression showed that the hybrid cell proportion and tumour size are still significant 

predictors of overall survival time, independently of others clinical risk factors (Table 4). 

“Virtual reality” and “Augmented reality” 

To further study the tumour-immune hybrid phenomenon, we developed our in-house 

innovative spatial lineage analytic pipeline known as “Virtual Reality (VR)”, which is also 

integrated into “Harmony”. Here, we incorporated the physical position of each cell and its 

corresponding FlowSOM unsupervised clustering-derived cell type into a XY cartesian plot 

(Patient A: Figure 11a and Patient B: Figure 11b). We combined the VR tool with the actual 

Vectra images to form “Augmented Reality (AR)”, where pathologists and immunologists can 

better identify the cell types based on their location (Figure 12). The resulting plots show the 

actual locations of the cells and their corresponding cell type, revealing important biological 

information about the tumour’s nature, such as whether there is immune-cell infiltration into 

the tumour sample. More importantly, these plots allow us to analyse the cellular distances 

between various cell types, which may hold important prognostic information. 

Discussion 

t-SNE and UMAP are both dimensionality reduction tools that have drawn considerable 

interest from the scientific community. Here, we show that both techniques have comparable 

performance, robustness and reproducibility, but UMAP has a clear advantage over t-SNE in 

terms of its runtime and preservation of biological lineages. 

Consistent with previous findings, we found that the UMAP runtime is faster than t-SNE by 

approximately an order of magnitude (Figure 4a and 4b) 27. While the difference in timing may 

not be significant when handling small datasets, the difference is drastic when applied to 
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datasets with a large number of cells or a large number of parameters, such as those derived 

from imaging mass cytometry or single-cell RNA sequencing. We also noted that the recently 

developed FIt-SNE does not improve the t-SNE visualisation runtime; however, as our dataset 

had a relatively low number of dimensions, we were unable to validate whether FIt-SNE 

performs better with a larger number of parameters. Interestingly, FIt-SNE and t-SNE had 

lower runtimes when running on the dataset with secondary features (total 112 parameters) 

compared to when running on primary features (seven parameters). 

While others have reported that UMAP and t-SNE produce different clustering characteristics 

and shapes6, we instead observed similar clustering characteristics between both UMAP and t-

SNE, with both methods giving rise to sufficiently distinct clusters (Figure 5). We hypothesize 

that this similarity is due to the lower number of biomarkers (only 7) adopted in our study. 

Variations between the two dimensionality reduction techniques may become more apparent 

when handling a higher number of biomarkers, leading to more diverse visualisations. 

Moreover, one recent study claimed that the relative locations of clusters in UMAP represent 

the biological lineage between the cells6. However, from our study, we showed that the relative 

locations of the clusters are arbitrary and not fixed, like t-SNE (Figure 8). Hence, we believe 

that the physical locations of the clusters do not represent biological lineage, rather, the 

physical interactions between clusters, such as the bridging cluster 9 and arrangements of 

clusters provide information regarding the biological lineage (Figure 5d). 

Interestingly, when we included the secondary features (with the same 7 biomarkers) from our 

study in the dimensionality reduction process, the t-SNE and UMAP plots showed virtually the 

same morphology (Figure 7). This concordance is likely due to greater clustering precision 

when more information regarding individual biomarker intensities in each cell is presented to 

the algorithm. This effect is currently unexplored in the field as the measurement features such 
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as maximum, minimum and standard deviation of the marker intensities in the cell 

compartments are deemed less important than those that are currently widely used in the field. 

Mathematical parameters, such as standard deviation of the marker intensity, may reflect a 

cell’s immunologic nature. More research should be conducted in this area to determine 

whether this information is informative regarding the tumour immune microenvironment. 

When using FlowSOM, we found strong Ecad expression and relatively weaker T-cell CD3 

and CD103 marker expression in cluster number 8 from Patient B (Figure 3b). Despite some 

immune-cell labelling, however, these cells were still categorized as “Ecad+ (stronger) 

epithelium” as it is more likely that these cells are epithelial cells rather than immune cells. 

