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Abstract

MRItrix3 is an open-source, cross-platform software package for medical image processing,
analysis and visualization, with a particular emphasis on the investigation of the brain using
diffusion MRI. It is implemented using a fast, modular and flexible general-purpose code
framework for image data access and manipulation, enabling efficient development of new
applications, whilst retaining high computational performance and a consistent
command-line interface between applications. In this article, we provide a high-level
overview of the features of the MRLtrix3 framework and general-purpose image processing
applications provided with the software.
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1 Introduction

The use of medical imaging technologies such as Magnetic Resonance Imaging (MRI) has rapidly
expanded over the last decades, sparking development of dedicated digital image analysis
techniques tailored to these often large imaging datasets (3 and even higher dimensional) (Dhawan,
2011). These methods include artefact correction, anatomy segmentation, quantitative feature
extraction, and spatial image registration which allows for comparison of features in subjects over
time, between (groups of) subjects and across populations. Development of medical image analysis
techniques is largely driven by the academic research community. Open software platforms have the
potential to enable translation of novel method developments to, e.g., MRI hardware vendors,
clinicians and the biomedical research community.

MRtrix3 has been designed as an open-source, modular software platform for medical image
analysis and visualization. This includes a lightweight framework for application development that
facilitates efficient image access and manipulation, convenient multi-threading primitives, and
support for a broad range of image file formats. End-user applications provided with MRtrix3 include
general-purpose image conversion and manipulation tools and the visualisation tool MRView
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tailored to multi-dimensional (3D+) medical image data. All components are designed with a strong
focus on performance and memory efficiency, which are essential features for dealing with these
often very large datasets. Computationally demanding quantitative imaging algorithms often require
run times on the order of minutes (or hours), which may easily become days (or weeks) if
performance is not optimised to deal with this specifically. In addition, MRtrix3 offers support for
external modules that can be built and distributed independently.

MRtrix3 was historically developed with a particular emphasis on investigating brain white matter
using diffusion-weighted MRI (dMRI), a medical imaging modality that can act as an indirect probe of
neural microstructure, by measuring local hindrance of water diffusion (Johansen-Berg and Behrens,
2013; Jones, 2010). While it derives from the now deprecated MRtrix 0.2.x software package
(Tournier et al., 2012), it has evolved massively over the years, both in terms of the underlying
codebase, and the scope of the functionality provided. The platform hence incorporates a number of
features tailored to the orientational nature of dMRI data within each imaging voxel, such as a
representation using spherical harmonics basis functions, and a bespoke file format for 3D
streamlines. MRtrix3 also provides a wide range of dMRI analysis methods, outlined in the Diffusion
analyses section below. Thanks to these features, MRtrix3 has primarily gained support in the dMRI
community. However, its architecture facilitates image processing in general, and MRtrix3 also offers
image analysis methods less specific to dMRI such as image filtering and calculation, statistics, image
denoising (Veraart et al., 2016) and Gibbs ringing suppression (Kellner et al.,, 2016), intensity
normalisation (Raffelt et al., 2017a) and diffeomorphic image registration (Raffelt et al., 2011).

In this paper, we describe the guiding principles underlying the design and implementation of
MRtrix3. We outline the main aspects of the software architecture, particularly the image access and
multi-threading primitives, as well as the build system and related developer tools. Finally, we
showcase the visualisation capabilities in MRView and give a brief overview of the currently
supported tools for general-purpose image processing and dMRI analysis.

2 Guiding principles

2.1 Reproducible neuroscience

With a growing number of neuroimaging studies and the increasing prevalence of advanced data
analysis in radiology practice, reproducibility becomes ever more important. Publishing open and
reproducible analysis pipelines enables neuroscientific research to replicate pilot results on larger
datasets, and also facilitates comparing sensitivity and specificity of various methods. In addition,
publicly available software can help the clinical translation of novel analysis techniques.

The MRtrix3 collective believes that reproducible neuroscience relies first and foremost on open
source software. Publishing source code, tracking versions, and documenting improvements and bug
fixes, is vital to ensure full transparency on what was done in a study. We are therefore fully
committed to keeping MRtrix3 open source and tracking the version history using Git. The software
is published under the terms of the open source Mozilla Public Licence 2.0', which permits
third-party modification, distribution and commercial use as long as the source code is disclosed.
Furthermore, MRtrix3 also incorporates continuous integration testing to detect and avoid adverse
effects of code changes between versions.

In addition, MRtrix3 provides the requisite functionalities for handling data in the Brain Imaging Data
Structure (BIDS)? a recent standard for organising and sharing neuroimaging data (Gorgolewski et
al., 2016). These include importing and exporting dMRI gradient encoding and other metadata in
JSON and BIDS bval/bvec format, ultimately enabling integrating MRtrix3 commands in BIDS Apps
(Gorgolewski et al., 2017). Finally, MRtrix3 also offers automatic history tracking in the output file
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header, archiving the pipeline of operations used to generate each output image, as well as the exact
version tag of each invoked command.

2.2 Documentation & support

User documentation is available in the inline help page of each command and also on a dedicated
documentation website® that includes additional background information, tutorials and pipelines.
The documentation is kept up to date with the current release and can be retrieved for older
versions. Major updates and new software releases are also announced on the main website and
blog”.

Another key benefit to open development is the interaction between users and developers as one
community. To foster these interactions MRtrix3 provides an online forum®, where a growing
number of users post questions, receive support, and have scientific discussions. Furthermore, users
and developers can report and track technical issues through Github®, and suggest new features for
future releases. Github is also the platform where both internal and external developer
contributions are discussed and managed.

3 Design aspects

MRtrix3 has been designed from the outset to facilitate the development of high-performance
applications concerned with the processing and analysis of medical image datasets, and to offer a
consistent and simple command-line interface. It focuses primarily on command-line applications to
provide a wide range of functionalities that can be combined and scripted to form complex
automated workflows. It relies on modern standards and technologies, particularly C++11’ and
OpenGl® 3.3, yet strives to limit the number of external dependencies to a small and well-supported
set, available across a broad range of platforms; currently these include Python® (for building the
software and using scripts), z/ib™ (for access to compressed images), Eigen3™* (for high-performance
linear algebra support), and Qt* (version 4 or 5, for graphical user interface support). All of these
dependencies are available across a wide range of platforms, allowing MRtrix3 to run natively on
most flavours of Unix, including GNU/Linux and macOS as well as a range of high-performance
computing (HPC) environments, and Microsoft Windows via the MSYS2™ project or Windows
Subsystem for Linux (WSL)*™.

Most of the functionality is written using C++ templates, providing high runtime performance by
allowing the compiler to optimise away any redundant overhead. Motivated by a heavy focus on
multidimensional image access, simple yet powerful constructs for multi-threaded operations are
provided. The framework provides native access to and seamless interaction between a range of
image file formats commonly used in the medical imaging community, including native support for
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DICOM*® (read-only), Analyze®, NIfTI1Y, NIfTI2*, MGH®, and MRtrix3’s own dedicated image
formats®, as well as compressed versions thereof.

While most MRtrix3 commands consist of compiled binary executables, some are written in Python,
and typically invoke other MRtrix3 executables to perform more complex tasks. Moreover, a number
of scripts invoke commands from 3rd party software packages such as FSL (Jenkinson et al., 2012) or
ANTs (Avants et al., 2009), providing convenience wrappers to perform specialised tasks (see the
Image Processing tools and analyses section below for details).

3.1 Image access

Functionality for image input/output is provided by the core MRtrix3 library, so that all MRtrix3
applications can read and write all supported image formats directly: there is no requirement to
convert the data to and from specific image formats. All MRtrix3 applications consistently use the
same coordinate system, which is identical to the NIfTI standard. MRtrix3 handles coordinates
consistently across file formats and in addition, the native MRtrix3 image format allows automated
handling and storage of coordinate system dependent information such as the dMRI gradient table
in the image header to ensure this information remains consistent throughout the analysis pipeline.

3.1.1 Optimised data access

Access to image data is automatically optimised using a variety of techniques to ensure near-optimal
performance across a range of operating conditions. The various strategies employed are outlined in
this section.

By default, image access is achieved via memory-mapping with on-the-fly data type conversion.
However, when the stored data type matches the data type requested by the application, MRtrix3
commands will automatically use “direct 10” access, where data are accessed as a native array in
memory, thus avoiding the overhead of the function calls otherwise necessary for the conversion.
When desired, applications can also explicitly request “direct 10” access to the data: this is
particularly beneficial for applications that will access image data repeatedly, for example, multi-pass
algorithms, patch-based operations, interpolation, etc. To achieve this, the data are loaded directly
into RAM in the desired data type, unless they are already stored as such (in which case
memory-mapping already provides “direct 10” access). Furthermore, while image writing is also
typically done using memory mapping, there are cases where doing so incurs a loss of performance.
This is particularly relevant when operating on networked file systems where random writes to
memory-mapped regions can result in heavy network usage. In this case, MRtrix3 uses an alternative
delayed write-back strategy, with the backend holding the data in RAM and automatically
committing the data to storage when the image is closed.

MRtrix3 also has a flexible concept of strides, allowing the multi-dimensional image data to be stored
in RAM (or file when the image format supports it) in any reasonable order (see Appendix A for
details). It is for example entirely possible to have the data stored in a volume-contiguous manner
(for 4D files), meaning that the data for all volumes of a given imaging voxel are co-located in RAM
(see Fig. A1). This allows for efficient access and maximises CPU cache reuse, in some cases
improving performance considerably. Developers can specify these strides when accessing images
with a particular purpose in mind (e.g., voxel-wise processing of 4D files), and the MRtrix3 backend
will load and re-order the image data in RAM if necessary, but still use “direct 10” access via
memory-mapping where possible to avoid needless data copies. Images can be stored in any stride
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ordering supported by the chosen file format. Of the supported formats, only MRtrix3’s own formats
support arbitrary stride ordering, a feature that offers distinct performance advantages when
processing different types of data, particularly by allowing volume-contiguous storage.

3.1.2 DICOM handling

MRtrix3 includes its own fast DICOM import handling, allowing all MRtrix3 applications to seamlessly
support DICOM images as input. The DICOM import code handles data stored using the recent
DICOM multi-frame standard, as well as the standard multi-file storage, including Siemens mosaics. If
present, it will also extract the diffusion MRI encoding information for 3 major vendors (Siemens, GE,
Philips), and make it available to the application as part of the image header. Other types of
information are also extracted if found, including the EPI phase-encode direction and slice timings.