Vectra IF measures marker expression across a spectrum of intensities, making it hard to 

pinpoint the mean intensity cut-off to determine whether a marker is sufficiently present on the 

cells in the cluster. In other words, while the unsupervised cluster analysis may indicate the 

presence of a particular marker in that cluster, the values may be negligible in actual 

measurements. Moreover, there is the possibility of background noise that is induced in Vectra 

IF measurements due to the auto-fluorescent nature of liver cells.  

We also noted from the UMAP and t-SNE visualisations of Patient B cluster 9 an interaction 

between Ecad+ epithelial cells and PD1+ CD8+ T lymphocytes (Figure 5c and 5d). We propose 

that this interaction is either due to immune cells losing immune markers, or tumour cells 

gaining immune markers, resulting in the presence of such a branch forming in the UMAP 

visualisation. However, both visualisation techniques were still capable of showing the 

presence of PD1+ CD8+ T lymphocytes on cluster 6. Recent data suggest that tumour cells 

express immune markers to evade detection by the body’s immune system 28. Having 

investigated this phenomenon by plotting the heatmaps of the biomarkers in this patient, we 

can see that the biomarker composition of these “bridging” cells are very likely tumour cells 

(Glypican+) with surface immune markers (PD1+, CD8+ and CD103+) (Figure 9). This points 
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towards the possibility of tumour cells hybridising with CD8 T cells. The Kaplan-Meyer 

survival curve analysis also showed that patients with high proportions of these cells have 

poorer prognosis, supporting the study done by Gast et al (Figure 10). Moreover, multiple 

regression analysis shows that hybrid cell proportion is a significant factor associated with 

patient prognosis (Table 4 and 5). With this in mind, UMAP would be considered as superior 

to t-SNE in identifying cell lineages and may prove to be an important diagnostic feature for 

pathologists and immunologists to record when studying tumour sample characteristics. 

With the advent of the cancer hybrid cell theory, new innovative ways to identify hybrid tumour 

cells from a biopsy sample would be of importance. Most excitingly, our new “VR” system 

can be used to complement traditional IHC to improve cell-type identification accuracy (Figure 

12). These physical features, when complemented with the right markers may help determine 

whether tumour tissue is inflamed with myeloid or lymphoid cells, or non-inflamed by looking 

at the presence and location of immune cells. Integrating tumour-cell spatial and marker-based 

information will help drive research on personalised cancer treatments. Application of anti-

glypican 3/CD3 bispecific T-cell-redirecting antibody treatment 29 is one example of a 

personalised treatment that may benefit from our VR approach. Identifying Glypican+ cells and 

T cells with their corresponding locations will allow better analysis on the feasibility of the 

therapy by tracking the cellular positions and determining whether there is a physical 

interaction between the two entities. Another possible application is in terms of PD1 marker 

expression. PD1 is a promiscuous marker that identifies macrophages, immune cells and 

tumour cells, making accurate cell-type identification difficult. Combining the VR tool with 

the actual Vectra images to form AR allows pathologists and immunologists to instead identify 

the cell types based on their location (Figure 12). Using the physical location of the cell, we 

can also study the prognostic characteristic of distances between tumour cells and key immune 
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cells. VR thus has the potential to be employed as a new diagnostic tool to study tumour 

characteristics in the future. 

Conclusion 

In summary, we believe that UMAP and t-SNE have very similar clustering capabilities when 

applied on Vectra IF data with 7 biomarkers. However, UMAP has a clear advantage over t-

SNE in terms of its runtime. Moreover, there is a likelihood that UMAP can display cell 

biological lineages better than t-SNE given its more continuous plots as compared to t-SNE. 