DICOM images can be provided as a single .dcm file, or more commonly, as a folder containing the
multiple DICOM files that make up the full DICOM series. The import code will scan through all files
in the folder, recursing into any subfolders encountered, and collate all the information into a
hierarchy by patient / study / series / images. If the folder contains a single DICOM series, the data
are loaded as a single dataset directly with no further interaction required. Otherwise, the user will
be presented with a listing of the contents and required to select the desired series.

3.2 Performance and piping

3.2.1 Unix pipes

MRtrix3 allows temporary images to be created in RAM for use as scratch buffers within applications
and also passed between applications via Unix pipes. This allows the software to be used in flexible,
powerful combinations, for example:

$ mrthreshold input.mif -abs 0.5 - | maskfilter - erode - | mrview input.mif -overlay.load -
Listing 1: illustration of the use of Unix pipes in MRtrix. The command above will threshold image

“input.mif” at an absolute value of 0.5; erode the resulting binary mask by one voxel; visualise the
original input image, with the mask calculated in the previous step overlaid on top

Rather than passing the full image data through the pipe, temporary images are created to hold the
data, and only the filename is passed through the pipe. This helps to ensure optimal performance
since the data can be accessed via memory-mapping at both ends of the pipe, eliminating any
needless data copies, and keeping RAM usage to a minimum.

3.2.2 Multi-threading

Multi-threading is a type of computer execution technique supported by modern hardware that
allows a program to run across multiple threads of execution concurrently. Each thread executes
independently while sharing its resources and coordinating with the other threads in the process. In
MRtrix3, almost all commands have been multi-threaded, by default running with the maximum
utilization of CPU processors to achieve high computing performance. In addition, MRtrix3 provides
a powerful, yet simple to use framework for developers to write multi-threaded operations,
particularly for iterating over all voxels in an image, or for multi-stage pipelines.

Multi-threaded looping is demonstrated in the example in Appendix B, illustrating the simplicity of
use. In this implementation, concurrent threads will typically process adjacent rows of data; this is
done to ensure optimal performance by maximising cache reuse, minimising disk seek latency, and
maintaining a sufficiently fine level of granularity to avoid idle CPU cores. By default, the order of
traversal of the image axes is set by the strides of the image, although this can be specified explicitly
by the developer if desired. Moreover, the developer can control which images are to be looped
over simultaneously, which axes to iterate over, and of these, which are to be processed within each
thread (a single row by default).


https://doi.org/10.1101/551739
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/551739; this version posted February 15, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

3.3 Developer tools

MRtrix3 is developed using modern software practices with transparency in mind. Software version
control is managed using Git, hosted openly on Github?’. Issues are tracked and discussed publicly on
GitHub®. Most MRtrix3 commands have tests to ensure the output remains consistent with
expectation throughout the development cycle. Test data are hosted on a separate Git repository®
to keep the main source code repository small and lightweight. Continuous integration testing is
managed by TravisCI* (for Linux and macOS) and AppVeyor® (for Microsoft Windows).

MRtrix3 is designed to minimise the amount of effort required to develop complete image
processing applications, as illustrated in Figure 1. Developers have access to a range of classes for
seamless access to images and other types of data, facilities for multi-threading operations over
images and for parallel processing of streams of data, image filters and other convenience methods.
The core APl documentation is available online®, and is generated directly from the code using
Doxygen®’.

The development tools and build system are also demonstrated in an example application in
Appendix B (other examples are available in the developer documentation®).

Intrinsic image format compatibility:

- DICOM (/)

- Analyse (.img&.hdr)

- NIfTI1 / NIfTI2 (.nii / .nii.gz)
-MGH (.mgh / .mgz)

- MRtrix (.mif / .mih&.dat / .mif.gz)

C++11 keyword:
Automatic type deduction

(keeps code neat) _ Optional: _
Request contiguous data storage along axis 3

(data across image volumes)

\

> >
auto input = Image<float>::open (filepath).with_direct_io (3);
Vi ¥4

Template datatype specified by developer;
type conversion performed only if necessary

Optional:
Store in RAM as native data type
(only if input not already in requested format)

Figure 1: Demonstration of features provided within a single line of code when using the MRtrix3
software library to access an image from the filesystem.

2 https://github.com/MRtrix3/mrtrix3/

2 https://github.com/MRtrix3/mrtrix3/issues

2 https://github.com/MRtrix3/test_data

24 https://travis-ci.org/MRtrix3/mrtrix3
Bhttps://ci.appveyor.com/project/MRtrix3/mrtrix3

% http://www.mrtrix.org/developer-documentation/

27 http://www.doxygen.org/

2 http://www.mrtrix.org/developer-documentation/examples.html
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3.3.1 Integrated command-line interface and documentation

MRtrix3 provides a framework for simultaneously documenting, specifying and retrieving
command-line arguments and options, all centralised within a single function for each application.
This includes authorship and copyright information, a general description of the command and
specific descriptions of the arguments and options, and any relevant external references. This
information is used to generate the application’s online help page, and at runtime to display its help
page, to automatically check the validity of the arguments, and to retrieve these arguments and
options at any point in the code. See the code example in Appendix B for an illustration of this
framework.

3.3.2 Build system

The software includes a bespoke system to manage configuring and building the software. It is
comprised of two Python scripts: configure and build. The former detects various aspects of the
operating environment (OS, availability of C++11 compliant compiler and required libraries, etc). The
build script scans the code to build a full dependency tree based on simple rules about file location
and naming conventions, identifies outdated targets, assembles a list of tasks required to bring the
targets up to date, and then launches the relevant commands in the right order and in parallel for
fast build times. This allows the code to be modified without requiring any other changes (for
example, to external Makefiles): a new command can simply be dropped into the right folder, and its
corresponding binary will be compiled the next time build is invoked.

3.3.3 External contributions

MRtrix3 encourages users to contribute their own methods to the software and recognises their
need to distribute these however they see fit. Therefore, the MRtrix3 build system provides a
convenient primitive for external modules that enables developers to build their own applications,
linked to the core MRtrix3 library and leveraging its image access and multi-threading primitives.
These external modules can be distributed separately under any open source license or may be
integrated into a future MRtrix3 release. In either case, developers are given full credit for their work
through embedding of author information, external references, and copyright statement, within the
code and resulting command help page and documentation.

3.3.4 Python scripts

While piping of images (as described in Unix pipes (section 3.2.1)) can be used to chain several
MRtrix3 commands into composite applications, MRtrix3 also contains a dedicated Python scripting
library to aid the development of more complex applications and processing pipelines involving
multiple MRtrix3 (or other) binaries. Features of the scripting library include standard command-line
options, help page formatting and documentation generation consistent with MRtrix3 binary
commands, scratch directory management, and the ability to continue from any point in a previous
execution for long or computationally demanding pipelines. The application module and library
functions on which these scripts are built are additionally designed to be both accessible and
functional for researchers looking to construct their own processing pipelines from existing
commands and to interface with external tools.
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4 MRView

The MRtrix3 viewer, MRView, was written to be cross-platform, high performance, convenient to
use, and extensible. To meet these aims, MRView uses the high-performance industry-standard
OpenGL* 3.3 API to leverage the graphics capabilities of modern systems, and the widely supported
and open-source Qt toolkit®® to manage the interface elements (widgets). It is also designed from the
outset for interactive use from the command-line. This allows users to rapidly experiment with new
ideas, develop and debug pipelines, and inspect the output of processing commands. Two aspects of
its design play a role in supporting this: first, MRView accepts input from Unix pipes (as illustrated in
the example in section 3.2.1); and second, it is quick to launch and display (through a number of
design decisions, including the use of memory-mapping for “lazy loading” and delayed initialisation
of interface elements until the point of use). See the MRtrix3 website for demonstration videos®".

An important aspect of MRView is its ability to load multiple images concurrently, allowing fast
switching between them via the menu or the PageUp / PageDown keys. In combination with the
optimisations mentioned above, this allows interactive use in otherwise demanding workflows, such
as loading a long list of images into the viewer concurrently and inspecting them with interactive
framerates, even when the data are held on network file shares. This type of action is useful to
quickly scan through the results of a processing step over all participants in a large study (to check
the quality of the image masks, for example).

MRView is also capable of displaying slice-wise information at arbitrary oblique cuts through the
data. This is particularly useful to display features such as streamlines obtained via tractography in
their most appropriate anatomical context, for instance. Off-axis rendering is available in all viewing
modes (see below). MRView can also handle higher-dimensional images, currently up to 5D.
Navigating between volumes (4th dimension) or volume groups (5th dimension) is simple and fast
via the arrow keys, the menu, or the View tool (see below).

A core principle in MRView is that content is always displayed at the correct location in scanner
coordinates, not relative to the image voxel coordinates. This applies to the main image, but also
overlays and streamlines, and any directional information such as vectors or orientation density
functions (ODFs). This allows the concurrent display of different types of data, independently of how
these data were generated. For instance, images can be overlaid together even if their voxel sizes
and/or orientations differ, streamlines produced by tractography can be displayed over other images
than those used to produce them (e.g. co-registered anatomical images), ODFs or vectors will point
in the expected direction irrespective of the image currently displayed, etc.

MRView provides a number of different viewing modes, including single-slice; orthoview (a montage
of 3 orthogonal slices), lightbox (a grid montage of adjacent slices or volumes); and volume render
(3D rendering using ray-tracing). Figure 2 shows a screen capture of MRView in volume render
mode.

These modes are supplemented by a number of independent tools providing additional specific
functionality. These include:

e View: provides fine control over generic aspects of the display, such as brightness/contrast,
location of crosshairs, and access to mode-specific settings such as clip planes for the volume
render.

e Overlay: overlay additional images on top of the main image, with control over colour map,
transparency, and thresholds.

e ROl editor: provides an interface to edit binary mask images.

e Tractography: visualisation of tractography output, with options for streamtube rendering.

2 https://www.opengl.org/
30 https://www.qt.io/
3 http://www.mrtrix.org/videos
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e ODF render tool: visualisation of orientation density functions (Figure 3), provided as
spherical harmonic coefficients, samples along a set of fixed orientations (‘dixels’*?), or
tensor coefficients.

e Fixel plot tool: display voxel-wise vectors, provided either as 4D images of X,Y,Z coefficients
or using MRtrix3’s sparse fixel storage format® (Figure 4). See (Raffelt et al., 2017b) for a
description of the fixel concept.

e Connectome tool: visualise nodes and edges obtained through connectome analysis, using a
variety of techniques (Figure 5).