We thus propose that UMAP can be used as an alternative to t-SNE. Adding on, we have also 

identified potential hybrid tumour cells that may contribute to worse prognosis among 

hepatocellular carcinoma patients. We have also developed VR and AR, which are spatial 

visualisation tools that allow pathologists and immunologists to identify the exact location of 

all the cell types. We have combined FlowSOM, UMAP, t-SNE, VR and AR as an automated 

R package analytical pipeline called “Harmony”. We strongly believe that “Harmony” has the 

potential to provide Vectra users with a qualitative analysis that can be complemented with 

Vectra IF’s quantitative results to provide pathologists and immunologists with more arsenal 

of tools to analyse tumour samples.  

Data availability  

Raw input data and “Harmony” R package are available at 

https://github.com/JinmiaoChenLab/Harmony 
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Figures 

Figure 1: Overview of methodology. 
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Figure 2: Analytical pipeline for “Harmony”. 

 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 15, 2019. ; https://doi.org/10.1101/549659doi: bioRxiv preprint 

https://doi.org/10.1101/549659


Figure 3: FlowSOM unsupervised cluster heatmap of a) Patient A and b) Patient B 
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Figure 4: Assessment of time efficiency of t-SNE and UMAP. a) Comparison of runtime 

between UMAP and t-SNE with different numbers of total cells. b) Comparison of runtime of 

UMAP vs t-SNE given varying perplexity and number of nearest-neighbours values. 
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Figure 5: t-SNE and UMAP of patient A and patient B highlighting various cell types present. 

Number of nearest neighbours for UMAP and perplexity for t-SNE were varied until a good 

visualisation is obtained. a) t-SNE of patient A; b) UMAP of patient A; c) t-SNE of patient B; 

d) UMAP of patient B. 
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Figure 6: t-SNE and UMAP of patient A and patient B showing sources of various cells. a) t-

SNE of patient A; b) UMAP of patient A; c) t-SNE of patient B; d) UMAP of patient B; e) 

combined t-SNE of patient A and B; f) combined UMAP of patient A and B. 
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Figure 7: UMAP and t-SNE of patient B with 112 parameters. 
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Figure 8: Assessment of robustness and reproducibility of t-SNE and UMAP. a) t-SNE of 

patient B’s dataset with 90% of cells randomly selected; b) UMAP of patient B’s dataset with 

90% of cells randomly selected. 
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Figure 9: UMAP of patient B highlighting marker intensity in various locations of the UMAP 

plot. It was determined that the bridging cells are PD1+, CD8+, Glypican+ and CD103+. 
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Figure 10: Kaplan-Meier survival curves showing overall survival in months with proportion 

of PD1+CD8+Glypican+CD103+ hybrid cells present in each tumour sample. 
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Figure 11: “Virtual Reality” – physical location of every cell with information regarding cell 

types displayed for a) Patient A; b) Patient B 

 

 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 15, 2019. ; https://doi.org/10.1101/549659doi: bioRxiv preprint 

https://doi.org/10.1101/549659


Figure 12: “Augmented Reality” – Patient B’s a) tumour and b) normal liver tissue’s physical 

location of every cell with information regarding cell types displayed and superimposed on 

Vectra images.  
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Tables 

Table 1: Summary of patient demographics 

Factor Frequency (Proportion) 

Age  

≤55 years 33 (30.3%) 

>55 years 76 (69.7%) 

Ethnicity  

Chinese 83 (76.1%) 

Indian 1 (0.9%) 

Malay 3 (2.8%) 

Others 22 (20.2%) 

Size  

≤20 cm 107 (98.2%) 

>20 cm 2 (1.8%) 

Tumour histological grade  

1 19 (17.8%) 

2 40 (37.4%) 

3 48 (44.9%) 

Pathological stage  

I 71 (65.7%) 

II 21 (19.4%) 

III/IV 16 (14.7%) 

 