® Screen capture tool: write the contents of the main display to file using the widely
supported open-source Portable Network Graphics (PNG) format®*. This additionally allows
the creation of movies (see for example demonstration videos on the MRtrix3 website, and
the supplementary materials provided with (Mito et al., 2018)).
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Figure 2: MRView in volume render mode, showing an anatomical T1-weighted MRI with 3 clip
planes, with a region of interest corresponding to the motor strip rendered using the overlay tool (in
green), and probabilistic streamlines delineating the corticospinal tract shown via the tractography
tool.

32 https://mrtrix.readthedocs.io/en/3.0_rc3/concepts/fixels_dixels.html
3 https://mrtrix.readthedocs.io/en/3.0_rc3/getting_started/image data.html#fixel-image-directory-format
3 http://www.libpng.org/pub/png/
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Figure 3: Multi-tissue Constrained Spherical Deconvolution result using 3 tissue types: WM- (blue),
GM- (green) and CSF-like (red) compartments, with WM fibre orientation distributions (lighter blue)
overlaid.

5 Image processing tools and analyses

MRtrix3 comes bundled with a range of end-user applications for performing general-purpose image
manipulations as well as complex analyses, with a strong (although not exclusive) focus on diffusion
MRI. MRtrix3 command names follow a convention to reflect the purpose of the command and aid
discoverability. Firstly, a set of shorthand “codes” are defined for the main types of data. These
indicate directly within the command name itself the type of data operated on by the command; for
example, “mr” for generic (magnetic resonance) images, “dwi” for diffusion-weighted images and
“tck” for tracks.

Using these, two standardised formats of command names exist:

e “DataOperation”, where the type of data input to the command and the operation to
perform are concatenated; for example, “mrconvert” for converting images to different
formats, or “mrinfo” for providing information about the image header.

e “Data2Data”, where the command involves some form of conversion from one type of
data to another; for example, “warp2metric” for computing different metrics from
spatial warps (deformation fields).

5.1 Basic image operations

MRtrix3 provides a suite of commands for performing various common manipulations of image data.
Each command is small, yet powerful and modular. This allows for performing a wide range of
common processing tasks whilst providing maximal flexibility to the user. These basic commands
include: querying image header information (mrinfo); converting between image formats,
including data exclusion / axis permutation / header manipulation (nrconvert); concatenating
images along any dimension (mrcat); a voxel-wise image calculator, allowing for simple as well as
complex mathematical expressions (mrcalc); computing summary statistics (e.g. mean, std. dev.,
etc.) across different images or along image axes (mrmath); and generating summary statistics of
image intensities within regions of interest (nrstats);
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Figure 4: An example of fixel-based analysis results displayed using MRView’s Fixel plot tool. This
example shows the comparisons of fixels between motor neuron disease patients and healthy
controls, with the use of connectivity-based fixel enhancement. Top row: Fixels are presented in
directionally-encoded colours, red: left-right, green: anterior-posterior, blue: inferior-superior.
Bottom row: Fixels are coloured based on family-wise error corrected p-value, highlighting the fixels
with a significant fibre density loss in the patient group. This figure is adapted from (Raffelt et al.,
2015) with copyright permission.

5.2 Diffusion analyses

MRtrix3 includes tools to undertake different types of diffusion analyses from start to finish. In
particular, it includes state-of-the-art tools for pre-processing, voxel-level modelling, fibre tracking
and connectomics, and groupwise analysis. The main technologies currently included in MRtrix3 are
listed below.

Pre-processing tools: MP-PCA denoising (Veraart et al., 2016); removal of Gibbs ringing artefacts
(Kellner et al., 2016); a convenience wrapper for FSL tools to perform motion, eddy-current, and
susceptibility-induced distortion correction (Andersson et al., 2017, 2003; Andersson and
Sotiropoulos, 2016); and a convenience script to perform bias field correction, based on either ANTs
N4 (Tustison et al., 2010) or FSL (Smith et al., 2004; Zhang et al., 2001).

Voxel-level modelling: diffusion tensor imaging (DTI) (Basser et al., 1994; Veraart et al., 2013);
constrained spherical deconvolution (CSD) for single-shell fibore ODF estimation (Tournier et al., 2007,
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2004) and multi-shell multi-tissue CSD for multi-shell data (Jeurissen et al., 2014), supported by
several response function estimation algorithms (Dhollander et al., 2016; Tax et al., 2014; Tournier et
al., 2013) (Figure 3).

Tractography and connectomics: deterministic tractography using DTI (Mori et al., 1999) or fODFs
(Tournier et al., 2012); probabilistic tractography using DTI via the wild bootstrap (Jones, 2008) or
fODF sampling (Jeurissen et al.,, 2011; Tournier et al.,, 2012, 2010); multi-shell multi-tissue global
tractography (Christiaens et al., 2015); anatomically-constrained tractography (Smith et al., 2012);
spherical-deconvolution informed filtering of tractograms (SIFT) (Smith et al., 2013) and its newer
SIFT2 variant (Smith et al., 2015); tools to support connectomic analyses, including network-based
statistics (NBS) (Zalesky et al., 2010) and its threshold-free variant (Vinokur et al., n.d.).
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Figure 5: Generation of structural connectome matrix, and subsequent visualisation using the
MRView Connectome tool. A brain parcellation from any of a range of data/software sources can be
combined with a whole-brain tractogram generated using MRtrix3’s advanced tractography methods
to produce a connectome matrix encapsulating a measure of connectivity between every pair of
brain regions; the MRView connectome tool provides a range of features for displaying and
navigating connectome data and/or the results of network-based statistical inference.
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Group-wise image analysis: diffeomorphic registration of ODF images and construction of
population templates (Raffelt et al., 2011); voxel-based analysis using permutation testing (Anderson
and Robinson, 2001; Winkler et al.,, 2014) and threshold-free cluster enhancement (Smith and
Nichols, 2009); and fixel based analysis (Raffelt et al., 2017b) using connectivity-based fixel
enhancement (Raffelt et al., 2015).

Visualisation and maps: directionally-encoded colour (DEC) maps for tensors (Pajevic and Pierpaoli,
1999) and fODFs (Dhollander et al., 2015b); panchromatic sharpening (Dhollander et al., 2015a) and
luminance correction (Dhollander et al., 2018); track density imaging (TDI) (Calamante et al., 2010),
track-weighted imaging (TWI) (Calamante, 2017) and track orientation density imaging (TODI)
(Dhollander et al., 2014).

6 Conclusion

MRtrix3 was designed from the outset as a framework for the development and dissemination of
high-performance imaging research applications, guided by the principles of open and reproducible
science. While its historical focus has been on diffusion MRI analysis, the bulk of the functionality is
designed to support the broadest range of applications possible. We encourage researchers and
developers alike to consider using MRtrix3 in their research, whether focussed on diffusion MRI or
other imaging modalities.
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8 Appendix A: Image strides

Image data can be stored on file or in RAM in a number of ways. At heart, multi-dimensional image
data consists of one value for each position, indexed by coordinates x, y, z, .... The first 3 coordinates
conventionally refer to the voxel indices along the spatial x, y, z axes, and higher indices would refer
to separate volumes, or any reasonable indexing thereof. However, when stored on file or in RAM,
the data will be arranged linearly, and indexed by a single offset. A strategy is needed to manage
access to the data by mapping voxel coordinates to file (or memory) offsets.

To illustrate the issue, consider the problem of storing the elements of a dense mxn matrix. In many
linear algebra packages, matrices are stored in so-called column-major format: each element of the
first column is located directly after the other until the end of that column, followed by the elements
of the next column, and so on. Assuming this storage convention, elements that are adjacent along
the column direction are stored at adjacent offsets in RAM (or file), while elements adjacent along
the row direction are placed at least m elements apart. Hence, the element at (ij) is at offset =i + jm
relative to the element at index zero. This corresponds to strides of [ 1 m ]: the step to find the next
element along the column direction requires a stride of 1 element, while the equivalent step along
the row direction requires a longer stride of m elements.
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Figure Al: lllustration of the concept of strides when storing and accessing image data. The issue is
to relate voxel coordinates [ x y z v ] (top box) to a single offset on file (bottom box). This can be
done in a number of different ways. In the first case, data are stored in order of traversal along the x
axis first, then each row along the y axis, then each slice along the z axis, and finally each volume. In
the second case, the order is swapped between the x & y axes. The last case illustrates the case of
volume-contiguous storage, where the data are traversed along the volume axis first, followed by
the spatial axes.
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However, matrices can be (and often are) also stored in so-called row-major format, where elements
along the first row are stored contiguously, followed by the next row, and so on. In this case, the
element at (i,j) is at offset = in + j; this corresponds to strides of [ n 1 ]. Note that while two matrices
stored in row-major and column-major format respectively may be logically equivalent, the order in
which their elements are stored differs, and there is no reason to prefer one convention over the
other. In fact, many implementations support both, since it is then trivial to take the transpose of a
large matrix simply by changing the strides, with no need to re-order the matrix elements
themselves.

This concept trivially extends to higher dimensions, as illustrated in Figure Al. Images can be stored
with all intensities along the x axis stored one after the other, followed by the intensities for the next
row along the y axis, followed by the intensities for the next slice along the z axis. For an image of
size nxn xn, this means the intensity at voxel (x, y, z) is stored at offset = x + yn_+ zn,n ; this
corresponds to strides of [ 1 n, n,n, ]. However, there is no particular reason for data to be stored in
this order, and in fact different data strides are common. In many cases, the different image formats
themselves assume different storage order conventions, which can cause confusion if not properly
managed. Furthermore, the strides can also reflect the direction along which each axis is mapped,
e.g., left-to-right versus right-to-left traversal, by allowing strides to be negative.

The extension to 4D can readily be appreciated in Figure A1, which also illustrates the case of
volume-contiguous storage, i.e. when the intensities along the volume axis have adjacent offsets,
with stride 1 for the volume index. Data stored in this way are sometimes referred to as
vector-valued data: the data stored for each voxel is no longer a single intensity, but a vector of
intensities. An example where this makes sense is when storing a colour image: it is then sensible to
store the red, green & blue components of each pixel together. However, this is also advantageous
in any situation where a vector of data is available for each voxel (e.g. all the fMRI or DWI intensities
for a given voxel) and these data are processed independently per voxel (e.g. to perform a model fit).
Computer hardware generally performs best when data are processed in the order they appear on
file (or in memory): this avoids seek latency when reading from disk, allows burst transfers to and
from the main system memory, leverages the CPU’s cache prefetching engine, and maximises usage
of each line of the on-board CPU cache. Volume-contiguous strides therefore make sense for
high-performance per-voxel operations on 4D data, which are common in diffusion MRI, functional
MRI, perfusion MRI, T2 relaxometry, and many others domains.