Table 2: Summary of antibody markers used to stain the biopsies 

Antibody Clone Dilution Source Labelling Pattern 

CD3 Polyclonal 1:200 Dako A0452 membrane 

CD8 4B11 1:100 
Leica Biosystems CD8-4B11-

L-CE 
membrane 

CD103 EPR4166(2) 1:800 Abcam (AB129202) 
cytoplasmic, 

membrane 

Glypican 1G12 1:800 Cell Marque 216M-96 
cytoplasmic, 

membrane 

Ecadherin NCH-38 1:30 Dako M3612 membrane 

PD-1 NAT105 1:100 Cell Marque 315M-96 
cytoplasmic, 

membrane 
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Table 3: List of measurements regarded as primary features 

 Feature Measured 

Primary Features (7 parameters) Mean intensity of cytoplasm CD3 

Mean intensity of cytoplasm CD8 

Mean intensity of cytoplasm PD1 

Mean intensity of cytoplasm CD103 

Mean intensity of cell membrane Ecad 

Mean intensity of cytoplasm Glypican 

Mean intensity of nucleus DAPI 

 

Table 4: Univariate regression and multiple regression with tumour stage, hybrid cell 

proportion, tumour size and patient age as predictors of overall survival. 

 
N = 

119 

Univariate regression  Multiple regression 

HR [95% CI] p-value  HR (95% CI) p-value 

Tumour stage     ref : I 72      

                           II/III/IV 47 0.89 [0.53 ; 1.50] 0.67  0.84 [0.48 ; 1.48] 0.55 

Hybrid cell    ref : Low 

proportion             

93 
  

 
  

                           High 16 2.03 [1.12 ; 3.67] 0.02 *  2.12 [1.14 ; 3.93] 0.02 * 

Tumor size           1.08 [1.04 ; 1.12] <0.001 *  1.08 [1.04 ; 1.13] <0.001 * 

Age                    ref : <63 y.o. 54      

                           >=63 y.o. 65 0.84 [0.50 ; 1.41] 0.51  0.96 [0.55 ; 1.67] 0.89 

 

Table 5: Multiple regression with hybrid cell proportion and tumour size as predictors of 

overall survival 

 N = 119 
Multiple regression  

HR (95% CI) p-value 

Hybrid cell proportion     ref : Low 93   

                                                 High 
16 

2.05 [1.13 ; 3.72] 0.02 * 

Tumor size          
 

1.08 [1.04 ; 1.12] <0.001 * 
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Supplementary Information 

Supplementary Figure 1: Additional Vectra images taken for patient B. a) Tissue sample taken 

from patient B’s tumour. b) Tissue sample taken from patient B’s region of normal liver. 
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Supplementary Figure 2: Patient A’s physical location of every cell with information regarding 

cell types displayed for additional Vectra images taken – “Virtual Reality” from 2 locations on 

the tumour (a) and normal liver (b). 
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Supplementary Figure 3: Patient B’s physical location of every cell with information regarding 

cell types displayed for additional Vectra images taken – “Virtual Reality” 
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Supplementary Table 1: All parameters measured using Vectra IHC 

  Name of Feature Measured through Multiplex-Immunofluorescence 

Primary 

Features 

(7 in total) 

Mean intensity of cytoplasm CD3 Mean intensity of cytoplasm PD1 

Mean intensity of cytoplasm CD8 Mean intensity of cytoplasm CD103 

Mean intensity of cell membrane Ecad Mean intensity of nucleus DAPI 

Mean intensity of cytoplasm Glypican   

Secondary 

Features 

(105 in total) 