To allow for all these different storage conventions and to enhance performance of the various
analyses to be performed, MRtrix3 supports arbitrary data strides for all supported formats, and for
data held in RAM.

8.1 Symbolic strides

While the actual strides used to navigate the voxel information are unambiguous, they often involve
large numbers, and depend on the exact image dimensions along each axis. To simplify the process
of specifying and reporting strides, MRtrix3 introduces the concepts of symbolic strides, and this is
what is reported by tools such as mrinfo. With symbolic strides, the exact value of the stride is
ignored, and all that matters is its magnitude relative to the other strides —i.e. its ranking (note that
the sign of the strides is preserved). Hence, for the example shown in Figure A1, the strides would be
reported as:

® x —y —z—v, actual strides=[139 18] = symbolicstrides=[1234]
® y —x —z—v, actual strides=[319 18] = symbolic strides=[2134]
e v —x —y —z actual strides=[2618 1] = symbolicstrides=[2341]
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Symbolic strides provide a simply means to specify the voxel ordering in a manner that is
independent of the dimensions of the image. For example, if a 4D image had dimensions 96 x 128 x
64 x 32, with voxels stored in order x =y —z — v (as per the first example above), its actual strides
would be [ 1 96 12288 786432 ]; yet its symbolic strides would be [ 1 2 3 4 ], matching the example
above. If the user wishes to modify the strides of an image, it is therefore much more practical for
them to specify them as symbolic strides, and let the software compute the actual strides given the
dimensions of the image.
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9 Appendix B: Example commands

The relatively simple examples below demonstrate stand-alone commands that compile / execute
with MRtrix3 without modification. They highlight a number of the powerful features available
within MRtrix3 that can be used with minimal coding effort, greatly expediting the development of
image processing commands:

o Simple construction of an external MRtrix3 module, enabling compilation / execution of
commands making use of MRtrix3 functionalities without requiring any modification of
MRtrix3 itself;

e Consistent command-line interface, including checking validity of input parameters at the
parsing stage;

o Compatibility with any image file format supported by the library;
e Simple construction of terminal feedback to user regarding command progress;
e Automated self-documentation that is consistent with all MRtrix3 commands.

Two example commands are provided: One written in C++ (incorporating multi-threading), and one
in Python. The functionality of these two demonstrative commands is identical:

e For any voxel where the value is less than a threshold (zero by default), set the intensity to
zero; preserve the value of those voxels where the value is greater than the threshold.

o The threshold determining which image values should be clamped to zero may optionally be
set manually by the user.

(Note that such a processing step can be achieved trivially using the MRtrix3 command mrcalc; it is
simply used here for demonstrative purposes)
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9.1 Example binary command

9.1.1 Code (file “demo_binary.cpp”):

This listing contains the C++ code to threshold an image, setting any intensities less than the
specified threshold to zero.

#include "command.h" // key header for building an executable command against MRtrix3
#include "image.h" // defines class for accessing image data

#include "algo/threaded_loop.h" // tools for multi-threaded Looping over 1images

using namespace MR;

using namespace App;

// this function sets up the command-line interface for the command
void usage()
{

// details that must be defined for all commands

AUTHOR = "Robert E. Smith (robert.smith@florey.edu.au)";

SYNOPSIS = "Clamp image intensities below a threshold to zero";

// these are compulsory command-Lline inputs that must always be provided by the user
ARGUMENTS

+ Argument ("input", "an input image").type_image_in()

+ Argument ("output", "the output image").type_image_out();

// these optional inputs can be either provided or omitted by the user
OPTIONS
+ Option ("threshold", "manually set the threshold value (default = ©.0)")
// this option requires that a value be specified alongside it when used
+ Argument ("value").type_float();

// published work to be cited whenever the command is used
REFERENCES
+ "Tournier, J.-D. et al. MRtrix3: A fast, flexible and open source framework for
medical image processing and visualisation. NeuroImage, 2019, n.d.";

// manually set the copyright notice if the default is inappropriate

COPYRIGHT = "Copyright (c) 2019 The MRtrix3 manuscript authors.";

// this 1is the functor class defining the operation to be applied
class Threshold

{
public:
Threshold (const float value) : threshold (value) { }
// the operation to be performed independently for each voxel
void operator() (Image<float>& in, Image<float>& out) const {
out.value() = (in.value() >= threshold) ? in.value() : 0.0;
}
const float threshold;
¥

// this function contains the primary operation of the command
void run ()

{

// access the input image
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auto in = Image<float>::open (argument[0]);
auto out = Image<float>::create (argument[1l], in);
Threshold functor (get_option_value ("threshold", 0.0));

ThreadedLoop ("applying threshold", in).run (functor, in, out);

9.1.2 Terminal usage:

This listing shows the commands to invoke to build and execute the application for the code above.
This assumes that the code sample has been saved to a file called ‘demo_binary.cpp’, currently
residing in the user’s ‘Downloads’ folder.

~ $ mkdir -p ~/module/cmd

~ $ cd ~/module

~/module $ mv ~/Downloads/demo_binary.cpp cmd/
~/module $ ~/MRtrix3/build

(1/3) [cC] tmp/cmd/demo_binary.o

(2/3) [cC] tmp/src/project_version.o

(3/3) [LN] bin/demo_binary

~ $ ~/module/bin/demo_binary ~/input.mif ~/output.nii.gz -threshold 10.0
demo_binary: [100%] Applying threshold
~$
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9.1.3 Help page:

This listing shows the help page print-out produced by invoking the ‘demo_binary’ command,
compiled as above, with no arguments or with the ‘-help’ option. Note that the documentation
matches the information provided by the developer in the ‘usage()’ function (see code listing in
9.1.1).

Version unknown demo_binary Oct 12 2018
using MRtrix3 3.0 RC3-91-gd2cd71l6d

demo_binary: external MRtrix3 project

SYNOPSIS
Clamp image intensities below a threshold to zero

USAGE
demo _binary [ options ] input output
input an input image
output the output image
OPTIONS

—threshold value
manually set the threshold value (default = 0.0).

Standard options

-info
display information messages.

—quiet
do not display information messages or progress status. Alternatively,
this can be achieved by setting the MRTRIX QUIET environment variable to a
non-empty string.

—debug
display debugging messages.

—force
force overwrite of output files. Caution: Using the same file as input and
output might cause unexpected behaviour.

-nthreads number
use this number of threads in multi-threaded applications (set to 0 to
disable multi-threading)

—help
display this information page and exit.

-version
display version information and exit.

AUTHOR
Robert E. Smith (robert.smith@florey.edu.au)

COPYRIGHT
Copyright (c) 2019 The MRtrix3 manuscript authors.

REFERENCES

Tournier, J.-D. et al., MRtrix3: A fast, flexible and open source
framework for medical image processing and visualisation. NeuroImage, 2019, n.d.
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9.2 Example Python script

9.2.1 Code (file “demo_python”):

#!/usr/bin/env python
# This function sets up the command-Lline interface for the executable
def usage(cmdline):

# Compulsory command information that must be provided
cmdline.set_author('Robert E. Smith (robert.smith@florey.edu.au)")
cmdline.set_synopsis('Clamp image intensities below a threshold to zero')

# Arguments without Lleading dashes are compulsory command-Lline inputs that must appear
cmdline.add_argument('input', help="The input image series')
cmdline.add_argument('output', help='The output image series')

# Arguments with a leading dash can be provided or omitted by the user
options.add_argument('-threshold', type=float, default=0.0, metavar='value',
help='Manually set the threshold value')

# Citation Llist for any user of the script

#  (False: No external softwares invoked)

cmdline.add_citation('', 'Tournier, J.-D. et al. MRtrix3: A fast, flexible and open
source framework for medical image processing and visualisation. NeuroImage, 2019,
n.d.', False)

# Custom copyright message to accompany the command
cmdline.set_copyright('Copyright (c) 2019 The MRtrix3 manuscript authors.')

# This function contains the primary operation of the command
def execute():

# Import the required MRtrix3 Python modules
from mrtrix3 import path, run

# Abort the command if it would involve overwriting an existing file
# (unless the user has specified the -force option)
app.check_output_path(app.args.output)

# Create a temporary scratch directory in which to perform our work
app.make_scratch_dir()

# Copy the input image 1into the scratch directory,

# handling complex filesystem paths as necessary

run.command( 'mrconvert ' + path.from_user(app.args.input) +
path.to_scratch('in.mif"))

+

# Move into the temporary scratch directory
app.goto_scratch_dir()

# Perform the requisite calculation
run.command( ‘mrcalc in.mif ' + str(app.args.threshold) +

-gt in.mif -mult out.mif"')
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run.command( ‘mrconvert out.mif ' + path.from_user(app.args.output) +
app.mrconvert_output_option(path.from_user(app.args.input)))

from mrtrix3 import app
app.execute()

9.2.2 Terminal usage:

This listing shows the commands to invoke to set up and execute the application for the code above.
This assumes that the code sample has been saved to a file called ‘demo_python’, currently residing
in the user’s ‘Downloads’ folder.

$

$ export PYTHONPATH=~/MRtrix3/1lib:$PYTHONPATH

$

$ mv ~/Downloads/demo_python ~/module/bin/

$

$ ~/module/bin/demo_python ~/input.mif ~/output.mif -threshold 10.0

demo_python:

demo_python: Note that this script makes use of commands / algorithms that have relevant
articles for citation. Please consult the help page (-help option) for more information.
demo_python:

demo_python: Generated scratch directory: /home/user/demo_python-tmp-Z2SIDY/

Command: mrconvert /home/user/input.mif /home/user/demo_python-tmp-Z2SIDY/in.mif
demo_python: Changing to scratch directory (/home/user/demo_python-tmp-Z2SIDY/)

Command: mrcalc in.mif 10.0 -gt in.mif -mult out.mif

Command: mrconvert out.mif /home/user/output.mif

demo_python: Changing back to original directory (/home/user)

demo_python: Deleting scratch directory (/home/user/demo_python-tmp-Z2SIDY/)

$



https://doi.org/10.1101/551739
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/551739; this version posted February 15, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

9.2.3 Help page

The help page print-out produced by invoking the ‘demo_python’ command with no arguments or
with the ‘-help’ option is practically identical to that produced by the ‘demo_binary’ command as
shown in 9.1.3, with the exception being addition of the following:

Options specific to Python scripts

—nocleanup
do not delete intermediate files during script execution, and do not delete
scratch directory at script completion.

—scratch /path/to/scratch/
manually specify the path in which to generate the scratch directory.

—continue <ScratchDir> <LastFile>
continue the script from a previous execution; must provide the scratch
directory path, and the name of the last successfully-generated file.
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