Maximum intensity of cytoplasm CD3 Maximum intensity of nucleus CD103 

Minimum intensity of cytoplasm CD3 Minimum intensity of nucleus CD103 

Standard deviation of cytoplasm CD3 Standard deviation of nucleus CD103 

Mean intensity of cell membrane CD3 Mean intensity of entire cell CD103 

Maximum intensity of cell membrane CD3 Maximum intensity of entire cell CD103 

Minimum intensity of cell membrane CD3 Minimum intensity of entire cell CD103 

Standard deviation of cell membrane CD3 Standard deviation of entire cell CD103 

Mean intensity of nucleus CD3 Mean intensity of cytoplasm Ecad 

Maximum intensity of nucleus CD3 Maximum intensity of cytoplasm Ecad 

Minimum intensity of nucleus CD3 Minimum intensity of cytoplasm Ecad 

Standard deviation of nucleus CD3 Standard deviation of cytoplasm Ecad 

Mean intensity of entire cell CD3 Maximum intensity of cell membrane Ecad 

Maximum intensity of entire cell CD3 Minimum intensity of cell membrane Ecad 

Minimum intensity of entire cell CD3 Standard deviation of cell membrane Ecad 

Standard deviation of entire cell CD3 Mean intensity of nucleus Ecad 

Maximum intensity of cytoplasm CD8 Maximum intensity of nucleus Ecad 

Minimum intensity of cytoplasm CD8 Minimum intensity of nucleus Ecad 

Standard deviation of cytoplasm CD8 Standard deviation of nucleus Ecad 

Mean intensity of cell membrane CD8 Mean intensity of entire cell Ecad 

Maximum intensity of cell membrane CD8 Maximum intensity of entire cell Ecad 

Minimum intensity of cell membrane CD8 Minimum intensity of entire cell Ecad 

Standard deviation of cell membrane CD8 Standard deviation of entire cell Ecad 

Mean intensity of nucleus CD8 Maximum intensity of cytoplasm Glypican 

Maximum intensity of nucleus CD8 Minimum intensity of cytoplasm Glypican 

Minimum intensity of nucleus CD8 Standard deviation of cytoplasm Glypican 

Standard deviation of nucleus CD8 Mean intensity of cell membrane Glypican 

Mean intensity of entire cell CD8 Maximum intensity of cell membrane Glypican 
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Maximum intensity of entire cell CD8 Minimum intensity of cell membrane Glypican 

Minimum intensity of entire cell CD8 Standard deviation of cell membrane Glypican 

Standard deviation of entire cell CD8 Mean intensity of nucleus Glypican 

Maximum intensity of cytoplasm PD1 Maximum intensity of nucleus Glypican 

Minimum intensity of cytoplasm PD1 Minimum intensity of nucleus Glypican 

Standard deviation of cytoplasm PD1 Standard deviation of nucleus Glypican 

Mean intensity of cell membrane PD1 Mean intensity of entire cell Glypican 

Maximum intensity of cell membrane PD1 Maximum intensity of entire cell Glypican 

Minimum intensity of cell membrane PD1 Minimum intensity of entire cell Glypican 

Standard deviation of cell membrane PD1 Standard deviation of entire cell Glypican 

Mean intensity of nucleus PD1 Mean intensity of cytoplasm DAPI 

Maximum intensity of nucleus PD1 Maximum intensity of cytoplasm DAPI 

Minimum intensity of nucleus PD1 Minimum intensity of cytoplasm DAPI 

Standard deviation of nucleus PD1 Standard deviation of cytoplasm DAPI 

Mean intensity of entire cell PD1 Mean intensity of cell membrane DAPI 

Maximum intensity of entire cell PD1 Maximum intensity of cell membrane DAPI 

Minimum intensity of entire cell PD1 Minimum intensity of cell membrane DAPI 

Standard deviation of entire cell PD1 Standard deviation of cell membrane DAPI 

Maximum intensity of cytoplasm CD103 Maximum intensity of nucleus DAPI 

Minimum intensity of cytoplasm CD103 Minimum intensity of nucleus DAPI 

Standard deviation of cytoplasm CD103 Standard deviation of nucleus DAPI 

Mean intensity of cell membrane CD103 Mean intensity of entire cell DAPI 

Maximum intensity of cell membrane CD103 Maximum intensity of entire cell DAPI 

Minimum intensity of cell membrane CD103 Minimum intensity of entire cell DAPI 

Standard deviation of cell membrane CD103 Standard deviation of entire cell DAPI 

Mean intensity of nucleus CD103   
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